JP2004210875A - Fluidizing agent for powder coating and powder coating composition - Google Patents

Fluidizing agent for powder coating and powder coating composition Download PDF

Info

Publication number
JP2004210875A
JP2004210875A JP2002379843A JP2002379843A JP2004210875A JP 2004210875 A JP2004210875 A JP 2004210875A JP 2002379843 A JP2002379843 A JP 2002379843A JP 2002379843 A JP2002379843 A JP 2002379843A JP 2004210875 A JP2004210875 A JP 2004210875A
Authority
JP
Japan
Prior art keywords
powder coating
fluidizing agent
powder
particle size
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002379843A
Other languages
Japanese (ja)
Inventor
Masahide Arai
将英 荒井
Hitoshi Kobayashi
仁 小林
Hirokuni Kino
博州 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2002379843A priority Critical patent/JP2004210875A/en
Publication of JP2004210875A publication Critical patent/JP2004210875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fluidizing agent for powder coating, which causes no grainy unevenness on the surface of coating film even in a thin film and provides a coating film having excellent smoothness of appearance and a powder coating composition. <P>SOLUTION: The fluidizing agent for powder coating comprises inorganic oxide fine particles which are ground, preferably subjected to surface treatment and then ground and has an average aggregated particle diameter after grinding of ≥0.001 and ≤0.5 particle diameters of powder coating and preferably has ≤10 μm maximum aggregated particle diameter and ≤100 nm average primary particle diameter. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、粉体塗料用の流動化剤として用いられる無機酸化物微粒子、およびこの無機酸化物微粒子を含有する粉体塗料組成物に関する。
【0002】
【従来の技術】
有機溶剤を含む従来の塗料は、環境問題を引き起こすことから、揮発分を含まない粉体塗料が自動車、自動車部品、家電製品、建材等の分野において利用されるようになっている。一般に、粉体塗料はバインダー樹脂、硬化剤、および必要に応じ顔料や他の添加剤を加えた混合物を溶融混練して冷却し、粉砕分級して製造したものであり、静電スプレー塗装法、流動層浸漬塗法等の手段によって被塗物に塗布され、焼付け工程を経て硬化塗膜が形成される。この粉体塗料には、使用時の凝集を防ぎ、流動性を改善するために無機酸化物粒子が流動化剤として添加されている。この流動化剤としては微粒子のシリカやアルミナが使用され、主に疎水性のものも使用されている。
【0003】
近年、塗料の薄膜化の要求を受けて、粉体塗料そのものの粒子径が小さくなる方向にある。また、品質特性の改善として、成膜の平滑性や透明性の向上が要求されている。しかしながら、従来の流動化剤では成膜の平滑性が改善されず、薄膜では表面に粒状の凹凸がみられる。また、透明性にも問題があった。
【0004】
そこで、平均粒子径と比表面を限定した微粉末シリカを粉体塗料に特定量を添加することによって、平均粒子径が比較的小さい粉体塗料でも篩の通過性を高めた塗料組成物が知られている(特開平9-255896号)。また、流動化剤として用いる疎水性シリカ微粉末について、その単位表面積当たりの平衡吸着水分量を減少させたシリカ微粉末を用いることが知られている(特許第2909881号)。
【0005】
【発明の解決しようとする課題】
しかし、これらの流動化剤を用いた粉体塗料組成物においても塗膜表面の性状が依然として不十分であり、成膜の平滑性を高めた粉体塗料が求められている。本発明は、粉体塗料における従来の上記問題を解決したものであって、成膜表面に粒状の凹凸が殆ど無く、しかも平滑性に優れた塗膜を形成することができる粉体塗料組成物とその流動化剤を提供する。
【0006】
【課題を解決する手段】
本発明によれば、以下の構成からなる粉体塗料用流動化剤と、この流動化剤を含む粉体塗料組成物に関する。
(1)粉体塗料の流動化剤として用いる無機酸化物微粒子であって、解砕処理され、解砕後の平均凝集粒子径が粉体塗料の粒子径に対して0.001倍以上であって0.5倍以下であることを特徴とする粉体塗料用流動化剤。
