JPH08170629A - Sliding bearing - Google Patents

Sliding bearing

Info

Publication number
JPH08170629A
JPH08170629A JP31156294A JP31156294A JPH08170629A JP H08170629 A JPH08170629 A JP H08170629A JP 31156294 A JP31156294 A JP 31156294A JP 31156294 A JP31156294 A JP 31156294A JP H08170629 A JPH08170629 A JP H08170629A
Authority
JP
Japan
Prior art keywords
bearing
metals
offset
metal
assembly tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31156294A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nirei
康之 楡井
Zenichiro Kato
善一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31156294A priority Critical patent/JPH08170629A/en
Publication of JPH08170629A publication Critical patent/JPH08170629A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the relative assembly position of a split bearing from becoming such a position as to degrade bearing performance even in the case of the split bearing with an approximately elliptic axial hole by assembly tolerance being assembled in the offset state. CONSTITUTION: In a sliding bearing in which an approximately elliptic axial hole with the split faces in a major axis direction is formed by relatively positioning a pair of approximately semi-elliptic metals 4, 5 by bolts 6 with assembly tolerance around a reference position as the center, the relative positions of the metals 4, 5 are offset by the difference between the assembly tolerance and a minor axis direction clearance onto the turned-in side of a crank pin 1 to the metals 4, 5 in the reference position. The relative assembly position of the metals 4, 5 does not therefore become such a position as to degrade bearing performance even in the case of being assembled being offset by the assembly tolerance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、すべり軸受に関する。
特に内燃機関のクランクピンを回転自在に軸支するコン
ロッド大端部等に用いられる楕円すべり軸受に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plain bearing.
In particular, the present invention relates to an elliptical slide bearing used for a large end portion of a connecting rod that rotatably supports a crankpin of an internal combustion engine.

【0002】[0002]

【従来の技術】一般に、内燃機関のコンロッド大端部の
すべり軸受は、半円状の一対のメタルをコンロッド本体
側及びキャップ側のメタル支持面に夫々嵌合するように
した分割軸受とされており、潤滑の観点から楕円形状の
軸穴とされることが多い。この種の軸受として例えば、
特開昭54−71249号公報に開示されるようなすべ
り軸受が挙げられる。このすべり軸受を内燃機関のコン
ロッド大端部に適用した例を図5に基づいて以下に説明
する。
2. Description of the Related Art Generally, a sliding bearing at a large end portion of a connecting rod of an internal combustion engine is a split bearing in which a pair of semicircular metals are fitted to the metal supporting surfaces of the connecting rod body side and the cap side, respectively. In many cases, the shaft hole has an elliptical shape from the viewpoint of lubrication. As this type of bearing, for example,
A sliding bearing as disclosed in JP-A-54-71249 can be mentioned. An example in which this slide bearing is applied to the large end portion of the connecting rod of an internal combustion engine will be described below with reference to FIG.

【0003】図5において、1は支持すべきクランクピ
ン、2はコンロッドである。コンロッド2には、コンロ
ッド本体2a側のメタル支持面2bとキャップ3側のメ
タル支持面3aが形成され、このメタル支持面2b、3
aに夫々メタル4、5が嵌合される。そして、コンロッ
ド本体2aとキャップ3がコンロッドボルト6及びナッ
ト7により互いに締めつけられ、両メタル4、5によっ
て軸穴が形成されている。両メタル4、5の表面はすべ
り面となるが、このすべり面上では、図示しない油孔か
ら供給される潤滑油を介して、クランクピン1が回転自
在に軸支される。また、軸穴は、クランクピン1との間
隙が、コンロッド2の中心軸線X上から両メタル4、5
の合わせ面Yにかけて次第に大きくなるような略楕円形
の形状とされる。これは、メタル4、5のすべり面とク
ランクピン1との間隙を、楕円の短径方向の部位から長
径方向の部位にかけて次第に大きくすることで、くさび
形油膜を形成し、クランクピン1を油膜上に支持しやす
くするためである。
In FIG. 5, 1 is a crank pin to be supported, and 2 is a connecting rod. The connecting rod 2 is formed with a metal supporting surface 2b on the connecting rod body 2a side and a metal supporting surface 3a on the cap 3 side.
Metals 4 and 5 are fitted in a, respectively. Then, the connecting rod body 2a and the cap 3 are fastened to each other by the connecting rod bolt 6 and the nut 7, and the shaft holes are formed by the both metals 4 and 5. The surfaces of both the metals 4 and 5 are slip surfaces, and the crank pin 1 is rotatably supported on the slip surfaces via lubricating oil supplied from an oil hole (not shown). Further, the shaft hole has a clearance between the crank pin 1 and the metal 4
It has a substantially elliptical shape that gradually increases toward the mating surface Y. This is because the wedge-shaped oil film is formed by gradually increasing the gap between the slip surfaces of the metals 4 and 5 and the crankpin 1 from the part of the ellipse in the minor axis direction to the part of the ellipse in the major axis direction. This is because it is easy to support it above.

