JPH08170032A - Powdery coating material, its production and powdery coating using the same - Google Patents

Powdery coating material, its production and powdery coating using the same

Info

Publication number
JPH08170032A
JPH08170032A JP6317319A JP31731994A JPH08170032A JP H08170032 A JPH08170032 A JP H08170032A JP 6317319 A JP6317319 A JP 6317319A JP 31731994 A JP31731994 A JP 31731994A JP H08170032 A JPH08170032 A JP H08170032A
Authority
JP
Japan
Prior art keywords
powder
coating material
powder coating
inorganic fine
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6317319A
Other languages
Japanese (ja)
Other versions
JP2983868B2 (en
Inventor
Yuichi Moriya
祐一 守屋
Kiyoshi Nishida
潔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP6317319A priority Critical patent/JP2983868B2/en
Publication of JPH08170032A publication Critical patent/JPH08170032A/en
Application granted granted Critical
Publication of JP2983868B2 publication Critical patent/JP2983868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/047Discharge apparatus, e.g. electrostatic spray guns using tribo-charging

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: To obtain a powdery coating material, using a powdery coating mate rial having a small particle diameter enabling to form a thin film, capable of achieving an improvement in leveling properties and operating efficiency and suitably usable even for a triboelectric type spray gun and provide methods both for producing the powdery coating material and for coating using the powdery coating material. CONSTITUTION: This powdery coating material comprises powder particles containing a binding resin and a curing agent and an inorganic fine powder. The average particle diameter of the powder particles is 5-20μm and the surface of the inorganic fine powder is teated with a silane compound containing at least nitrogen atoms and the specific surface area according to the BET method is >=70m<2> /g. The number of adsorbed CO2 gas per unit surface area is <=4.0 molecules/nm<2> and the number of adsorbed NH3 gas per unit surface area is <=1.0 molecule/nm<2> . The inorganic fine powder in an amount of 0.05-5wt.% based on 100wt.% powder particles sticks to the surfaces of the powder particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜塗装に適した粉体塗
料、その製造方法、およびそれを使用した粉体塗装方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder coating suitable for thin film coating, a method for producing the same, and a powder coating method using the same.

【0002】[0002]

【従来の技術】粉体塗料は、溶剤塗料に比べ、揮発分・
臭気とも少ないため公害対策および環境規制の面で非常
に有益であることは周知である。従来より、コロナ帯電
方式のスプレーガンが粉体塗料塗装に使用されている。
この方式では、スプレーガンの先端に設けられたコロナ
電極から生成されたコロナイオンによって帯電された粉
体塗料が、導電体である被塗物と電極との間に形成され
た電界及び空気流に沿って飛翔して被塗物に付着する。
2. Description of the Related Art Powder paints have a higher volatile content than solvent paints.
It is well known that it is very useful in terms of pollution control and environmental regulation because it has little odor. Conventionally, a corona charging type spray gun has been used for powder coating.
In this method, the powder coating material charged by corona ions generated from the corona electrode provided at the tip of the spray gun is applied to the electric field and air flow formed between the object to be coated which is a conductor and the electrode. It flies along and adheres to the object to be coated.

【0003】このコロナ帯電方式には、2つの大きな問
題点があることが分かっている。1つはファラデーケー
ジ効果と呼ばれ、電界(電気力線)が被塗物の凹部に形
成されないため粉体塗料が凹部には少量しか付着せず、
逆に電気力線が集中するエッジ部には多量に付着すると
いう現象である。他の1つは逆電離現象と呼ばれ、被塗
物上に堆積された粉体塗料及び遊離コロナイオンの蓄積
電荷が大きくなりすぎて火花放電を生じ、塗装面にクレ
ータ状の不良箇所を生じる現象である。
It has been found that this corona charging system has two major problems. One is called the Faraday cage effect, in which the electric field (lines of electric force) is not formed in the recesses of the object to be coated, so that only a small amount of powder coating adheres to the recesses.
On the contrary, it is a phenomenon that a large amount is attached to the edge portion where the lines of electric force are concentrated. The other one is called the reverse ionization phenomenon, in which the accumulated charge of the powder coating and free corona ions deposited on the object becomes too large and spark discharge occurs, causing crater-like defects on the coated surface. It is a phenomenon.

【0004】これらの問題を解決するため、近年、トリ
ボ帯電方式スプレーガンが使用されてきている。この方
式では、粉体塗料がスプレーガン内壁との摩擦によって
帯電し、空気流のみによって被塗物まで飛翔して付着す
る。この方式によれば電界が形成されないので、凹部へ
も粉体塗料が良好に付着することができる。また、遊離
イオンが発生しないので逆電離現象も起きにくい。
In order to solve these problems, a tribo-charging type spray gun has been used in recent years. In this method, the powder coating material is charged by friction with the inner wall of the spray gun, and fly and adhere to the object to be coated only by the air flow. According to this method, since no electric field is formed, the powder coating material can be favorably adhered to the recesses. In addition, since free ions are not generated, the reverse ionization phenomenon is unlikely to occur.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、粉体塗
料の帯電が摩擦だけによるため、絶対的な帯電量はコロ
ナ帯電方式よりも低い。したがって、スプレーガンから
の粉体塗料の吐出速度を上げると充分な帯電量が得られ
ない。また、連続して使用するとスプレーガン内壁に摩
擦電荷が蓄積される。これらが原因となり、粉体塗料の
摩擦帯電量が低下して被塗物への付着が不充分になる。
このため、粉体塗料の摩擦帯電性の調整、スプレーガン
からの吐出速度および吐出量の調整が、塗装後の塗面の
仕上がり状態に大きな影響を及ぼしていた。
However, since the powder coating material is charged only by friction, the absolute charge amount is lower than that of the corona charging method. Therefore, if the discharge speed of the powder coating material from the spray gun is increased, a sufficient amount of charge cannot be obtained. Further, when continuously used, a triboelectric charge is accumulated on the inner wall of the spray gun. Due to these factors, the triboelectric charge amount of the powder coating material decreases and the adhesion to the object to be coated becomes insufficient.
For this reason, the adjustment of the triboelectric chargeability of the powder coating material and the adjustment of the discharge speed and the discharge amount from the spray gun have a great influence on the finished state of the coated surface after coating.