(2) 表面処理後に解砕処理された無機酸化物微粒子からなり、平均凝集粒子径が粉体塗料の粒子径に対して0.001倍以上であって0.5倍以下である上記(1)の粉体塗料用流動化剤。
(3)最大凝集粒子径が10μm以下である上記(1)または(2)に記載する粉体塗料用流動化剤。
(4)平均一次粒子径が100nm以下である上記(1)、(2)または(3)に記載する粉体塗料用流動化剤。
(5)ジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル、メタクリルシラン、オクチルシラン、シランカップリング剤、環状シロキサンおよび/またはそれらの組み合わせによって疎水化処理され、負の摩擦帯電性を有する上記(1)〜(4)の何れかに記載する粉体塗料用流動化剤。
(6)アミノシラン、ヘキサメチルジシラザンおよび/またはそれらの組み合わせによって疎水化処理され、正の摩擦帯電性を有する上記(1)〜(4)の何れかに記載する粉体塗料用流動化剤。
(7)気相法によって製造されたシリカ、アルミナ、チタニア、あるいはそれらの酸化化合物である上記(1)〜(6)の何れかに記載する粉体塗料用流動化剤。
(8)上記(1)〜(7)の何れかに記載する流動化剤を含有する粉体塗料組成物。
【0007】
【具体的な説明】
本発明の流動化剤は、粉体塗料の流動化剤として用いる無機酸化物微粒子であって、解砕処理され、解砕後の平均凝集粒子径が粉体塗料の粒子径に対して0.001倍以上であって0.5倍以下であることを特徴とし、好ましくは、表面処理した後に解砕処理されたものであり、最大凝集粒子径が10μm以下であり、平均一次粒子径が100nm以下のものである。
【0008】
シリカ等の無機酸化物微粒子を疎水化処理したものは概ね凝集体を形成している。また、表面処理しない無機酸化物微粒子も通常は凝集体を形成している。このため、無機酸化物が塗料粉体の粒子径より大きい凝集体を形成している場合がある。本発明は、このような凝集体を解砕処理し、粉体塗料に対して所定の大きさの平均凝集粒子径に整える。具体的には、解砕処理することによって、解砕後の平均凝集粒子径を粉体塗料の粒子径に対して、0.001倍以上であって0.5倍以下に整える。すなわち、解砕後の平均凝集粒子径(D)が、流動化剤未添加の粉体塗料の粒子径(A)に対して、0.001×A≦D≦0.5×Aを満たす大きさになるように解砕処理する。
【0009】
流動化剤の平均凝集粒子径(D)が粉体塗料の粒子径(A)に対して0.5倍を上回ると流動化剤としての効果がなく、また、塗膜表面に粒状の凹凸(ブツ)が発生し、平滑性が劣化する。一方、流動化剤の平均凝集粒子径(D)が粉体塗料の粒子径(A)に対して0.001倍未満であると、粉体塗料の製造時あるいは使用時に流動化剤が小さすぎるために樹脂に埋め込まれる現象が発生し、流動性が低下する。
【0010】
また流動化剤の最大凝集粒子径が10μm以上であると塗料粉体の粒子径よりも大きくなる場合があり、塗膜表面にブツが発生し、平滑性が劣化する。さらに流動化剤の平均一次粒子径が100nmより大きいと、流動化剤としての効果がなく、しかも透明性に問題を生じる。
【0011】
流動剤の無機酸化物微粒子は気相法によって製造されたシリカ、アルミナ、チタニア、あるいはそれらの酸化化合物が適当である。有機酸化物は機械的強度が小さいので流動化剤として適さない。気相法で製造したシリカ、アルミナ、チタニア等は微粒子として製造しやすく安価であるので好ましい。これらの表面処理剤としては疎水化剤が用いられる。親水性のものは水分の吸着によって粒子が凝集しやすく、流動性が低下する。
【0012】
疎水化剤の具体例としては、ジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル、メタクリルシラン、オクチルシラン、シランカップリング剤などが用いられる、これらは組み合わせて用いても良い。これらの疎水化処理によって無機酸化物微粒子は負の摩擦帯電性を有するようになる。負の摩擦帯電性を有するものはコロナ式静電粉体塗装に適する。
【0013】
また、疎水化剤の他の例としては、アミノシラン、ヘキサメチルジシラザン、これらの組み合わせを用いることができる。これらの疎水化処理によって無機酸化物微粒子は正の摩擦帯電性を有するようになる。正の摩擦帯電性を有するものは摩擦帯電式塗装に適する。
【0014】
本発明の粉体塗料は、例えば次にようにして製造される。すなわち、エポキシ樹脂、硬化剤、顔料、各種添加剤などの原料をミキサー或いはブレンダー等を用いて乾式混合し、この混合物をエクストルーダー、ニーダー等により溶融混練した後に冷却する。次いで、これを機械式または気流式の粉砕機を用いて粉砕した後に分級して粉体塗料を得る。一方、流動化剤として用いる無機微粒子を好ましくは疎水化処理した後に、ピンミル、ファインミル等の解砕機を使用して本発明の平均凝集粒子径になるように解砕処理して分級する。これを上記粉体塗料にブレンダー、ミキサー等を用いて乾式混合する。なお、粉体塗料の製造方法は上記方法に限らない。
【0015】
本発明の流動化剤を含有する粉体塗料は、流動浸漬法、静電流動浸漬法、静電スプレー法等、いずれの方法においても通常どうり使用することができる。この粉体塗料は特定の凝集粒子径を有するように解砕処理された流動化剤を含有しているので、流動性が良く、しかも成膜後の塗膜表面にブツが無く、平滑性に優れている。
【0016】
【発明の実施の形態】
以下、本発明を実施例および比較例によって具体的に示す。なお、本発明の適用範囲はこれらに限定されない。
【0017】
〔流動化剤の調製〕
表2に示す無機酸化物微粒子について、表面処理した後に解砕処理して流動化剤を調製した。この原体組成、平均一次粒子径、表面処理剤、解砕方式、摩擦帯電特性、平均凝集粒子径、粒径10μm以上の凝集粒子の有無を表2に示した。また、表3に示す無機酸化物微粒子を表面処理し、解砕処理を行わずに流動化剤を調製した。この原体組成、平均一次粒子径、表面処理剤、解砕方式、摩擦帯電特性、平均凝集粒子径、粒径10μm以上の凝集粒子の有無を表3に示した。これらの無機微粒子はすべて気相法で製造したものである。なお、平均凝集粒子径および粒径10μm以上の凝集粒子の有無はおのおの次のように測定した。