【0004】[0004]

【発明が解決しようとする課題】通常、コンロッド本体
とキャップとからなる分割軸受は、その組付けの容易性
を確保するために、コンロッド本体とキャップとの相対
位置を規制する位置決め手段、つまりコンロッドボルト
やノックピン等には、基準位置を中心とした余裕、つま
り組付け公差が必要となる。従って、分割された軸受は
両軸受の合わせ面方向で互いにずれて組み付けられる可
能性を持っている。このコンロッド本体とキャップとの
ずれの大きさ、つまり、軸受のずれ量の軸受の性能に与
える影響を検討するため、発明者らは図2(a)に示す
ような分割軸受を用いて実験を試みた。図2(a)にお
いて、1は矢印方向(反時計回り方向)に回転し荷重W
が作用するクランクピン等の回転軸であり、メタル4、
5で形成される略楕円形の軸穴で、図示しない油孔から
供給される潤滑油を介してこの回転軸1を軸支する。C
1 は軸穴の長径と回転軸1の直径との差となる長径方向
間隙、C2 は軸穴の短径と回転軸1の直径との差となる
短径方向間隙である。図2(a)においては、回転軸1
が軸穴の中心に位置する状態として示しているため、長
径方向で回転軸の両側に夫々生じる間隙としてC1
2、同様に短径方向に夫々生じる間隙としてC2 /2と
表している。実験においては、短径方向間隙C2 の異な
る(C2 =26μm、47μm)2種類の軸受を用い
て、メタル4、5の互いのずれ量を図2(b)、図2
(c)の2方向に変化させ、潤滑油を介して回転軸を回
転させたときのメタルの温度を測定した。その実験結果
を図3に基づいて以下に説明する。
Usually, a split bearing consisting of a connecting rod body and a cap has a positioning means for regulating the relative position between the connecting rod body and the cap, that is, the connecting rod, in order to ensure the ease of assembly. Bolts, knock pins, etc. require a margin around the reference position, that is, an assembly tolerance. Therefore, there is a possibility that the divided bearings may be assembled while being displaced from each other in the mating surface direction of both bearings. In order to study the influence of the amount of deviation between the connecting rod body and the cap, that is, the amount of deviation of the bearing on the performance of the bearing, the inventors conducted an experiment using a split bearing as shown in FIG. 2 (a). I tried. In FIG. 2A, the reference numeral 1 indicates the load W by rotating in the arrow direction (counterclockwise direction).
Is a rotating shaft such as a crankpin on which metal 4,
A substantially elliptical shaft hole formed by 5 supports the rotary shaft 1 through lubricating oil supplied from an oil hole (not shown). C
Reference numeral 1 is a gap in the major axis direction which is the difference between the major axis of the shaft hole and the diameter of the rotary shaft 1, and C 2 is a gap in the minor axis direction which is the difference between the minor axis of the shaft hole and the diameter of the rotary shaft 1. In FIG. 2A, the rotary shaft 1
Are shown in the state of being located at the center of the shaft hole, so C 1 /
2 represents a C 2/2 respectively as occurring gap similarly to the minor axis direction. In the experiment, using two types of bearings having different gaps C 2 in the minor axis direction (C 2 = 26 μm, 47 μm), the amounts of misalignment between the metals 4 and 5 were measured as shown in FIGS.
The temperature of the metal was measured when the rotating shaft was rotated through the lubricating oil by changing the direction in (c). The experimental results will be described below with reference to FIG.