【0006】トリボ帯電方式スプレーガンには、平均粒
径が30μm程度の粉体塗料が広く使用されていた。3
0μmより小さい平均粒径を有する粉体塗料では流動性
が悪化し、摩擦帯電不良やスプレーガン内部での粒子塊
の発生、選択付着による回収粉の品質劣化などが発生し
易い。また、良好なレベリング性を得るためには均一な
粉体付着層を形成させることが必須であるが、そのため
には付着層の厚さを粒子径の2〜3倍にする必要があ
る。したがって、従来の粉体塗料では塗膜の厚さを60
μm程度にせざるを得なかった。上記帯電性、レベリン
グ性、および流動性の他に、市場では更にトータルコス
トダウン等が要望されている。
Powder coatings having an average particle size of about 30 μm have been widely used for tribo-charging type spray guns. Three
A powder coating having an average particle size of less than 0 μm is liable to deteriorate in fluidity, resulting in poor tribocharging, generation of particle agglomerates inside the spray gun, and deterioration of quality of recovered powder due to selective adhesion. Further, in order to obtain a good leveling property, it is essential to form a uniform powder adhesion layer, but for that purpose, the thickness of the adhesion layer needs to be 2 to 3 times the particle diameter. Therefore, with conventional powder coatings, the coating thickness is 60
It had to be about μm. In addition to the above-mentioned charging property, leveling property, and liquidity, further reduction in total cost is demanded in the market.

【0007】本発明は上記事情に鑑みてなされたもので
あり、塗膜の薄膜化を可能ならしめる小粒径、良好なレ
ベリング性を有し、トリボ帯電方式のスプレーガンを使
用して塗装に好適に使用される粉体塗料、その製造方
法、および得られた粉体塗料を好適に塗装できる粉体塗
装方法を提供することを目的とする。
The present invention has been made in view of the above circumstances and has a small particle size that enables a thin coating film and has a good leveling property, and is used for coating using a tribo-charging type spray gun. An object of the present invention is to provide a powder coating material that is preferably used, a method for producing the powder coating material, and a powder coating method capable of suitably coating the obtained powder coating material.

【0008】[0008]

【課題を解決するための手段】本発明の粉体塗料は、結
着樹脂および硬化剤を含有する粉体粒子と、無機微粉体
とからなる粉体塗料であって、上記粉体粒子の平均粒子
径が5〜20μmであり、上記無機微粉体は少なくとも
窒素原子を含有するシラン化合物で表面処理されてお
り、BET法による比表面積が70m2 /g以上であ
り、単位表面積当りのCO2 ガス吸着個数が4.0個/
nm2 以下であり、かつ単位面積当たりのNH3 ガス
の吸着個数が1.0個/nm2 以下であって、上記粉体
粒子100重量%に対して0.05〜5重量%の割合で
粉体粒子表面に付着していることを特徴とするものであ
る。
The powder coating material of the present invention is a powder coating material comprising powder particles containing a binder resin and a curing agent, and an inorganic fine powder. The particle size is 5 to 20 μm, the inorganic fine powder is surface-treated with a silane compound containing at least a nitrogen atom, the BET specific surface area is 70 m 2 / g or more, and the CO 2 gas per unit surface area is Adsorption number is 4.0 /
nm 2 or less, and the number of adsorbed NH 3 gas per unit area is 1.0 / nm 2 or less, and at a ratio of 0.05 to 5 wt% with respect to 100 wt% of the powder particles. It is characterized in that it adheres to the surface of powder particles.

【0009】以下、本発明の粉体塗料についてより詳細
に説明する。本発明の粉体塗料は、粉体粒子と、無機微
粉体とからなる。上記粉体粒子は、結着樹脂、硬化剤、
およびその他の添加剤を含有している。該結着樹脂とし
ては、ポリエステル樹脂、エポキシ樹脂、アクリル樹
脂、フェノール樹脂、キシレン樹脂、ユリア樹脂、メラ
ミン樹脂等が使用できる。上記ポリエステル樹脂は比較
的負帯電性が強い樹脂であるが、本発明の無機微粉体を
表面に付着させることで適正な正帯電性を得ることがで
きる。硬化剤としては、イソシアネート、アミン、ポリ
アミド、酸無水物、ポリスルフィド、三フッ化ホウ素
酸、酸ジヒドラジド、イミダゾール等が挙げられる。そ
の他の添加剤としては、硫酸バリウム、炭酸カルシウ
ム、酸化アルミニウム、およびケイ酸カルシウム等の充
填剤、アクリルオリゴマー、およびシリコーン等の流展
剤、酸化チタン、酸化クロム、酸化鉄、およびカーボン
ブラック等の着色剤、および発泡防止剤等を例示でき
る。
The powder coating material of the present invention will be described in more detail below. The powder coating material of the present invention comprises powder particles and inorganic fine powder. The powder particles are a binder resin, a curing agent,
And other additives. As the binder resin, polyester resin, epoxy resin, acrylic resin, phenol resin, xylene resin, urea resin, melamine resin and the like can be used. The above polyester resin is a resin having a relatively strong negative chargeability, but proper positive chargeability can be obtained by attaching the inorganic fine powder of the present invention to the surface. Examples of the curing agent include isocyanate, amine, polyamide, acid anhydride, polysulfide, trifluoroboric acid, acid dihydrazide, and imidazole. Other additives include fillers such as barium sulfate, calcium carbonate, aluminum oxide, and calcium silicate, leveling agents such as acrylic oligomer and silicone, titanium oxide, chromium oxide, iron oxide, and carbon black. Colorants, antifoaming agents and the like can be exemplified.

【0010】本発明の粉体粒子の粒子径は、体積50%
径が5〜20μm(コールターカウンターTAII型で
の測定値)という範囲になければならない。体積50%
径が5μm未満の粉体粒子はファンデルワールスカなど
に起因する粒子間力が大きくなるため凝集しやすく粉体
としての流動性が悪化するため、粉体塗料として実用的
でない。さらに、このような小粒径の粉体粒子を一般的
な溶融混練、粉砕分級方法で製造しようとすると、粉砕
分級工程で大きなエネルギーを必要とするため、製造コ
ストがかなり高くなってしまう。逆に、体積50%径が
20μmを越えると、薄く均一な粉体付着層を被塗装面
に得ることができず、したがって良好な薄膜が得られな
い。
The particle diameter of the powder particles of the present invention is 50% by volume.
The diameter must be in the range of 5 to 20 μm (measured value with Coulter Counter TAII type). 50% volume
Powder particles having a diameter of less than 5 μm are not practical as powder coatings because the interparticle force due to van der Waalsca and the like becomes large and they easily agglomerate and the fluidity of the powder deteriorates. Further, if it is attempted to manufacture such powder particles having a small particle diameter by a general melt-kneading and pulverizing and classifying method, a large amount of energy is required in the pulverizing and classifying step, so that the manufacturing cost becomes considerably high. On the other hand, if the volume 50% diameter exceeds 20 μm, a thin and uniform powder adhesion layer cannot be obtained on the surface to be coated, and therefore a good thin film cannot be obtained.