(イ)平均凝集粒子径の測定:粒度分布計(堀場製作所製:LA-910)を用い、エタノールに分散した流動化剤の流動分布を測定し、体積基準で平均凝集粒子径を測定した。
(ロ)粒径10μm以上の凝集粒子の測定:エアージェットシーブ(ホソカワミクロン製200LS-N)を用い、10μmの篩いに残る凝集物の有無とその重量を求めた。
【0018】
〔粉体塗料の調製〕
表1に示す材料をスーパーミキサーにて混合した後、110℃の温度下で、ニーダーで溶融混合し、冷却後、気流式の粉砕機を用いて微粉砕を行い、平均粒子径約10μmの粉体塗料を得た。この粉体塗料1重量部に対して表2に示す流動化剤を0.5重量部加えてヘンシェルミキサーにてブレンド処理を行い、実施例に係る試料1〜21の粉体塗料組成物を得た。一方、上記実施例と同一の粉体塗料1重量部に対して、解砕処理を行わない表3の無機酸化物微粒子を0.5重量部加えてヘンシェルミキサーにてブレンド処理を行い比較試料B1〜B6の粉体塗料を得た。
【0019】
〔塗膜の形成〕
実施例の試料1〜10、14〜17、20、比較例1〜3、5の粉体塗料をコロナ式静電粉体装置に適用し、ブライト仕上げされたリン酸亜鉛処理鋼板(SPCC-SB板)吹き付け、150℃で1時間焼き付けを行い、膜厚20μmの塗膜を形成した。また、実施例11〜13、18、19、21、比較例4、6の粉体塗料をトリボ帯電方式(摩擦帯電式)のスプレーガンに適用し、ブライト仕上げされたリン酸亜鉛処理鋼板(SPCC-SB板)に吹き付け、150℃で1時間で焼き付けを行い、膜厚30μmの塗膜を形成した。これらの塗膜について、塗膜表面のブツの有無、光の反射率による外観の評価を調査した。この結果を表2、表3に示した。
なお、塗膜は次のように評価した。
(ハ)ブツの評価:塗膜表面の一定範囲(10cm×10cm)を目視観察し、ブツの個数を数えて評価した。評価基準は、ブツ0個を優良◎、ブツ1〜2個を良○、ブツ3個以上を不可×とした。
(ハ)外観の評価:反射角を20度に設定し、光を照射しその反射率を測定した(20度グロス)。この数値が高いほど表面の平滑性が高い。
【0020】
実施例の試料1〜21の流動化剤は、何れも10μm以上の凝集粒子が存在せず、平均凝集粒子径は0.4μm以下であり、粉体塗料の粒径10μmに対して1/25以下(0.04倍以下)である。この実施例1〜21の塗膜は何れも塗膜表面に殆どブツが存在せず、外観反射率(20度ク゛ロス)は約60%以上であり、高い平滑性を有する。
一方、比較試料B1〜B6の流動化剤には全て10μm以上の凝集粒子が含まれており、塗膜表面にブツが3個以上存在している。また、外観反射率も54%以下と低い。
【0021】
【発明の効果】
本発明の流動化剤を含有する粉体塗料は、薄膜を形成した場合でも塗膜表面にブツが殆ど発生せず、平滑性に優れた外観の塗膜を得ることができる。
【0022】
【表1】

Figure 2004210875
【0023】
【表2】
Figure 2004210875
【0024】
【表3】
Figure 2004210875
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inorganic oxide fine particle used as a fluidizing agent for a powder coating, and a powder coating composition containing the inorganic oxide fine particle.
[0002]
[Prior art]
Conventional paints containing organic solvents cause environmental problems, and powder paints containing no volatile components have been used in the fields of automobiles, automobile parts, home appliances, building materials and the like. In general, powder coatings are produced by melting and kneading a mixture containing a binder resin, a curing agent, and, if necessary, a pigment and other additives, cooling, and pulverizing and classifying, and an electrostatic spray coating method. The composition is applied to an object to be coated by means such as a fluidized bed dip coating method, and a cured coating film is formed through a baking process. To this powder coating, inorganic oxide particles are added as a fluidizing agent to prevent agglomeration during use and improve fluidity. As the fluidizing agent, fine particles of silica or alumina are used, and hydrophobic materials are mainly used.
[0003]