【0005】図3は、メタルのずれ量に対する軸受の温
度上昇率の変化を示すグラフである。縦軸は軸受温度を
作用荷重Wで除した値である軸受温度上昇率、横軸は両
メタル4、5のずれ量を示している。図中の○は、図2
(b)に示すような回転軸1の回転方向に対して回転軸
1とメタル4、5との隙間が次第に大きくなる方向(+
方向)にメタル4、5がずれたときの値である。●は、
図2(c)に示すような隙間が次第に小さくなる方向
(−方向)にずれたときの値である。ここで、メタル
4、5のずれ量と温度上昇率の関係をみると、短径方向
間隙C2 の異なるいずれの軸受においても、−方向にず
れ量が変化した場合、温度上昇率に目立った変化はみら
れないのに対して、+方向にずれ量が変化した場合、あ
る値をしきい値として顕著に温度上昇率が増大すること
がわかる。さらに、C2 の異なるいずれの軸受において
も、このしきい値は、夫々の回転軸1とメタル4、5と
の短径方向間隙C2 にほぼ等しいことが明らかになっ
た。すなわち、C2 =26μmの軸受では、+方向のず
れ量26μm付近をしきい値として温度上昇率が増大
し、C2 =47μmの軸受では、+方向のずれ量47μ
m付近をしきい値として同じく温度上昇率が増大する。
ここで、このメタル4、5が+方向に短径方向間隙C 2
以上ずれた軸受の温度上昇率の増大は、回転軸1とメタ
ル4、5との隙間で極端に油膜が形成されにくくなるこ
とに由来していると考えられる。
FIG. 3 shows the bearing temperature with respect to the amount of metal deviation.
It is a graph which shows the change of the degree increase rate. The vertical axis is the bearing temperature
The bearing temperature rise rate, which is the value divided by the applied load W.
The amount of deviation between the metals 4 and 5 is shown. The circles in the figure are those in Figure 2.
The rotating shaft is rotated with respect to the rotating direction of the rotating shaft 1 as shown in (b).
The direction in which the gap between 1 and the metal 4, 5 gradually increases (+
This is the value when the metals 4 and 5 are displaced in the (direction). ● is
A direction in which the gap gradually decreases as shown in FIG.
It is a value when it is shifted in the (-direction). Where the metal
Looking at the relationship between the deviation amount of 4 and 5 and the temperature rise rate,
Gap C2For all bearings with different
If the amount of change in temperature changes, the temperature rise rate will not be noticeable.
However, if the shift amount changes in the + direction,
The temperature rise rate as a threshold value
I understand. Furthermore, C2In any bearing of different
However, this threshold value is the same for each rotating shaft 1 and each metal 4, 5.
Gap C in minor axis2Proved to be approximately equal to
Was. That is, C2== 26 μm bearing, the + direction
Temperature rise rate increases with a threshold value of around 26 μm
Then C2= 47 μm bearing, deviation in the + direction is 47 μ
Similarly, the temperature rise rate increases with the threshold value near m.
Here, the metal 4 and 5 is the gap C in the minor axis direction in the + direction. 2
The increase in the temperature rise rate of the bearing deviated from the above is
The oil film is extremely difficult to form in the gap between the
It is thought to be derived from.

【0006】つまり、コンロッドボルトやノックピン
等、組付け公差を有する位置決め手段により位置決めさ
れる分割軸受は、メタル4、5の相対的なずれ量が、メ
タルに対するクランクピン1の回出側、つまり、+方向
に所定値以上となった場合、温度が著しく上昇し、軸受
性能が低下するおそれがある。なお、上述の回出側につ
いて補足すると、例えば図2(a)において、メタル5
をみた場合、クランクピン1の両側に左右のメタル合わ
せ面が位置する。このうち、図中左側がメタル5にとっ
てクランクピン1の回転を迎える側となり、図中右側が
回転を送る側となる。この回転を迎える側がクランクピ
ン1の回入側であり、また、回転を送る側が回出側であ
る。
That is, in a split bearing which is positioned by a positioning means having a mounting tolerance, such as a connecting rod bolt and a knock pin, the relative displacement amount of the metal 4 and 5 is on the feeding side of the crank pin 1 with respect to the metal, that is, If the temperature exceeds a predetermined value in the + direction, the temperature may rise significantly and the bearing performance may deteriorate. In addition, supplementing the above-mentioned feeding side, for example, in FIG.
When seeing, the left and right metal mating surfaces are located on both sides of the crank pin 1. Of these, the left side in the figure is the side where the rotation of the crank pin 1 is reached for the metal 5, and the right side in the figure is the side that sends the rotation. The side that reaches this rotation is the inflow side of the crankpin 1, and the side that sends the rotation is the outflow side.