【0011】無機微粉末は、シリカ、アルミナ、酸化チ
タン等の無機微粒子からなり、その表面は少なくとも窒
素原子を含有するシラン化合物で処理されており、BE
T法による比表面積が70m2 /g以上であり、単位表
面積当りのCO2 ガス吸着個数が4.0個/nm2 以下
であり、単位表面積当りのNH3 ガス吸着個数が1.0
個/nm2 以下であるという特性を有するものである。
The fine inorganic powder is composed of fine inorganic particles such as silica, alumina and titanium oxide, and the surface thereof is treated with a silane compound containing at least a nitrogen atom.
The specific surface area by the T method is 70 m 2 / g or more, the CO 2 gas adsorption number per unit surface area is 4.0 / nm 2 or less, and the NH 3 gas adsorption number per unit surface area is 1.0.
It has a characteristic that the number is less than or equal to 1 / nm 2 .

【0012】上記窒素原子を含有するシラン化合物は表
面処理剤として使用されており、例えば、アミノ基含有
シランカップリング剤、アミノ基含有ポリシロキサン、
アミド基含有ポリシロキサン、イミド基含有ポリシロキ
サンが好適に用いられる。これらのシラン化合物は、他
のシラン化合物と比較して、処理粉体に良好な正帯電性
を付与できるため好ましい。このような窒素原子を含有
する表面処理剤で無機微粒子を表面処理した場合、表面
処理状態が良好であれば、NH3 ガスは無機微粒子表面
には化学吸着し得ない。単位面積当りのNH3ガスの吸
着個数が1.0個/nm2を越える場合には、表面処理
が不充分であるものと判断される。表面処理が不充分な
無機微粒子を付着させて得る粉体塗料の帯電性は不充分
となるため、被塗物への粉体塗料の充分な付着性を得る
ことができない。単位面積当りのNH3 ガスの吸着個数
が1.0個/nm2 以下となるよう、窒素原子を含有す
るシラン化合物で表面処理された無機微粒子は、高い正
帯電性を有することとなる。
The above-mentioned silane compound containing a nitrogen atom is used as a surface treatment agent. For example, an amino group-containing silane coupling agent, an amino group-containing polysiloxane,
Amido group-containing polysiloxane and imide group-containing polysiloxane are preferably used. These silane compounds are preferable because they can impart good positive chargeability to the treated powder as compared with other silane compounds. When the inorganic fine particles are surface-treated with such a surface-treating agent containing a nitrogen atom, NH 3 gas cannot be chemically adsorbed on the surface of the inorganic fine particles if the surface-treated state is good. When the number of adsorbed NH 3 gas per unit area exceeds 1.0 / nm 2 , the surface treatment is judged to be insufficient. The chargeability of the powder coating obtained by depositing the inorganic fine particles whose surface treatment is insufficient is insufficient, so that the powder coating cannot be sufficiently attached to the object to be coated. The inorganic fine particles surface-treated with the silane compound containing a nitrogen atom have a high positive chargeability so that the number of adsorbed NH 3 gas per unit area is 1.0 / nm 2 or less.

【0013】BET法による比表面積が70m2 /g未
満では、無機微粉末の1次粒子径が大きくなり、粉体塗
料粒子から脱落し易くなる。特に、塗装時の回収粉の再
利用に問題が生じるため、70m2 /g未満は好ましく
ない。
When the specific surface area by the BET method is less than 70 m 2 / g, the primary particle size of the inorganic fine powder becomes large, and the inorganic fine powder easily falls off from the powder coating particles. In particular, less than 70 m 2 / g is not preferable because it causes a problem in reusing collected powder during coating.

【0014】CO2 ガスは大きい4重極モーメントを有
するH2O 分子に似た極性分子であるため、CO2 ガス
の吸着性によって水分の吸着しやすさを判定することが
できる。本発明では、このCO2 ガスと水分との関係を
利用して、塗料の帯電性を判断している。つまり、本発
明の粉体塗料に使用される無機微粉体は単位面積当りの
CO2 ガス吸着個数を4.0個/nm2 以下とした。
4.0個/nm2 を越えると、保存時に空気中の水分を
吸着し、粉体塗料の帯電性が損なわれるため好ましくな
いからである。なお、本発明で規定されたBET法によ
る比表面積、単位表面積当りのCO2ガス吸着個数、単
位表面積当りのNH3 ガス吸着個数の3項目は、日本ベ
ル社製の高精度ガス自動吸着装置BELSORP28を
用いて測定した値である。
Since CO 2 gas is a polar molecule similar to H 2 O molecule having a large quadrupole moment, the easiness of adsorbing water can be determined by the adsorbability of CO 2 gas. In the present invention, the chargeability of the paint is judged by utilizing the relationship between the CO 2 gas and the water. That is, the inorganic fine powder used in the powder coating material of the present invention had a CO 2 gas adsorption number per unit area of 4.0 / nm 2 or less.
If it exceeds 4.0 / nm 2 , moisture in the air will be adsorbed during storage and the chargeability of the powder coating material will be impaired, which is not preferable. In addition, the three items of the specific surface area by the BET method defined in the present invention, the number of CO 2 gas adsorption per unit surface area, and the number of NH 3 gas adsorption per unit surface area are the high precision gas automatic adsorption device BELSORP28 manufactured by Bell Japan. It is the value measured using.

【0015】本発明の粉体塗料では、上記構成からなる
粉体粒子100重量%に対して、0.05〜5重量%の
割合で、無機微粉体が上記粉体粒子表面に付着してい
る。なお、本明細書では「付着している状態」には、粉
体粒子の表面に無機微粉末が一部埋設した状態をも含む
ものとする。
In the powder coating material of the present invention, the inorganic fine powder adheres to the surface of the powder particles in a proportion of 0.05 to 5% by weight with respect to 100% by weight of the powder particles having the above-mentioned constitution. . In addition, in the present specification, the “adhered state” includes a state in which the inorganic fine powder is partially embedded on the surface of the powder particles.