In recent years, in response to the demand for thinner coatings, the particle diameter of powder coatings themselves has been decreasing. Further, as an improvement in quality characteristics, improvement in smoothness and transparency of a film formation is required. However, the conventional fluidizer does not improve the smoothness of the film formation, and the thin film has granular irregularities on the surface. There was also a problem in transparency.
[0004]
Therefore, there is known a coating composition in which a fine powder silica having a limited average particle diameter and specific surface is added to a powder coating material in a specific amount so that even a powder coating material having a relatively small average particle diameter can improve the passage through a sieve. (JP-A-9-255896). It is also known to use a silica fine powder having a reduced equilibrium adsorbed water amount per unit surface area of a hydrophobic silica fine powder used as a fluidizing agent (Japanese Patent No. 2990881).
[0005]
[Problems to be solved by the invention]
However, even with powder coating compositions using these fluidizing agents, the properties of the coating film surface are still insufficient, and there is a demand for powder coatings with improved film-forming smoothness. The present invention has solved the above-mentioned conventional problems in powder coatings, and has a powder coating composition which has almost no granular irregularities on a film-forming surface and can form a coating film having excellent smoothness. And its fluidizer.
[0006]
[Means to solve the problem]
According to the present invention, it relates to a powder coating fluidizing agent having the following constitution, and a powder coating composition containing the fluidizing agent.
(1) Inorganic oxide fine particles used as a fluidizing agent for a powder coating material, which have been crushed and have an average agglomerated particle size of 0.001 times or more the particle size of the powder coating material after crushing. Fluidizing agent for powder coatings, wherein the flow agent is 0.5 times or less.
(2) The above-mentioned (1) comprising inorganic oxide fine particles crushed after the surface treatment and having an average aggregated particle diameter of 0.001 times or more and 0.5 times or less with respect to the particle diameter of the powder coating material. )) A fluidizing agent for powder coatings.
(3) The fluidizing agent for a powder coating according to the above (1) or (2), wherein the maximum agglomerated particle size is 10 μm or less.
(4) The fluidizing agent for a powder coating according to the above (1), (2) or (3), having an average primary particle diameter of 100 nm or less.