【0007】従って、前述の従来技術においては、分割
軸受を組み付ける際、組付け公差内で、軸受性能が低下
する相対位置方向である+方向、つまり、メタルに対す
るクランクピン1の回出側に短径方向間隙以上軸受がず
れたとき、クランクピン1とメタル4、5との間で油膜
が形成されにくくなるため、著しく温度が上昇し、偏磨
耗や焼き付きが起こり、軸受性能が低下するという問題
がある。以上、内燃機関のクランクピンを軸支するコン
ロッドのすべり軸受の場合について説明したが、この種
の問題は、これ以外の回転軸を軸支する楕円分割軸受に
おいても同様に生じる。
Therefore, in the above-mentioned prior art, when assembling the split bearing, within the assembling tolerance, the + direction is the relative position direction in which the bearing performance deteriorates, that is, the crank pin 1 is shorted to the feeding side with respect to the metal. When the bearing deviates by more than the radial clearance, an oil film is less likely to be formed between the crankpin 1 and the metals 4, 5, so that the temperature significantly rises, uneven wear and seizure occur, and the bearing performance deteriorates. There is. The case of the sliding bearing of the connecting rod that axially supports the crankpin of the internal combustion engine has been described above, but this type of problem similarly occurs in elliptical split bearings that axially support other rotating shafts.

【0008】本発明は、上述した問題を解決するために
なされたものであって、本発明が解決しようとする課題
は、軸受性能が低下しない相対位置方向である−方向、
つまり、メタル等の軸受部材に対するクランクピン等の
回転軸の回入側に軸受部材の相対位置を予めオフセット
させることにより、組付け公差の範囲内でずれて組み付
けられた場合においても、軸受性能が低下する軸受部材
の相対位置関係にならないようにして、油膜を良好に形
成し、軸受性能の低下を防止することにある。
The present invention has been made to solve the above-mentioned problems, and the problem to be solved by the present invention is a relative position direction in which bearing performance is not deteriorated.
That is, by offsetting the relative position of the bearing member in advance to the turning-in side of the rotary shaft such as the crank pin with respect to the bearing member such as metal, the bearing performance is improved even when the bearing member is assembled with a deviation within the assembly tolerance range. The purpose of this invention is to prevent the deterioration of the bearing performance by preventing the relative positional relationship of the bearing members from decreasing so that an oil film is formed well.

【課題を解決するための手段】上記課題を解決するため
に本発明のすべり軸受は次の手段をとる。すなわち基準
位置を中心とした組付け公差を有する位置決め手段によ
り一対の略半楕円形の軸受部材が相対的に位置決めされ
ることで長径方向に分割面を有した略楕円形の軸穴が形
成されるすべり軸受において、前記基準位置における前
記軸受部材に対する回転軸の回入側に前記軸受部材の相
対位置をオフセットさせており、該オフセットのオフセ
ット量は前記組付け公差の大きさと前記軸穴と前記回転
軸との短径方向間隙の大きさとの差以上の大きさである
ことを特徴とする。
In order to solve the above problems, the sliding bearing of the present invention employs the following means. That is, the pair of substantially semi-elliptical bearing members are relatively positioned by the positioning means having an assembly tolerance centered on the reference position to form a substantially elliptical shaft hole having a split surface in the major axis direction. In the slide bearing, the relative position of the bearing member is offset on the inflow side of the rotary shaft with respect to the bearing member at the reference position, and the offset amount of the offset is the magnitude of the assembly tolerance, the shaft hole, and the shaft hole. It is characterized in that it has a size larger than the difference from the size of the gap in the minor axis direction with the rotating shaft.

【0009】[0009]

【作用】上記手段によれば、軸受性能が低下する軸受部
材の相対位置が組付け公差による軸受部材のずれの範囲
外となり、組付け公差の範囲内でずれて組み付けられた
場合においても、軸受性能が低下する軸受部材の相対位
置関係にならない。
According to the above means, the relative position of the bearing member, which deteriorates the bearing performance, is out of the range of the deviation of the bearing member due to the assembly tolerance, and even when the bearing member is assembled with the deviation within the range of the assembly tolerance, The relative positional relationship of the bearing members that deteriorates the performance does not occur.