【0016】本発明の粉体塗料の製造方法は、結着樹脂
および硬化剤を含有する粉体粒子と無機微粉体とからな
る粉体塗料の製造方法であって、上記無機微粉体を得る
際、窒素原子を含有するシラン化合物を用いて無機微粉
体を表面処理することを特徴としている。
The method for producing a powder coating material according to the present invention is a method for producing a powder coating material comprising powder particles containing a binder resin and a curing agent, and an inorganic fine powder, wherein the above-mentioned inorganic fine powder is obtained. The inorganic fine powder is surface-treated with a silane compound containing a nitrogen atom.

【0017】以下、上記粉体塗料の製造方法についてよ
り詳しく説明する。粉体粒子は、上記成分からなる組成
物を乾式混合し、熱溶融混練後、粉砕、分級することに
より得ることができる。その他に、懸濁重合法、乳化重
合法等の重合法を採用することもできる。
The method for producing the powder coating material will be described in more detail below. The powder particles can be obtained by dry-blending the composition comprising the above components, hot-melt kneading, pulverizing and classifying. In addition, a polymerization method such as a suspension polymerization method or an emulsion polymerization method can be adopted.

【0018】無機微粉体は、シリカ、アルミナ、および
酸化チタン等の無機微粒子に、上記窒素原子を含有する
シラン化合物からなる表面処理剤を表面処理してなるも
のである。表面処理する方法としては、表面処理剤に微
粒子を浸漬させる方法、表面処理剤を微粒子にスプレー
する方法などを例示することができるが、表面処理剤を
微粒子表面に固定させることができる限りどのような手
段を用いても構わない。得られた無機微粒子を粉体粒子
の表面に付着させるには、三井三池社製のヘンシェルミ
キサー、川田製作所社製のスーパーミキサー等の高速ミ
キサーにて両者を乾式混合すればよい。その他に、両者
に加熱処理又は機械的衝撃力を加えて粉体粒子の表面に
生じた摩擦熱により無機微粉末が一部埋設させてること
もできる。使用する装置としては、具体的には、上記ミ
キサー類以外に、表面改質機として上市されているハイ
ブリダイザー(奈良機械社製)、ナカノフュージョンシ
ステム(ホソカワミクロン社製)を例示することができ
る。
The inorganic fine powder is obtained by surface-treating inorganic fine particles such as silica, alumina and titanium oxide with a surface treatment agent comprising the above-mentioned nitrogen atom-containing silane compound. Examples of the surface treatment method include a method of immersing the fine particles in the surface treatment agent, a method of spraying the surface treatment agent on the fine particles, and the like, but as long as the surface treatment agent can be fixed on the surface of the fine particles, Any means may be used. In order to adhere the obtained inorganic fine particles to the surface of the powder particles, both may be dry-mixed with a high-speed mixer such as a Henschel mixer manufactured by Mitsui Miike Co., Ltd. or a super mixer manufactured by Kawata Manufacturing Co., Ltd. In addition, the inorganic fine powder may be partially embedded by frictional heat generated on the surface of the powder particles by applying heat treatment or mechanical impact force to both. Specific examples of the apparatus used include hybridizers (manufactured by Nara Machinery Co., Ltd.) and Nakano Fusion System (manufactured by Hosokawa Micron Co., Ltd.), which are marketed as surface modifiers, in addition to the above mixers.

【0019】本発明の粉体塗料の塗装方法は、上記粉体
塗料を、スプレーガン内部の粉体塗料搬送部に形成され
たフッ素原子を含有する部材を用いて摩擦して正極性に
帯電させた後、対象物に噴霧して塗装することを特徴と
する方法である。このように、部材を摩擦により帯電さ
せ、その荷電を利用して被塗物に付着させる方式は、一
般に、トリボ帯電方式と呼ばれている。このトリボ帯電
方式では粉体塗料の吐出量および吐出速度を調整するこ
とにより、粉体塗料の帯電量を調整している。
In the method for coating powder coating material of the present invention, the above powder coating material is rubbed by a member containing a fluorine atom formed in the powder coating material conveying portion inside the spray gun to be positively charged. After that, the method is characterized by spraying and painting the object. In this way, a method of charging a member by friction and using the charge to attach the member to an object to be coated is generally called a tribo charging method. In this tribo charging method, the charge amount of the powder coating material is adjusted by adjusting the discharge amount and discharge speed of the powder coating material.

【0020】上記フッ素原子を含有する部材としては、
ポリテトラフルオロエチレン、ポリトリフルオロクロル
エチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、
ポリジクロルジフルオロエチレンなどを例示することが
できる。上記フッ素原子を含有する部材は物理的劣化が
少なく、強い負帯電性を有するため、本発明の粉体塗装
方法においてはトリボ帯電方式のスプレーガン内部に設
けられている粉体塗料搬送部はフッ素原子を含有する部
材で形成されている。
The member containing the above fluorine atom includes
Polytetrafluoroethylene, polytrifluorochloroethylene, polyvinyl fluoride, polyvinylidene fluoride,
Examples thereof include polydichlorodifluoroethylene. Since the member containing a fluorine atom has little physical deterioration and has a strong negative charging property, in the powder coating method of the present invention, the powder coating material conveying section provided inside the tribo-charging type spray gun is made of fluorine. It is formed of a member containing atoms.