(5) The above (1) which has been subjected to a hydrophobic treatment with dimethyldichlorosilane, hexamethyldisilazane, silicone oil, methacrylsilane, octylsilane, a silane coupling agent, a cyclic siloxane, and / or a combination thereof, and has a negative triboelectrification property. ) The fluidizing agent for powder coatings according to any one of (1) to (4).
(6) The fluidizing agent for powder coatings according to any one of (1) to (4), which has been subjected to a hydrophobic treatment with aminosilane, hexamethyldisilazane, and / or a combination thereof, and has a positive triboelectric charging property.
(7) The fluidizing agent for powder coatings according to any one of the above (1) to (6), which is silica, alumina, titania or an oxidized compound thereof produced by a gas phase method.
(8) A powder coating composition containing the fluidizing agent according to any one of (1) to (7).
[0007]
[Specific explanation]
The fluidizing agent of the present invention is an inorganic oxide fine particle used as a fluidizing agent for a powder coating material, is subjected to crushing treatment, and has an average agglomerated particle size of 0.4 with respect to the particle size of the powder coating material. 001 times or more and 0.5 times or less, preferably those which have been surface-treated and then crushed, have a maximum aggregated particle diameter of 10 μm or less, and have an average primary particle diameter of 100 nm. These are:
[0008]
Particles obtained by hydrophobizing inorganic oxide fine particles such as silica generally form aggregates. In addition, inorganic oxide fine particles that are not surface-treated usually form aggregates. For this reason, the inorganic oxide may form an aggregate larger than the particle diameter of the coating powder. In the present invention, such agglomerates are subjected to a crushing treatment to adjust the average agglomerated particle diameter of the powder coating material to a predetermined size. Specifically, by crushing, the average agglomerated particle size after crushing is adjusted to 0.001 times or more and 0.5 times or less with respect to the particle size of the powder coating material. That is, the average agglomerated particle size after crushing (D) is a size that satisfies 0.001 × A ≦ D ≦ 0.5 × A with respect to the particle size (A) of the powder coating material without a fluidizing agent. Disintegrate so that it becomes the same.
[0009]
If the average agglomerated particle size (D) of the fluidizing agent is more than 0.5 times the particle size (A) of the powder coating material, the fluidizing agent will not be effective, and the surface of the coating film will have granular irregularities ( Butts occur and the smoothness deteriorates. On the other hand, when the average agglomerated particle size (D) of the fluidizing agent is less than 0.001 times the particle size (A) of the powder coating material, the fluidizing agent is too small during the production or use of the powder coating material. Therefore, a phenomenon of being embedded in the resin occurs, and the fluidity is reduced.
[0010]
When the maximum agglomerated particle diameter of the fluidizing agent is 10 μm or more, the particle diameter may be larger than the particle diameter of the coating powder, and the surface of the coating film may be uneven and the smoothness may be deteriorated. Further, when the average primary particle diameter of the fluidizing agent is larger than 100 nm, there is no effect as a fluidizing agent, and there is a problem in transparency.
[0011]
As the inorganic oxide fine particles of the fluidizing agent, silica, alumina, titania produced by a gas phase method, or an oxide compound thereof is suitable. Organic oxides are not suitable as fluidizers because of their low mechanical strength. Silica, alumina, titania, and the like produced by a gas phase method are preferable because they are easily produced as fine particles and are inexpensive. Hydrophobizing agents are used as these surface treatment agents. In the case of a hydrophilic material, particles tend to agglomerate due to the adsorption of moisture, and the fluidity decreases.
[0012]
Specific examples of the hydrophobizing agent include dimethyldichlorosilane, hexamethyldisilazane, silicone oil, methacrylsilane, octylsilane, and a silane coupling agent. These may be used in combination. These hydrophobic treatments cause the inorganic oxide fine particles to have negative triboelectric charging properties. Those having negative triboelectrification are suitable for corona electrostatic powder coating.
[0013]
As other examples of the hydrophobizing agent, aminosilane, hexamethyldisilazane, and a combination thereof can be used. By these hydrophobic treatments, the inorganic oxide fine particles have a positive triboelectric charging property. Those having a positive triboelectric property are suitable for triboelectric coating.