【0010】[0010]

【実施例】本発明の実施例を図1に基づいて以下に説明
する。図1において、1は支持すべき回転軸となるクラ
ンクピン、2はコンロッドである。このコンロッド2に
は、コンロッド本体2a側のメタル支持面2bとキャッ
プ3側のメタル支持面3aが形成され、このメタル支持
面2b及び3aに、夫々略半楕円形の一対のメタル4、
5が嵌合される。そして、コンロッド本体2aとキャッ
プ3がコンロッドボルト6及びナット7により互いに締
めつけられ、両メタル4、5によって軸穴が形成されて
いる。両メタル4、5のすべり面上では、図示しない油
孔から供給される潤滑油を介して、クランクピン1が回
転自在に軸支される。また、両メタル4、5がその合わ
せ面に沿う方向にオフセットするように、メタル支持面
2b及び3aが形成されている。このオフセット量を図
1中の破線で示される両メタル4、5の当接部となるZ
部の拡大図である図4に基づいて以下に説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numeral 1 is a crankpin which serves as a rotating shaft to be supported, and 2 is a connecting rod. The connecting rod 2 is formed with a metal supporting surface 2b on the connecting rod main body 2a side and a metal supporting surface 3a on the cap 3 side. The metal supporting surfaces 2b and 3a respectively have a pair of semi-elliptical metal 4,
5 are fitted. Then, the connecting rod body 2a and the cap 3 are fastened to each other by the connecting rod bolt 6 and the nut 7, and the shaft holes are formed by the both metals 4 and 5. The crankpin 1 is rotatably supported on the sliding surfaces of the two metals 4 and 5 via lubricating oil supplied from an oil hole (not shown). Further, metal supporting surfaces 2b and 3a are formed so that both the metals 4 and 5 are offset in the direction along the mating surface. This offset amount is Z, which is the contact portion between the two metals 4 and 5 indicated by the broken line in FIG.
The following description is based on FIG. 4, which is an enlarged view of the part.

【0011】図4において、メタル4、5がオフセット
されない場合、つまり、従来技術と同様なメタルの相対
位置関係であった場合、メタル5に対してメタル4はI
に示される場所に位置する。そのときの組付け公差Eに
よるずれ幅が矢印Aで示される範囲のとき、従来技術に
おいては、軸受性能が低下するずれ量のしきい値である
短径方向間隙C2 (図中IIIの位置)以上のメタル4、
5の相対位置のずれが組付け時に生じてしまう恐れがあ
る。これを回避するために、本実施例においては、メタ
ル4、5が図中IIの相対位置関係となるように、予め組
付け公差と短径方向間隙C2 との差(E−C2 )分オフ
セットさせる。これにより、組付け公差Eによるずれ幅
は矢印Bで示される範囲となるため、組付け時にずれた
場合においても、軸受性能が低下するずれ量のしきい値
である短径方向間隙C2 (図中IIIの位置)以上まで、
メタル4、5がずれることはない。従って、組付け公差
によってずれた場合においても、軸受性能が低下するこ
とがない。
In FIG. 4, when the metals 4 and 5 are not offset, that is, when the relative positional relationship of the metals is the same as in the prior art, the metal 4 is I with respect to the metal 5.
Located in the location shown in. When the deviation width due to the mounting tolerance E at that time is within the range indicated by the arrow A, in the prior art, the minor axis gap C 2 (the position of III in the figure) which is the threshold value of the deviation amount at which the bearing performance deteriorates. ) Above metal 4,
There is a possibility that the relative position of No. 5 may be displaced during assembly. In order to avoid this, in the present embodiment, the difference (E−C 2 ) between the assembly tolerance and the minor-axis direction clearance C 2 is previously set so that the metals 4 and 5 have the relative positional relationship of II in the drawing. Offset by minutes. As a result, the deviation width due to the mounting tolerance E is within the range indicated by the arrow B, so that even if the deviation occurs at the time of assembly, the gap C 2 (which is the threshold value of the deviation amount that reduces the bearing performance). (Position III in the figure)
Metals 4 and 5 will not shift. Therefore, the bearing performance does not deteriorate even when the bearing is displaced due to the assembly tolerance.