【0021】[0021]

【実施例】以下、実施例および比較例に基づき本発明の
粉体塗料、その製造方法、およびそれを使用した粉体塗
装方法を説明する。 <実施例1> 粉体塗料の製造 ・ポリエステル樹脂 55.8重量% (日本エステル社製 商品名:ER−6680) ・ブロックイソシアネート 10.2重量% (ダイセルヒュルス社製 商品名:BF−1540) ・二酸化チタン 33.0重量% (石原産業社製 商品名:CR−90) ・流展剤 0.66重量% (BASF社製 商品名:アクロナール4F) ・発泡防止剤 0.34重量% (みどり化学社製 商品名:ベンゾイン) 上記の配合比からなる原料をスーパーミキサーで混合
し、加圧ニーダーを用いて120℃で熱溶融混練した
後、ジェットミルで粉砕した。その後、乾式気流分級機
で体積50%径が13μmとなるように分級した。 無機微粉体の製造 シリカ微粉末(BET比表面積:131.3m2/g)
に、窒素原子を含有するシラン化合物(N−(2−アミ
ノエチル)−3−アミノプロピルトリメトキシシラン)
を流動槽内で噴霧し、シリカ微粉末を表面処理した。表
面処理後のシリカ微粉末のBET比表面積は116.7
2 /gであり、CO2 吸着個数は2.2個/nm2
あり、NH3 吸着個数が0.7個/nm2であった。 粉体塗料の製造 得られた粉体粒子100重量部に対し、無機微粒子0.
4重量部を添加し、ヘンシェルミキサーで撹拌混合して
粉体塗料を得た。 塗装工程 上記粉体塗料を、塗料搬送部に4フッ化エチレン樹脂を
使用したトリボ帯電方式スプレーガンに適用し、ブライ
ト仕上げされたリン酸亜鉛処理鋼板(SPCC−SB
板)に吹き付けを行った後、200℃で焼付けを行っ
た。
EXAMPLES The powder coating material of the present invention, the method for producing the same, and the powder coating method using the same will be described below based on examples and comparative examples. <Example 1> Production of powder coating-Polyester resin 55.8% by weight (Nippon Ester Co., Ltd. trade name: ER-6680) -Blocked isocyanate 10.2% by weight (Daicel Huls brand name: BF-1540) ) Titanium dioxide 33.0% by weight (Ishihara Sangyo Co., Ltd. product name: CR-90) ・ Streaming agent 0.66% by weight (BASF Co. product name: Acronal 4F) ・ Antifoaming agent 0.34% by weight ( Product name: Benzoin manufactured by Midori Kagaku Co., Ltd. The raw materials having the above mixing ratios were mixed by a super mixer, melt-kneaded at 120 ° C. using a pressure kneader, and then pulverized by a jet mill. Then, classification was performed with a dry airflow classifier so that the volume 50% diameter was 13 μm. Production of inorganic fine powder Silica fine powder (BET specific surface area: 131.3 m 2 / g)
A silane compound containing a nitrogen atom (N- (2-aminoethyl) -3-aminopropyltrimethoxysilane)
Was sprayed in a fluidized tank to surface-treat the fine silica powder. The BET specific surface area of the silica fine powder after the surface treatment is 116.7.
m 2 / g, the number of CO 2 adsorbed was 2.2 / nm 2 , and the number of NH 3 adsorbed was 0.7 / nm 2 . Manufacture of powder coating composition Inorganic fine particles of
4 parts by weight was added and mixed by stirring with a Henschel mixer to obtain a powder coating material. Coating process The powder coating material described above is applied to a tribocharging type spray gun using a tetrafluoroethylene resin in the coating material conveying section, and bright finish zinc phosphate treated steel plate (SPCC-SB
After it was sprayed on the plate, it was baked at 200 ° C.

【0022】<実施例2>実施例1と同様にして、体積
50%径が13μmの粉体粒子を得た。また、得られた
粉体粒子100重量部に対し、無機微粉体を2.0重量
部添加する以外は実施例1と同様にして粉体塗料を得
て、塗装を行った。
Example 2 In the same manner as in Example 1, powder particles having a volume 50% diameter of 13 μm were obtained. Further, a powder coating material was obtained and applied in the same manner as in Example 1 except that 2.0 parts by weight of the inorganic fine powder was added to 100 parts by weight of the obtained powder particles.

【0023】<実施例3>実施例1と同様にして、体積
50%径が13μmの粉体粒子を得た。また、無機微粉
体の表面処理剤として窒素含有シラン化合物であるアミ
ノ変性シリコンオイル(東レ・ダウコーニング・シリコ
ーン株式会社製、商品名:BY16−853B)を使用
した以外は実施例1と同様にして粉体塗料を得て、塗装
を行った。なお、本実施例において得られた無機微粉体
のBET比表面積は98.5m2 /gであり、CO2
着個数は2.8個/nm2 であり、NH3 吸着個数は
0.6個/nm2 であった。
<Example 3> In the same manner as in Example 1, powder particles having a volume 50% diameter of 13 µm were obtained. In addition, as in Example 1, except that an amino-modified silicone oil (manufactured by Toray Dow Corning Silicone Co., Ltd., trade name: BY16-853B), which is a nitrogen-containing silane compound, was used as the surface treatment agent for the inorganic fine powder. Powder coating was obtained and applied. The BET specific surface area of the inorganic fine powder obtained in this example was 98.5 m 2 / g, the CO 2 adsorption number was 2.8 / nm 2 , and the NH 3 adsorption number was 0.6. / Nm 2 .

【0024】<比較例1>実施例1と同一の配合比から
なる原料をスーパーミキサーで混合し、加圧ニーダーで
120℃で熱溶融混練後、ジェットミルで粉砕し、その
後乾式気流分級機で体積50%径が4.8μmとなるよ
うに分級した。その他は実施例1と同様にして粉体塗料
を得て、塗装を行った。 <比較例2>実施例1と同一の配合比からなる原料をス
ーパーミキサーで混合し、加圧ニーダーで120℃で熱
溶融混練後、ジェットミルで粉砕し、その後乾式気流分
級機で体積50%径が26.0μmとなるように分級し
た。その他は実施例1と同様にして粉体塗料を得て、塗
装を行った。 <比較例3>シリカ微粉末(BET比表面積:66.2
2 /g)に実施例1で使用した表面処理剤と同様の窒
素含有シラン化合物を使用して、BET比表面積が5
5.0m2 /gであり、CO2 吸着個数が2.4個/n
2 であり、NH3 吸着個数が0.7個/nm2 である
無機微粉体を得た以外は実施例1と同様にして粉体塗料
を得て、塗装を行った。 <比較例4>実施例1で使用した表面処理剤と同様の窒
素含有シラン化合物および窒素を含有しないシラン化合
物(ヘキサメチルジシラザン)を使用して、BET比表
面積が104.6m2 /gであり、CO2 吸着個数が
4.8個/nm2 であり、NH3 吸着個数が1.0個/
nm2 である無機微粉体を得た以外は実施例1と同様に
して粉体塗料を得て、塗装を行った。
Comparative Example 1 Raw materials having the same mixing ratio as in Example 1 were mixed in a super mixer, melted and kneaded at 120 ° C. in a pressure kneader, pulverized in a jet mill, and then dried in a dry air stream classifier. The particles were classified so that the 50% volume diameter was 4.8 μm. Others were the same as in Example 1 to obtain a powder coating material and apply it. <Comparative Example 2> Raw materials having the same mixing ratio as in Example 1 were mixed in a super mixer, melted and kneaded at 120 ° C in a pressure kneader, pulverized in a jet mill, and then 50% in volume by a dry air stream classifier. The particles were classified so that the diameter was 26.0 μm. Others were the same as in Example 1 to obtain a powder coating material and apply it. <Comparative Example 3> Silica fine powder (BET specific surface area: 66.2)
m 2 / g), the same nitrogen-containing silane compound as the surface treatment agent used in Example 1 was used, and the BET specific surface area was 5
5.0 m 2 / g, CO 2 adsorption number is 2.4 / n
A powder coating material was obtained and applied in the same manner as in Example 1 except that an inorganic fine powder having m 2 and an NH 3 adsorption number of 0.7 / nm 2 was obtained. Comparative Example 4 Using the same nitrogen-containing silane compound and nitrogen-free silane compound (hexamethyldisilazane) as the surface treatment agent used in Example 1, the BET specific surface area was 104.6 m 2 / g. Yes, the number of CO 2 adsorbed is 4.8 / nm 2 , and the number of NH 3 adsorbed is 1.0 /
A powder coating material was obtained and applied in the same manner as in Example 1 except that an inorganic fine powder having a particle size of nm 2 was obtained.