[0014]
The powder coating of the present invention is produced, for example, as follows. That is, raw materials such as an epoxy resin, a curing agent, a pigment, and various additives are dry-mixed using a mixer or a blender, and the mixture is melt-kneaded by an extruder, a kneader, or the like, and then cooled. Next, this is pulverized using a mechanical or air-flow type pulverizer and then classified to obtain a powder coating. On the other hand, the inorganic fine particles used as a fluidizing agent are preferably subjected to a hydrophobizing treatment, and then subjected to a crushing treatment using a crusher such as a pin mill or a fine mill so as to have the average agglomerated particle diameter of the present invention, and classified. This is dry-mixed with the above powder coating using a blender, a mixer or the like. The method for producing the powder coating is not limited to the above method.
[0015]
The powder coating containing the fluidizing agent of the present invention can be used in any method such as a fluid immersion method, an electrostatic fluid immersion method, and an electrostatic spray method. Since this powder coating contains a fluidizing agent that has been pulverized to have a specific agglomerated particle size, it has good fluidity, and has no unevenness on the surface of the coated film after film formation and has a smooth surface. Are better.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The scope of the present invention is not limited to these.
[0017]
(Preparation of fluidizing agent)
The inorganic oxide fine particles shown in Table 2 were surface-treated and then crushed to prepare a fluidizing agent. Table 2 shows the composition, the average primary particle diameter, the surface treatment agent, the crushing method, the triboelectricity, the average aggregated particle diameter, and the presence or absence of aggregated particles having a particle diameter of 10 μm or more. In addition, the inorganic oxide fine particles shown in Table 3 were subjected to a surface treatment, and a fluidizing agent was prepared without performing a crushing treatment. Table 3 shows the composition, the average primary particle diameter, the surface treatment agent, the crushing method, the triboelectric charging characteristics, the average aggregated particle diameter, and the presence or absence of aggregated particles having a particle diameter of 10 μm or more. These inorganic fine particles are all produced by a gas phase method. The average agglomerated particle size and the presence or absence of agglomerated particles having a particle size of 10 μm or more were measured as follows.
(A) Measurement of average aggregate particle size: The flow distribution of the fluidizing agent dispersed in ethanol was measured using a particle size distribution analyzer (LA-910, manufactured by Horiba, Ltd.), and the average aggregate particle size was measured on a volume basis.
(B) Measurement of aggregated particles having a particle diameter of 10 μm or more: The presence or absence of aggregates remaining on a 10 μm sieve and the weight thereof were determined using an air jet sieve (200LS-N manufactured by Hosokawa Micron).
[0018]
(Preparation of powder coating)
The materials shown in Table 1 were mixed with a super mixer, melted and mixed in a kneader at a temperature of 110 ° C., cooled, and then finely pulverized using an air-flow type pulverizer to obtain a powder having an average particle diameter of about 10 μm. A body paint was obtained. 0.5 parts by weight of the fluidizing agent shown in Table 2 was added to 1 part by weight of this powder coating, and blending was performed with a Henschel mixer to obtain powder coating compositions of Samples 1 to 21 according to Examples. Was. On the other hand, to 1 part by weight of the same powder coating as in the above example, 0.5 part by weight of the inorganic oxide fine particles of Table 3 not subjected to the crushing treatment was added, and the mixture was blended with a Henschel mixer. To B6 were obtained.
[0019]
(Formation of coating film)
The powder coatings of Examples 1 to 10, 14 to 17, and 20 and Comparative Examples 1 to 3 were applied to a corona-type electrostatic powder device, and were subjected to a bright-finished zinc phosphate-treated steel sheet (SPCC-SB). Plate), and baked at 150 ° C. for 1 hour to form a coating film having a thickness of 20 μm. Further, the powder coatings of Examples 11 to 13, 18, 19, and 21 and Comparative Examples 4 and 6 were applied to a spray gun of a tribo-charging type (frictional charging type), and a brightly-finished zinc phosphate treated steel plate (SPCC) was applied. -SB plate) and baked at 150 ° C. for 1 hour to form a coating film having a thickness of 30 μm. With respect to these coating films, the appearance of the coating film surface was evaluated based on the presence or absence of irregularities and the reflectance of light. The results are shown in Tables 2 and 3.
In addition, the coating film was evaluated as follows.
(C) Evaluation of spots: A certain range (10 cm × 10 cm) of the coating film surface was visually observed, and the number of spots was counted and evaluated. The evaluation criteria were as follows: 0: excellent, ツ: 1 or 2 good, 不可: 3 or more bad.
(C) Evaluation of appearance: The reflection angle was set to 20 degrees, light was irradiated, and the reflectance was measured (20 degrees gloss). The higher this value, the higher the surface smoothness.
[0020]
The fluidizing agents of Samples 1 to 21 of the Examples have no aggregated particles of 10 μm or more, have an average aggregated particle size of 0.4 μm or less, and are 1/25 with respect to the particle size of powder coating of 10 μm. (Less than 0.04 times). Each of the coating films of Examples 1 to 21 has almost no bumps on the coating film surface, has an external reflectance (a cross of 20 degrees) of about 60% or more, and has high smoothness.
On the other hand, the fluidizing agents of Comparative Samples B1 to B6 all contain aggregated particles of 10 μm or more, and three or more bumps are present on the surface of the coating film. Further, the external reflectance is as low as 54% or less.
[0021]
【The invention's effect】
The powder coating containing the fluidizing agent of the present invention hardly generates bumps on the coating film surface even when a thin film is formed, and can provide a coating film having excellent smoothness.
[0022]
[Table 1]
Figure 2004210875
[0023]
[Table 2]
Figure 2004210875
[0024]
[Table 3]
Figure 2004210875

Claims (8)

粉体塗料の流動化剤として用いる無機酸化物微粒子であって、解砕処理され、解砕後の平均凝集粒子径が粉体塗料の粒子径に対して0.001倍以上であって0.5倍以下であることを特徴とする粉体塗料用流動化剤。Fine particles of inorganic oxide used as a fluidizing agent for powder coatings, which are crushed and have an average agglomerated particle size after crushing of 0.001 times or more of the particle size of the powder coating material. A fluidizing agent for powder coatings, which is not more than 5 times. 表面処理後に解砕処理された無機酸化物微粒子からなり、平均凝集粒子径が粉体塗料の粒子径に対して0.001倍以上であって0.5倍以下である請求項1の粉体塗料用流動化剤。2. The powder according to claim 1, comprising inorganic oxide fine particles crushed after the surface treatment, wherein the average agglomerated particle size is 0.001 times or more and 0.5 times or less with respect to the particle size of the powder coating material. Superplasticizer for paint. 最大凝集粒子径が10μm以下である請求項1または2に記載する粉体塗料用流動化剤。The fluidizing agent for a powder coating according to claim 1 or 2, wherein the maximum agglomerated particle size is 10 µm or less. 平均一次粒子径が100nm以下である請求項1、2または3に記載する粉体塗料用流動化剤。The fluidizing agent for powder coating according to claim 1, 2 or 3, wherein the average primary particle diameter is 100 nm or less. ジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル、メタクリルシラン、オクチルシラン、シランカップリング剤、環状シロキサンおよび/またはそれらの組み合わせによって疎水化処理され、負の摩擦帯電性を有する請求項1〜4の何れかに記載する粉体塗料用流動化剤。5. The composition according to claim 1, which is subjected to a hydrophobic treatment with dimethyldichlorosilane, hexamethyldisilazane, silicone oil, methacrylsilane, octylsilane, a silane coupling agent, a cyclic siloxane, and / or a combination thereof, and has a negative triboelectric charging property. The fluidizing agent for powder coating according to any one of the above. アミノシラン、ヘキサメチルジシラザンおよび/またはそれらの組み合わせによって疎水化処理され、正の摩擦帯電性を有する請求項1〜4の何れかに記載する粉体塗料用流動化剤。The fluidizing agent for a powder coating material according to any one of claims 1 to 4, which has been subjected to a hydrophobic treatment with aminosilane, hexamethyldisilazane, and / or a combination thereof, and has a positive triboelectric charging property. 気相法によって製造されたシリカ、アルミナ、チタニア、あるいはそれらの酸化化合物である請求項1〜6の何れかに記載する粉体塗料用流動化剤。The fluidizing agent for a powder coating material according to any one of claims 1 to 6, which is silica, alumina, titania, or an oxidized compound thereof produced by a gas phase method. 請求項1〜7の何れかに記載する流動化剤を含有する粉体塗料組成物。A powder coating composition containing the fluidizing agent according to claim 1.
JP2002379843A 2002-12-27 2002-12-27 Fluidizing agent for powder coating and powder coating composition Pending JP2004210875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379843A JP2004210875A (en) 2002-12-27 2002-12-27 Fluidizing agent for powder coating and powder coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379843A JP2004210875A (en) 2002-12-27 2002-12-27 Fluidizing agent for powder coating and powder coating composition

Publications (1)

Publication Number Publication Date
JP2004210875A true JP2004210875A (en) 2004-07-29

Family

ID=32816230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379843A Pending JP2004210875A (en) 2002-12-27 2002-12-27 Fluidizing agent for powder coating and powder coating composition

Country Status (1)

Country Link
JP (1) JP2004210875A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291356A (en) * 2006-03-29 2007-11-08 Sumitomo Bakelite Co Ltd Epoxy resin powder coating
JP2010528135A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Silane-treated and ground fumed silica
JP2010528132A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Silane-treated and ground fumed silica
WO2011040498A1 (en) 2009-09-30 2011-04-07 曙ブレーキ工業株式会社 Adhesive
WO2016068255A1 (en) * 2014-10-31 2016-05-06 旭硝子株式会社 Powder coating composition, powder coating, and coated article
JP2017002286A (en) * 2016-05-30 2017-01-05 富士ゼロックス株式会社 Thermosetting powder coating material and method for producing the same, and coated article and method for producing the same
US9862836B2 (en) 2014-06-20 2018-01-09 Fuji Xerox Co., Ltd. Thermosetting powder coating material and coated article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291356A (en) * 2006-03-29 2007-11-08 Sumitomo Bakelite Co Ltd Epoxy resin powder coating
JP2010528135A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Silane-treated and ground fumed silica
JP2010528132A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Silane-treated and ground fumed silica
WO2011040498A1 (en) 2009-09-30 2011-04-07 曙ブレーキ工業株式会社 Adhesive
US9862836B2 (en) 2014-06-20 2018-01-09 Fuji Xerox Co., Ltd. Thermosetting powder coating material and coated article
WO2016068255A1 (en) * 2014-10-31 2016-05-06 旭硝子株式会社 Powder coating composition, powder coating, and coated article
CN107109096A (en) * 2014-10-31 2017-08-29 旭硝子株式会社 Powder coating composition, powder coating and coated article
JPWO2016068255A1 (en) * 2014-10-31 2017-09-14 旭硝子株式会社 Powder coating composition, powder coating and coated article
JP2017002286A (en) * 2016-05-30 2017-01-05 富士ゼロックス株式会社 Thermosetting powder coating material and method for producing the same, and coated article and method for producing the same

Similar Documents

Publication Publication Date Title
JP4878102B2 (en) Polymer composition, method for coating molded parts and use of said composition
JPH09143401A (en) Powder coating compound
JP2004210875A (en) Fluidizing agent for powder coating and powder coating composition
JP2711036B2 (en) Powder coatings and raw materials for powder coatings
JP2909881B2 (en) Powder paint
EP4162001B1 (en) One-component powder coating composition and substrate coated with such powder coating composition
CN115667422B (en) One-component powder coating composition and substrate coated with the powder coating composition
WO2021245043A1 (en) Powder coating composition and substrate coated with such powder coating composition
JP2983868B2 (en) Powder coating and powder coating method using the same
JP2004300350A (en) Black composite powder particle and preparation method of the same, and coating material and resin composition using the same
JP3325728B2 (en) Powder coating, production method thereof, and powder coating method using the same
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JP2010132794A (en) Epoxy resin powder coating
JP2003160744A (en) Composite particle powder, paint and resin composition containing the same
JP2002146289A (en) Powder coating material
JPH08253711A (en) Powder coating material
WO2024079131A1 (en) Powder coating composition comprising dry blended components
JP3225198B2 (en) How to apply powder paint
JPS5865770A (en) Productionof powdered paint composition having good flow characteristics
JPH06130719A (en) Magnetic granular powder for magnetic toner and its production
JPH08231891A (en) Powder coating
JPH10298452A (en) Powder coating material suitable for use in electrostatic fluid immersion method
JPH08176469A (en) Powder coating and method of coating therewith
JP2005105020A (en) Epoxy resin powder coating