【0012】本実施例においては、予めオフセットさせ
るオフセット量を、組付け公差から短径方向間隙C2
引いた値、つまり、組付け公差と短径方向間隙C2 との
差としているが、オフセット量はこれに限定されるもの
ではなく、組付け公差と短径方向間隙C2 との差以上、
つまり、図4中IIの位置より右側にメタル4が位置する
ような相対位置となるオフセット量であれば、本発明の
効果は得られる。また、本実施例においては、メタル
4、5の肉厚は円周方向で一定として、メタル支持面2
b、3aの相対位置をオフセットさせた構成となってい
るが、メタル支持面2b、3aの相対位置は従来技術と
同様で、嵌合させるメタル4、5の肉厚を円周方向で変
化させることで、メタル4、5のすべり面の相対位置が
オフセットされた構造としても良い。従って、軸穴を形
成するすべり面がオフセットされる構造となれば、本発
明の作用は得られることから、本発明における軸受部材
は、特に、軸受と別体に形成されるメタルに限定される
ものではなく、軸受と一体に形成されるものであっても
良い。
[0012] In this embodiment, the offset amount to advance offset, minus the minor diametrical gap C 2 from the assembly tolerances, that is, although the difference between the assembly tolerances and minor axis direction clearance C 2, The offset amount is not limited to this, and is equal to or greater than the difference between the assembly tolerance and the minor-axis direction clearance C 2 .
That is, the effect of the present invention can be obtained if the offset amount is a relative position such that the metal 4 is located on the right side of the position II in FIG. Further, in the present embodiment, the thickness of the metals 4, 5 is constant in the circumferential direction, and the metal supporting surface 2
Although the relative positions of b and 3a are offset, the relative positions of the metal supporting surfaces 2b and 3a are the same as in the prior art, and the thicknesses of the fitted metals 4 and 5 are changed in the circumferential direction. Therefore, the relative positions of the slip surfaces of the metals 4 and 5 may be offset. Therefore, since the action of the present invention can be obtained if the sliding surface forming the shaft hole is offset, the bearing member in the present invention is particularly limited to the metal formed separately from the bearing. Instead of the one, it may be formed integrally with the bearing.

【0013】上述の実施例は、内燃機関のコンロッドに
おいて、クランクピンを回転自在に軸支するすべり軸受
に具体化したが、本発明は、半割軸受部材により形成さ
れた略楕円形の軸穴により、主として一方向に回転する
回転軸を軸支するようなすべり軸受であれば適用可能で
ある。
The above-described embodiment has been embodied as a slide bearing for rotatably supporting a crank pin in a connecting rod of an internal combustion engine. However, the present invention is a substantially elliptical shaft hole formed by a half bearing member. Therefore, any sliding bearing that mainly supports a rotating shaft that rotates in one direction can be applied.

【0014】[0014]

【発明の効果】本発明に係るすべり軸受によれば、軸受
部材が組付け公差の範囲内でずれて組み付けられた場合
においても、軸受性能が低下する軸受部材の相対位置関
係にならず、軸受性能の低下を防ぐことができる。
According to the plain bearing of the present invention, even when the bearing members are assembled with being displaced within the range of the assembly tolerance, the relative performance of the bearing members does not deteriorate and the bearing performance does not deteriorate. It is possible to prevent performance deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るすべり軸受の概略断面図
である。
FIG. 1 is a schematic cross-sectional view of a slide bearing according to an embodiment of the present invention.

【図2】(a)は本発明の発明者らによって行われた実
験に用いられたすべり軸受の概略断面図であり、
(b)、(c)はメタルのずれ方向を示す図である。
FIG. 2 (a) is a schematic cross-sectional view of a sliding bearing used in an experiment conducted by the inventors of the present invention,
(B), (c) is a figure which shows the displacement direction of metal.

【図3】メタルのずれ量に対する軸受の温度上昇率の変
化を示すグラフである。
FIG. 3 is a graph showing changes in the temperature rise rate of the bearing with respect to the amount of metal displacement.

【図4】本発明のオフセット量を示すための図1におけ
るZ部の拡大図である。
FIG. 4 is an enlarged view of a Z portion in FIG. 1 showing an offset amount of the present invention.

【図5】従来技術におけるすべり軸受の概略断面図であ
る。
FIG. 5 is a schematic cross-sectional view of a conventional slide bearing.

【符号の説明】[Explanation of symbols]

1・・・クランクピン(回転軸) 2・・・コンロッド 2a・・・コンロッド本体 2b・・・コンロッド本体側のメタル支持面 3・・・キャップ 3a・・・キャップ側のメタル支持面 4、5・・・メタル(軸受部材) 6・・・コンロッドボルト(位置決め手段) 7・・・ナット 1 ... Crank pin (rotating shaft) 2 ... Connecting rod 2a ... Connecting rod body 2b ... Metal supporting surface on connecting rod side 3 ... Cap 3a ... Metal supporting surface on cap side 4, 5 ... Metal (bearing member) 6 ... Connecting rod bolt (positioning means) 7 ... Nut

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基準位置を中心とした組付け公差を有す
る位置決め手段により一対の略半楕円形の軸受部材が相
対的に位置決めされることで長径方向に分割面を有した
略楕円形の軸穴が形成されるすべり軸受において、 前記基準位置における前記軸受部材に対する回転軸の回
入側に前記軸受部材の相対位置をオフセットさせてお
り、該オフセットのオフセット量は前記組付け公差の大
きさと前記軸穴と前記回転軸との短径方向間隙の大きさ
との差以上の大きさであることを特徴とするすべり軸
受。
1. A substantially elliptical shaft having a split surface in the major axis direction by relatively positioning a pair of substantially semi-elliptical bearing members by a positioning means having an assembly tolerance centered on a reference position. In a slide bearing in which a hole is formed, the relative position of the bearing member is offset on the turn-in side of the rotary shaft with respect to the bearing member at the reference position, and the offset amount of the offset is the magnitude of the assembly tolerance and A sliding bearing having a size equal to or larger than a difference between a size of a gap in the minor axis direction between the shaft hole and the rotary shaft.
JP31156294A 1994-12-15 1994-12-15 Sliding bearing Pending JPH08170629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31156294A JPH08170629A (en) 1994-12-15 1994-12-15 Sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31156294A JPH08170629A (en) 1994-12-15 1994-12-15 Sliding bearing

Publications (1)

Publication Number Publication Date
JPH08170629A true JPH08170629A (en) 1996-07-02

Family

ID=18018731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31156294A Pending JPH08170629A (en) 1994-12-15 1994-12-15 Sliding bearing

Country Status (1)

Country Link
JP (1) JPH08170629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508159A (en) * 2006-10-30 2010-03-18 ダイムラー・アクチェンゲゼルシャフト Method and electrode for manufacturing radial bearing surfaces and connecting rods
JP2010508158A (en) * 2006-10-30 2010-03-18 ダイムラー・アクチェンゲゼルシャフト Process for processing coated frictional contact surface made of conductive material and electrode for electrolytic processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508159A (en) * 2006-10-30 2010-03-18 ダイムラー・アクチェンゲゼルシャフト Method and electrode for manufacturing radial bearing surfaces and connecting rods
JP2010508158A (en) * 2006-10-30 2010-03-18 ダイムラー・アクチェンゲゼルシャフト Process for processing coated frictional contact surface made of conductive material and electrode for electrolytic processing

Similar Documents

Publication Publication Date Title
US7234870B2 (en) Plain bearing
US6585419B2 (en) Shaft bearing member
US6634791B2 (en) Shaft bearing member
JP5340697B2 (en) Sliding bearing for internal combustion engine and sliding bearing device
US20050201647A1 (en) Half plain bearing
JPH0765615B2 (en) Journal bearing
US20070110351A1 (en) Centering mechanisms for turbocharger bearings
KR20020052937A (en) half bearing
US9909615B2 (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
KR101827022B1 (en) Sliding bearing shell
WO2017090287A1 (en) Half bearing
EP0176614A1 (en) Offset wall bearing
US10591019B2 (en) Balancer shaft assemblies
JPS6113018A (en) Tilt segment type radial bearing
JP4757254B2 (en) Needle roller bearing
JPH08219148A (en) Floating bush bearing
EP3106693B1 (en) Plain bearing and lubricant supply mechanism equipped with same
JP3815027B2 (en) Roller support bearing device
JP2008095723A (en) Rolling bearing
EP3534021B1 (en) Half thrust bearing
US20200271161A1 (en) Thrust roller bearing
JPH08170629A (en) Sliding bearing
JP5762698B2 (en) Split needle bearing and bearing device
JP5089572B2 (en) Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
JP2005326023A (en) Roller supporting bearing device