【0025】<比較例5>無機微粉体を得る際、窒素原
子を含有しない表面処理剤(ヘキサメチルジシラザン)
で表面処理した以外は実施例1と同様にして粉体塗料を
得て、塗装を行った。なお、使用した無機微粉体のBE
T比表面積は122.2m2 /gであり、CO2 吸着個
数が2.0個/nm2 であり、NH3 吸着個数は2.1
個/nm2であった。 <比較例6>実施例1では得られた粉体粒子100重量
部に対し、無機微粉体を0.4重量部添加したのに対し
て、本比較例では0.03重量部添加した。それ以外は
実施例1と同様にして粉体塗料を得て、塗装を行った。 <比較例7>実施例1では得られた粉体粒子100重量
部に対し、無機微粉体を0.4重量部添加したのに対し
て、本比較例では6.0重量部添加した。それ以外は実
施例1と同様にして粉体塗料を得て、塗装を行った。
Comparative Example 5 A surface treatment agent (hexamethyldisilazane) containing no nitrogen atom when obtaining an inorganic fine powder
A powder coating material was obtained and applied in the same manner as in Example 1 except that the surface treatment was carried out in step 1. BE of the inorganic fine powder used
The T specific surface area was 122.2 m 2 / g, the CO 2 adsorption number was 2.0 / nm 2 , and the NH 3 adsorption number was 2.1.
The number of particles / nm 2 . <Comparative Example 6> In Example 1, 0.4 part by weight of the inorganic fine powder was added to 100 parts by weight of the obtained powder particles, while in this comparative example, 0.03 part by weight was added. Otherwise in the same manner as in Example 1, a powder coating material was obtained and applied. <Comparative Example 7> In Example 1, 0.4 part by weight of the inorganic fine powder was added to 100 parts by weight of the obtained powder particles, whereas in this comparative example, 6.0 parts by weight was added. Otherwise in the same manner as in Example 1, a powder coating material was obtained and applied.

【0026】実施例1〜実施例3、および比較例1〜比
較例7でなされた吹き付けの状態、及びそれを焼付けし
た後の塗膜面について以下に示す評価をした。 (1)塗面への付着性 (2)塗面状態 粉体塗料を吹き付け、それを焼き付けた後の塗面の状態
を目視により観察した。 (3)回収粉の状態 リン酸亜鉛処理鋼板(SPCC−SB板)に吹き付けを
行った際、上記鋼板に付着せず、下に散乱している粉体
塗料を回収し、その状態を観察した。さらに、回収粉体
を再度吹き付けテストしその塗着状態を観察した。これ
らの項目についての評価結果を下記表1、および表2に
示す。
The following evaluations were made on the sprayed state of Examples 1 to 3 and Comparative Examples 1 to 7 and the coating surface after baking. (1) Adhesion to coating surface (2) Coating surface state The state of the coating surface after spraying the powder coating material and baking it was visually observed. (3) State of recovered powder When the zinc phosphate-treated steel plate (SPCC-SB plate) was sprayed, powder coating which did not adhere to the steel plate and was scattered below was recovered, and its state was observed. . Further, the recovered powder was sprayed again to observe the coated state. The evaluation results for these items are shown in Tables 1 and 2 below.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】上記表1および表2から明らかなように、
比較例で得られた粉体塗料と比較して、実施例1〜3で
得られた粉体塗料によれば、噴霧量に対する被塗物への
塗着効率も良好で、焼付け後の塗膜面も良好であった。 (4)塗膜厚測定 実施例、比較例1、および比較例3〜比較例8までは、
平均して約30μmの薄膜が得られた。これに対して、
比較例2では表面が平滑な薄膜は得られず、平滑な塗面
を得るためには膜厚を60μmと厚くする必要があっ
た。 (5)耐環境性試験 実施例および比較例で得られた粉体塗料を30日放置
(室温:約25℃、湿度:約70%)した後、塗装に使
用した。その結果、実施例1〜3で得られた粉体塗料は
何等問題なく塗装することができた。これに対して、比
較例4の粉体塗料では塗面への付着性が悪化し、塗面に
付着しない塗料がさらに多かった。 (6)凹凸が形成されている塗面に塗装を施した場合の
塗面状態 実施例1〜3で得られた粉体塗料は被塗物の凹部にも良
好に付着した。これに対して、比較例3〜5、および比
較例7で得られた粉体塗料は、実用上満足のいくように
塗装がなされなかった。
As is clear from Tables 1 and 2 above,
Compared with the powder coatings obtained in Comparative Examples, the powder coatings obtained in Examples 1 to 3 have good coating efficiency on the object to be sprayed and the coating film after baking. The surface was also good. (4) Measurement of coating film thickness In Examples, Comparative Example 1, and Comparative Examples 3 to 8,
On average, a thin film of about 30 μm was obtained. On the contrary,
In Comparative Example 2, a thin film having a smooth surface was not obtained, and it was necessary to increase the film thickness to 60 μm in order to obtain a smooth coated surface. (5) Environmental resistance test The powder coating materials obtained in Examples and Comparative Examples were left for 30 days (room temperature: about 25 ° C, humidity: about 70%) and then used for coating. As a result, the powder coating materials obtained in Examples 1 to 3 could be applied without any problems. On the other hand, in the powder coating material of Comparative Example 4, the adhesion to the coating surface was deteriorated, and more coating materials did not adhere to the coating surface. (6) State of coating surface when coating is applied to the coating surface on which irregularities are formed The powder coating materials obtained in Examples 1 to 3 were well adhered to the concave portions of the object to be coated. On the other hand, the powder coatings obtained in Comparative Examples 3 to 5 and Comparative Example 7 were not painted practically satisfactorily.

【0030】[0030]

【発明の効果】本発明の粉体塗料は、結着樹脂および硬
化剤を含有する粉体粒子と、無機微粉体とからなる粉体
塗料であって、上記粉体粒子の平均粒子径が5〜20μ
mであり、上記無機微粉体は少なくとも窒素原子を含有
するシラン化合物で表面処理されており、BET法によ
る比表面積が70m2 /g以上であり、単位表面積当り
のCO2 ガス吸着個数が4.0個/nm2 以下であり、
単位表面積当りのNH3 ガス吸着個数が1.0個/nm
2 以下であり、上記粉体粒子100重量%に対して0.
05〜5重量%の割合で粉体粒子表面に付着しているこ
とを特徴とする粉体塗料である。本発明の粉体塗料は、
塗膜の薄膜化を可能ならしめる小粒径を有しているた
め、良好なレベリング性を有する。また、無機微粒子表
面には窒素原子およびシリコン原子が存在しているた
め、正帯電性および流動性に優れている。粉体粒子に対
して無機微粒子の一次粒子径が充分小さいので、無機微
粒子が粉体粒子から脱落しにくい。したがって、塗装時
の回収粉を再利用することができる。粉体粒子表面に付
着している無機微粒子は水分を吸着しにくいため、粉体
塗料の帯電性は劣化し難い。無機微粒子の表面処理は充
分になされているため、優れた帯電性を粉体塗料に付与
することができる。したがって、単位面積当たりの粉体
塗料の使用量を大幅に削減することができ、市場で要望
されているトータルコストダウンを実現することができ
る。
The powder coating material of the present invention is a powder coating material comprising powder particles containing a binder resin and a curing agent, and an inorganic fine powder, wherein the average particle diameter of the powder particles is 5 ~ 20μ
3. The inorganic fine powder is surface-treated with a silane compound containing at least a nitrogen atom, has a specific surface area of 70 m 2 / g or more according to the BET method, and has a CO 2 gas adsorption number per unit surface area of 4. 0 / nm 2 or less,
Number of adsorbed NH 3 gas per unit surface area is 1.0 / nm
It is 2 or less and 0.
The powder coating material is characterized in that it adheres to the surface of the powder particles in a proportion of 05 to 5% by weight. The powder coating material of the present invention is
It has a good leveling property because it has a small particle size that allows for thinning of the coating film. Further, since nitrogen atoms and silicon atoms are present on the surface of the inorganic fine particles, they are excellent in positive charging property and fluidity. Since the primary particle diameter of the inorganic fine particles is sufficiently smaller than that of the powder particles, the inorganic fine particles are less likely to fall off from the powder particles. Therefore, the recovered powder at the time of coating can be reused. Since the inorganic fine particles adhering to the surface of the powder particles do not easily adsorb water, the chargeability of the powder coating is less likely to deteriorate. Since the surface treatment of the inorganic fine particles has been sufficiently performed, excellent chargeability can be imparted to the powder coating material. Therefore, the amount of powder coating material used per unit area can be significantly reduced, and the total cost reduction required in the market can be realized.

【0031】本発明の粉体塗料の製造方法は、結着樹脂
および硬化剤を含有する粉体粒子と無機微粉体とからな
る粉体塗料の製造方法であって、上記無機微粉体を得る
際、窒素原子を含有するシラン化合物を用いて無機微粉
体を表面処理することを特徴とする製造方法である。本
発明の製造方法によれば、上記優れた特性を有する粉体
塗料を得ることができる。
The method for producing a powder coating material of the present invention is a method for producing a powder coating material comprising powder particles containing a binder resin and a curing agent and an inorganic fine powder. The method is characterized in that the inorganic fine powder is surface-treated with a silane compound containing a nitrogen atom. According to the manufacturing method of the present invention, a powder coating material having the above-mentioned excellent properties can be obtained.

【0032】本発明の粉体塗料の塗装方法は、上記粉体
塗料を、フッ素原子を含有する部材を用いて摩擦せしめ
て正極性に帯電させた後、対象物に噴霧して塗装するこ
とを特徴とする方法である。本発明の粉体塗料の塗装方
法によれば、厚さが薄く、かつ優れたレベリング性を有
する塗装が実現できる。
The powder coating material coating method of the present invention comprises applying the powder coating material by rubbing it with a member containing a fluorine atom so as to be positively charged, and then spraying it onto an object. This is a characteristic method. According to the method for coating powder coating material of the present invention, it is possible to realize coating having a small thickness and excellent leveling property.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09D 167/00 PKY 175/06 PHQ ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C09D 167/00 PKY 175/06 PHQ

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 結着樹脂および硬化剤を含有する粉体粒
子と、無機微粉体とからなる粉体塗料であって、 上記粉体粒子の平均粒子径が5〜20μmであり、 上記無機微粉体は少なくとも窒素原子を含有するシラン
化合物で表面処理されており、BET法による比表面積
が70m2 /g以上であり、単位表面積当りのCO2
ス吸着個数が4.0個/nm2 以下であり、単位表面積
当りのNH3 ガス吸着個数が1.0個/nm2 以下であ
り、上記粉体粒子100重量%に対して0.05〜5重
量%の割合で粉体粒子表面に付着していることを特徴と
する粉体塗料。
1. A powder coating comprising powder particles containing a binder resin and a curing agent, and an inorganic fine powder, wherein the powder particles have an average particle diameter of 5 to 20 μm. The body is surface-treated with a silane compound containing at least a nitrogen atom, has a BET specific surface area of 70 m 2 / g or more, and has a CO 2 gas adsorption number per unit surface area of 4.0 / nm 2 or less. The number of adsorbed NH 3 gas per unit surface area is 1.0 / nm 2 or less, and 0.05 to 5% by weight relative to 100% by weight of the above powder particles adheres to the surface of the powder particles. Powder coating characterized by
【請求項2】 前記窒素原子を含有するシラン化合物
が、アミノ基含有シランカップリング剤、アミノ基含有
ポリシロキサン、アミド基含有ポリシロキサン、イミド
基含有ポリシロキサンから選ばれた1種または2種以上
のシラン化合物であることを特徴とする請求項1に記載
の粉体塗料。
2. The silane compound containing a nitrogen atom is one or more selected from amino group-containing silane coupling agents, amino group-containing polysiloxanes, amide group-containing polysiloxanes, and imide group-containing polysiloxanes. The powder coating material according to claim 1, wherein the powder coating material is the silane compound.
【請求項3】 前記結着樹脂がポリエステル樹脂を含有
することを特徴とする請求項1記載の粉体塗料。
3. The powder coating material according to claim 1, wherein the binder resin contains a polyester resin.
【請求項4】 結着樹脂および硬化剤を含有する粉体粒
子と無機微粉体とからなる粉体塗料の製造方法であっ
て、 上記無機微粉体を得る際、窒素原子を含有するシラン化
合物を用いて無機微粉体を表面処理することを特徴とす
る粉体塗料の製造方法。
4. A method for producing a powder coating material comprising powder particles containing a binder resin and a curing agent and an inorganic fine powder, wherein a silane compound containing a nitrogen atom is used when the inorganic fine powder is obtained. A method for producing a powder coating material, which comprises surface-treating an inorganic fine powder using the same.
【請求項5】 前記粉体塗料を、スプレーガン内部の粉
体塗料搬送部に形成されたフッ素原子を含有する部材を
用いて摩擦させて正極性に帯電させた後、対象物に噴霧
して塗装することを特徴とする粉体塗料の塗装方法。
5. The powder coating material is rubbed with a member containing a fluorine atom formed in a powder coating material conveying portion inside a spray gun to be positively charged, and then sprayed on an object. A coating method of powder coating, which is characterized by coating.
JP6317319A 1994-12-20 1994-12-20 Powder coating and powder coating method using the same Expired - Fee Related JP2983868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317319A JP2983868B2 (en) 1994-12-20 1994-12-20 Powder coating and powder coating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317319A JP2983868B2 (en) 1994-12-20 1994-12-20 Powder coating and powder coating method using the same

Publications (2)

Publication Number Publication Date
JPH08170032A true JPH08170032A (en) 1996-07-02
JP2983868B2 JP2983868B2 (en) 1999-11-29

Family

ID=18086887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317319A Expired - Fee Related JP2983868B2 (en) 1994-12-20 1994-12-20 Powder coating and powder coating method using the same

Country Status (1)

Country Link
JP (1) JP2983868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228927B1 (en) 1998-01-16 2001-05-08 Cabot Corporation Powder coating composition
JP2014009368A (en) * 2012-06-28 2014-01-20 Fuchita Nano Giken:Kk Film deposition method
JP2016183227A (en) * 2015-03-25 2016-10-20 富士ゼロックス株式会社 Thermosetting powder coating material, coated article, and method for producing coated article
US10195641B2 (en) 2015-12-18 2019-02-05 Fuji Xerox Co., Ltd. Electrostatic powder coating method and powder coating material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPS63298354A (en) * 1987-05-29 1988-12-06 Toray Silicone Co Ltd Flowability improving agent for positive chargeable resin powder
JPH04202569A (en) * 1990-11-30 1992-07-23 Tokai Rubber Ind Ltd Electrically conductive coating material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185405A (en) * 1982-04-26 1983-10-29 Nippon Aerojiru Kk Fine powder of surface-modified metal oxide
JPS63298354A (en) * 1987-05-29 1988-12-06 Toray Silicone Co Ltd Flowability improving agent for positive chargeable resin powder
JPH04202569A (en) * 1990-11-30 1992-07-23 Tokai Rubber Ind Ltd Electrically conductive coating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228927B1 (en) 1998-01-16 2001-05-08 Cabot Corporation Powder coating composition
JP2014009368A (en) * 2012-06-28 2014-01-20 Fuchita Nano Giken:Kk Film deposition method
JP2016183227A (en) * 2015-03-25 2016-10-20 富士ゼロックス株式会社 Thermosetting powder coating material, coated article, and method for producing coated article
US10195641B2 (en) 2015-12-18 2019-02-05 Fuji Xerox Co., Ltd. Electrostatic powder coating method and powder coating material

Also Published As

Publication number Publication date
JP2983868B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
AU678077B2 (en) Coated golf ball
JP2909881B2 (en) Powder paint
JPH08170032A (en) Powdery coating material, its production and powdery coating using the same
JP3325728B2 (en) Powder coating, production method thereof, and powder coating method using the same
CN115667422B (en) One-component powder coating composition and substrate coated with the powder coating composition
CN115698193B (en) One-component powder coating composition and substrate coated with the powder coating composition
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JP2004210875A (en) Fluidizing agent for powder coating and powder coating composition
JP2996604B2 (en) Powder paint
JP3107289B2 (en) Method for producing powder coating composition
US20230227665A1 (en) Powder Coating Composition and Substrate Coated With Such Powder Coating Composition
JP2949561B2 (en) Powder coating and coating method using the same
JP2002155237A (en) Lubricating powder coating composition
JP2982112B2 (en) Powder coating and coating method using the same
JP3437973B2 (en) Powder coating for glass surface coating and coating method
JPH08176469A (en) Powder coating and method of coating therewith
JP3157095B2 (en) Powder paint
JPH09279058A (en) Powder coating material and coating method using the same
JP3225198B2 (en) How to apply powder paint
JP2000119564A (en) Powdered paint composition for frictional electrification painting, its production and coating method using the same
WO2024079131A1 (en) Powder coating composition comprising dry blended components
JPH08302241A (en) Powdery coating material
JP2002256215A (en) Powder coating composition having excellent blocking resistance
JP3619010B2 (en) How to apply powder paint
JPH01259074A (en) Powder coating composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees