JPH08162096A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08162096A
JPH08162096A JP6302303A JP30230394A JPH08162096A JP H08162096 A JPH08162096 A JP H08162096A JP 6302303 A JP6302303 A JP 6302303A JP 30230394 A JP30230394 A JP 30230394A JP H08162096 A JPH08162096 A JP H08162096A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
secondary battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6302303A
Other languages
Japanese (ja)
Inventor
Keisuke Narumi
恵介 成海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6302303A priority Critical patent/JPH08162096A/en
Publication of JPH08162096A publication Critical patent/JPH08162096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a battery with high capacity and little self-discharge by using, as the carbon material of the battery having a negative electrode consisting of carbon material and a lithium ion conductive electrolyte, a pitch carbonaceous particle having a specified range of particle size distribution in which an optical anisotropic tissue is extended at random. CONSTITUTION: In a battery having a positive electrode 2, a negative electrode 7, a separator 4, and a lithium ion conductive electrolyte, a pitch carbonaceous particle having a particle size distribution within a range of D10%=3-10μm, D50%=10-25μm is used as the carbon material of the negative electrode 7. The pitch carbonaceous particle is obtained by carbonizing petroleum pitch, coal tar, or heavy oil. When D50% is less than 10μm, the self-discharge is enhanced, and when it exceeds 25μm, the discharge capacity is reduced. Thus, a battery with high capacity and little self-discharge can be provided within this range of grain size distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、さらに詳しくは、負極を改良したリチウム二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、負極活物質としてリチウムを用い
た非水電解液電池は、高エネルギー密度電池として注目
されており、正極活物質に二酸化マンガン(MnO2)、
フッ化炭素(CF2)n 、塩化チオニル(SOCl2)など
を用いた一次電池は、すでに電卓、時計の電源やメモリ
のバックアップ電池として多用されている。さらに、近
年、VTR、通信機器等の各種の電子機器の小形、軽量
化に伴い、それらの電源として高エネルギー密度の二次
電池の要求が高まり、リチウムを負極活物質とするリチ
ウム二次電池の研究が活発に行われている。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ) has been used as a positive electrode active material.
Primary batteries using fluorocarbon (CF 2 ) n , thionyl chloride (SOCl 2 ) and the like have already been widely used as backup batteries for calculators, watches, and memories. Further, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, the demand for high energy density secondary batteries as their power source has increased, and lithium secondary batteries using lithium as a negative electrode active material have been developed. Research is actively conducted.

【0003】一般に、リチウム二次電池では、負極には
リチウムが用いられ、リチウムイオン伝導性電解液とし
て、炭酸プロピレン(PC)、1,2−ジメトキシエタ
ン(DME)、γ−ブチロラクトン(γ−BL)、テト
ラヒドロフラン(THF)などの非水溶媒中にLiCl
4 、LiBF4 、LiAsF6 等のリチウム塩を溶解
した非水電解液や、リチウムイオン伝導性固体電解質が
用いられ、正極活物質としては主にTiS2 、MoS
2 、V25 、V613など、リチウムとの間でトポケ
ミカル反応にあずかる化合物が用いられる。
Generally, in a lithium secondary battery, lithium is used for a negative electrode, and propylene carbonate (PC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL) is used as a lithium ion conductive electrolytic solution. ) And tetrahydrofuran (THF) in a non-aqueous solvent such as LiCl
A non-aqueous electrolytic solution in which a lithium salt such as O 4 , LiBF 4 or LiAsF 6 is dissolved or a lithium ion conductive solid electrolyte is used, and TiS 2 or MoS is mainly used as a positive electrode active material.
Compounds that participate in a topochemical reaction with lithium, such as 2 , V 2 O 5 , and V 6 O 13 , are used.

【0004】しかしながら、上述した二次電池は充放電
効率が低く、しかも充放電回数(サイクル)寿命が短
い。この原因は、負極リチウムと非水電解液との反応に
よるリチウムの劣化によるところが大きいと考えられて
いる。すなわち、放電時にリチウムイオンとして非水電
解液中に溶解したリチウムは充電時に析出する際に溶媒
と反応して、その表面の一部分が不活性化される。この
ため、充放電の繰返しが進行すると、デンドライト状
(樹枝状)リチウムの発生、小球状リチウムの析出およ
び集電体からのリチウムの脱離など、上記劣化の原因と
なる現象が生じる。
However, the above-mentioned secondary battery has a low charge / discharge efficiency and a short charge / discharge (cycle) life. It is considered that this is largely due to the deterioration of lithium due to the reaction between the negative electrode lithium and the non-aqueous electrolyte. That is, the lithium dissolved in the non-aqueous electrolyte solution as lithium ions during discharging reacts with the solvent during precipitation during charging, and a part of the surface is inactivated. For this reason, when charging and discharging are repeated, phenomena that cause the above deterioration occur such as generation of dendrite-like (dendritic) lithium, precipitation of small spherical lithium, and desorption of lithium from the current collector.

【0005】このようなことから、リチウム二次電池に
組込まれる負極として、リチウムを吸蔵・放出可能な炭
素質材料、例えばコークス、樹脂焼成体、炭素繊維、熱
分解気相炭素体等を用いることによって、リチウムと非
水電解液との反応やデンドライトの析出による負極の劣
化を防止することが提案されている。
Therefore, as a negative electrode incorporated in a lithium secondary battery, use is made of a carbonaceous material capable of inserting and extracting lithium, such as coke, a resin fired body, carbon fiber, and a pyrolytic vapor-phase carbon body. It is proposed to prevent the deterioration of the negative electrode due to the reaction between lithium and the non-aqueous electrolyte and the deposition of dendrite.

【0006】しかしながら、このような負極は、金属リ
チウム等を用いた電池と比べて、自己放電が極めて大き
いという欠点がある。
However, such a negative electrode has a drawback that self-discharge is extremely large as compared with a battery using metallic lithium or the like.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題を
解決するためになされたもので、高容量でかつ自己放電
の少ないリチウム二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a lithium secondary battery having a high capacity and less self-discharge.

【0008】[0008]

【課題を解決するための手段】本発明は、正極、リチウ
ムイオンを吸蔵・放出可能な炭素質材料からなる負極お
よびリチウムイオン伝導性電解質とを備えるリチウム二
次電池において、前記炭素質材料が、光学的異方性組織
がランダムに展開したピッチ系炭素質粒子からなり、粒
度分布がD10%=3〜10μm 、D50%=10〜2
5μm 、D90%=25〜50μm の範囲であることを
特徴とするリチウム二次電池に関する。ここでピッチ系
炭素質粒子とは、石油ピッチ、コールタールまたは重質
油等を炭素化して得られる炭素質材料の粒子をいう。
The present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode made of a carbonaceous material capable of absorbing and releasing lithium ions, and a lithium ion conductive electrolyte, wherein the carbonaceous material is It consists of pitch-based carbonaceous particles in which an optically anisotropic structure is randomly developed, and the particle size distribution is D10% = 3-10 μm, D50% = 10-2.
The present invention relates to a lithium secondary battery characterized by having a range of 5 μm and D90% = 25 to 50 μm. Here, the pitch-based carbonaceous particles refer to particles of a carbonaceous material obtained by carbonizing petroleum pitch, coal tar, heavy oil, or the like.

【0009】本発明の負極には、光学的異方性組織がラ
ンダムに展開したピッチ系炭素質粒子(以下、「ランダ
ム型粒子」と記す)からなる炭素質材料を用いる。この
ランダム型粒子を用いることにより、粒子として等方性
を示すため、リチウムが粒子のどの部位からでも挿入・
脱挿入しやすいという利点がある。また、原料としてピ
ッチ系炭素質材料を用いるのは、前処理の熱処理段階で
ランダム型粒子を得ることができるからである。
For the negative electrode of the present invention, a carbonaceous material composed of pitch-based carbonaceous particles (hereinafter referred to as "random type particles") in which an optically anisotropic structure is randomly developed is used. By using this random type particle, since it exhibits isotropicity as a particle, lithium is inserted from any part of the particle.
It has the advantage that it can be easily inserted and removed. The reason why the pitch-based carbonaceous material is used as the raw material is that random type particles can be obtained in the heat treatment stage of the pretreatment.

【0010】このランダム型粒子は、粒度分布がD10
%=3〜10μm 、D50%=10〜25μm 、D90
%=25〜50μm の範囲のものを使用する。ここで、
該粒度分布は、重量による積算分布で示す。例えばD1
0%=3〜10μm とは、ピッチ系炭素質粒子の粒径分
布の積算重量が全体の10%となる粒径が3〜10μm
の範囲にあることを示す。D50%が10μm 未満のも
のは粒径が小さ過ぎて、自己放電が大きくなるため好ま
しくない。一方、25μm を越すものは粒径が大き過ぎ
て、充填密度が小さくなり、粒子内のリチウムイオンの
移動が妨げられ放電容量が小さくなるため好ましくな
い。また、D10%およびD90%における粒径の範囲
が上記範囲外の場合には、放電容量、サイクル特性など
の電池特性が劣化するため用いられない。
The random type particles have a particle size distribution of D10.
% = 3 to 10 μm, D50% = 10 to 25 μm, D90
% = 25 to 50 .mu.m is used. here,
The particle size distribution is shown as an integrated distribution by weight. For example, D1
0% = 3 to 10 μm means that the particle size is 3 to 10 μm when the integrated weight of the particle size distribution of pitch-based carbonaceous particles is 10% of the whole.
It is in the range of. If the D50% is less than 10 μm, the particle size is too small and self-discharge increases, which is not preferable. On the other hand, those having a particle size of more than 25 μm are not preferable because the particle size is too large, the packing density becomes small, the movement of lithium ions in the particles is hindered, and the discharge capacity becomes small. Further, when the particle size range at D10% and D90% is outside the above range, the battery characteristics such as discharge capacity and cycle characteristics are deteriorated and therefore it is not used.

【0011】なお、粒度分布測定には、レーザー回折式
粒度分布測定装置(セイシン社製、PRO−7000
S)などを使用できる。
For the particle size distribution measurement, a laser diffraction type particle size distribution measuring device (PRO-7000 manufactured by Seishin Co., Ltd.) is used.
S) or the like can be used.

【0012】ランダム型粒子の黒鉛構造は、X線回折に
より得られる(002)面の面間隔(d002 )およびc
軸方向の結晶子の大きさ(Lc )によって規定され、面
間隔(d002 )の平均値が0.337〜0.380nm、
結晶子の大きさ(Lc )の平均値が1〜25nmの黒鉛構
造が好ましい。d002 およびLc の値が前記範囲外で
は、負極におけるリチウムイオンの吸蔵・放出量の減
少、黒鉛構造の劣化、非水電解液中の溶媒の還元分解に
よるガス発生などを招き、二次電池の容量減少とサイク
ル寿命の低下を生じる。
The graphite structure of the random type particles has a (002) plane spacing (d 002 ) and c obtained by X-ray diffraction.
The crystallite size in the axial direction (L c ) defines the average value of the interplanar spacing (d 002 ) of 0.337 to 0.380 nm,
A graphite structure having an average crystallite size (L c ) of 1 to 25 nm is preferred. If the values of d 002 and L c are out of the above ranges, the amount of occlusion and release of lithium ions in the negative electrode may be reduced, the graphite structure may be deteriorated, gas may be generated due to reductive decomposition of the solvent in the non-aqueous electrolyte, and the secondary battery may be generated. Capacity and cycle life.

【0013】ランダム型粒子の短径と長径の比は、1/
10以上であることが好ましい。より好ましくは1/2
以上であり、真球状に近い形状ほど好ましい。真球状に
近い粒子を用いると、リチウムイオンの均一な吸蔵・放
出反応が生じ、炭素質材料の構造的、機械的な安定性が
向上し、さらに充填密度も高くなるため、サイクル寿命
の向上、高容量化を図ることが可能となる。
The ratio of the short diameter to the long diameter of the random particles is 1 /
It is preferably 10 or more. More preferably 1/2
Above, it is preferable that the shape is closer to a true sphere. If particles having a nearly spherical shape are used, a uniform lithium ion absorption / desorption reaction occurs, the structural and mechanical stability of the carbonaceous material is improved, and the packing density is also increased, improving cycle life, It is possible to increase the capacity.

【0014】一般に炭素質粒子は、以下のようにして得
ることができる。すなわち、石油ピッチ、コールター
ル、重質油、有機樹脂、または合成高分子材料などを原
料として、これを窒素、アルゴンなどの不活性ガス中
で、800〜1,000℃の温度および常圧もしくは加
圧の条件下で炭素化したものか、あるいはさらに不活性
ガス中で、1,000〜3,000℃の温度および常圧
もしくは加圧の条件下で黒鉛化を進めたものである。
Generally, carbonaceous particles can be obtained as follows. That is, petroleum pitch, coal tar, heavy oil, organic resin, or synthetic polymer material is used as a raw material in an inert gas such as nitrogen or argon at a temperature of 800 to 1,000 ° C. and atmospheric pressure or It is either carbonized under pressure, or further graphitized in an inert gas at a temperature of 1,000 to 3,000 ° C. and atmospheric pressure or pressure.

【0015】特に、石油ピッチ、コールタールまたは重
質油を原料に用いる場合には、前処理としてこれらを2
50〜400℃の温度で熱処理することが、前記のラン
ダム型粒子を得るためには好ましい。炭素粒子の初期生
成段階において、光学的異方性を有する晶質相が一様に
広がりつつ生成するのではなく、サブミクロンレベルに
至る微細組織がランダム状態に生成するからである。し
たがって、このランダム型粒子(メソフェーズ小球体)
を他の生成体から分離捕集して、上記のように炭素化ま
たは黒鉛化することにより、上記ランダム状態が成長し
た真球状に近い炭素粒子を製造することができる。この
ようにして得られる真球状に近いランダム粒子を負極に
用いるのが好ましい。
Particularly, when petroleum pitch, coal tar or heavy oil is used as a raw material, these are used as a pretreatment.
Heat treatment at a temperature of 50 to 400 ° C. is preferable for obtaining the random particles. This is because in the initial generation stage of carbon particles, the crystalline phase having optical anisotropy is not generated while being uniformly spread, but the microstructure down to the submicron level is generated in a random state. Therefore, this random particle (mesophase microsphere)
By separating and collecting from the other products and carbonizing or graphitizing as described above, it is possible to produce carbon particles having a nearly spherical shape in which the random state has grown. It is preferable to use near-spherical random particles thus obtained for the negative electrode.

【0016】炭素化または黒鉛化により生成する炭素粒
子の微細構造は前述の前処理条件によって異なり、本発
明に用いられるようなランダム型の他に、ブルックス・
テーラー型、放射型構造を示す粒子が得られる。
The fine structure of carbon particles produced by carbonization or graphitization varies depending on the above-mentioned pretreatment conditions. In addition to the random type used in the present invention, Brooks
Particles exhibiting a Taylor type or a radial type structure are obtained.

【0017】本発明に用いることができる正極には、リ
チウムマンガン複合酸化物、二酸化マンガン、リチウム
含有ニッケル酸化物、リチウム含有コバルト酸化物、リ
チウム含有ニッケルコバルト酸化物、リチウムを含む非
晶質五酸化バナジウムなどの種々の酸化物、および二硫
化チタン、二硫化モリブデンなどのカルコゲン化合物等
を挙げることができる。
The positive electrode that can be used in the present invention includes lithium manganese oxide, manganese dioxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, and lithium-containing amorphous pentoxide. Examples thereof include various oxides such as vanadium and chalcogen compounds such as titanium disulfide and molybdenum disulfide.

【0018】また、本発明に用いることができるリチウ
ムイオン伝導性電解液としては、例えばエチレンカーボ
ネート、プロピレンカーボネート、ブチレンカーボネー
ト、γ−ブチロラクトン、スルホラン、アセトニトリ
ル、1,2−ジメトキシメタン、1,3−ジメトキシプ
ロパン、ジメチルエーテル、テトラヒドロフラン、2−
メチルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチ
ルおよびエチルメチルカーボネートから選ばれる1種以
上からなる非水溶媒に、過塩素酸リチウム(LiClO
4) 、ヘキサフルオロリン酸リチウム(LiPF6)、テ
トラフルオロホウ酸リチウム(LiBF4)、ヘキサフル
オロヒ酸リチウム(LiAsF6)、トリフルオロメタン
スルホン酸リチウム(LiCF3 SO3)等のリチウム塩
(電解質)を溶解した非水電解液を挙げることができ
る。これらのリチウム塩の非水溶媒に対する溶解量は、
0.5〜1.5mol/l とすることが望ましい。
Examples of the lithium ion conductive electrolytic solution which can be used in the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-. Dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-
Lithium perchlorate (LiClO 2) is added to a non-aqueous solvent consisting of one or more selected from methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and other lithium salts (electrolyte ) Dissolved non-aqueous electrolyte. The amount of these lithium salts dissolved in a non-aqueous solvent is
It is desirable to set it to 0.5 to 1.5 mol / l.

【0019】リチウムイオン伝導性電解質としてリチウ
ムイオン伝導性の固体電解質を用いることもでき、例え
ば、高分子化合物にリチウム塩を複合化した高分子固体
電解質を挙げることができる。また、セパレータには、
例えばポリエチレン、ポリプロピレン等のポリオレフィ
ン系樹脂の不織布や、これらの多孔膜などを用いること
ができる。
A lithium ion conductive solid electrolyte may be used as the lithium ion conductive electrolyte, and examples thereof include a polymer solid electrolyte obtained by compounding a lithium salt with a polymer compound. Also, in the separator,
For example, a non-woven fabric of a polyolefin resin such as polyethylene or polypropylene, or a porous film of these can be used.

【0020】[0020]

【実施例】以下に、本発明を実施例により詳細に説明す
るが、本発明はこれら実施例に限定されるものではな
い。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0021】実施例1 (1)正極の作製 活物質として五酸化バナジウム、導電性材料としてカー
ボンブラックおよび結着剤としてポリテトラフルオロエ
チレンを、活物質、導電性材料および結着剤の重量比が
90:10:5になるように混合・混練し、直径15m
m、厚さ0.77mmのペレット状に加圧成形して正極と
した。
Example 1 (1) Preparation of Positive Electrode Vanadium pentoxide as an active material, carbon black as a conductive material, and polytetrafluoroethylene as a binder were used, and the weight ratio of the active material, the conductive material and the binder was changed. Mix and knead so that 90: 10: 5, diameter 15m
A positive electrode was obtained by pressure molding into a pellet having a thickness of m and a thickness of 0.77 mm.

【0022】(2)負極の作製 石油ピッチを不活性ガス雰囲気中において、350℃の
温度および大気圧の条件下に30分間熱処理して、ラン
ダム粒子を含有する生成物を得た。次いで、このランダ
ム粒子を生成物から分離捕集し、これを不活性ガス雰囲
気中において、1,000℃の温度で加熱処理すること
によって炭素化して球状炭素粒子を得た。次いで、得ら
れた球状炭素粒子を多段振動ふるい装置によってふるい
分けし、上ふるい分を混合して、表1に示す粒度分布の
炭素粒子試料を得た。この粉末90重量部に結着剤とし
てメタクリル酸アルキルエステル−ブタジエン共重合体
を5重量部の割合で混合・混練し、直径15.7mm、厚
さ0.90mmのペレット状に加圧成形した。次いで、こ
のペレット成形体に、電解含浸法によってリチウムを含
有させて負極とした。
(2) Preparation of Negative Electrode Petroleum pitch was heat-treated in an inert gas atmosphere at a temperature of 350 ° C. and atmospheric pressure for 30 minutes to obtain a product containing random particles. Next, the random particles were separated and collected from the product, and carbonized by subjecting the random particles to heat treatment at a temperature of 1,000 ° C. in an inert gas atmosphere to obtain spherical carbon particles. Next, the obtained spherical carbon particles were sieved by a multi-stage vibrating sieving device, and the upper sieve was mixed to obtain a carbon particle sample having a particle size distribution shown in Table 1. 90 parts by weight of this powder was mixed and kneaded with 5 parts by weight of a methacrylic acid alkyl ester-butadiene copolymer as a binder, and was pressed into pellets having a diameter of 15.7 mm and a thickness of 0.90 mm. Next, this pellet molded body was made to contain lithium by an electrolytic impregnation method to obtain a negative electrode.

【0023】(3)電池の組み立て 本発明にかかる非水溶媒二次電池は正極、リチウムイオ
ンを吸蔵・放出可能な炭素質材料からなる負極、リチウ
ムイオン伝導性電解質、当該電解質を溶解させる有機溶
媒、セパレータ、正負缶、負極缶、正極集電体、負極集
電体および絶縁ガスケットからなる。
(3) Assembly of Battery The non-aqueous solvent secondary battery according to the present invention comprises a positive electrode, a negative electrode made of a carbonaceous material capable of absorbing and releasing lithium ions, a lithium ion conductive electrolyte, and an organic solvent dissolving the electrolyte. , A separator, a positive and negative can, a negative electrode can, a positive electrode current collector, a negative electrode current collector, and an insulating gasket.

【0024】図1は、本発明にかかる非水溶媒二次電池
の断面図である。該非水溶媒二次電池を、以下のように
して組み立てた。まず、ステンレス鋼からなる正極容器
(1)の内面に直径12mm、厚さ0.05mmのステンレ
ス製エキスパンドメタルからなる正極集電体(3)を介
して正極(2)を収納した。プロピレンカーボネートに
過塩素酸リチウムを0.7mol/l の濃度になるように溶
解した電解液を、ポリプロピレン不織布に含浸させたセ
パレータ(4)を、前記正極(2)上に載置した。ステ
ンレス鋼からなる負極容器(5)の内面に、直径12m
m、厚さ0.10mmのニッケル製エキスパンドメタルか
らなる負極集電体(6)を介して負極(7)を着設し
た。最後に、前記正極容器(1)の開口部に、絶縁ガス
ケット(8)を介して前記負極容器を勘合し、正極容器
(1)をかしめ加工して正極容器(1)と負極容器
(5)内に、正極(2)、セパレータ(4)および負極
(7)を密閉して、外径20mm、厚さ2.5mmのコイン
形非水溶媒二次電池を組み立てた。
FIG. 1 is a sectional view of a non-aqueous solvent secondary battery according to the present invention. The non-aqueous solvent secondary battery was assembled as follows. First, the positive electrode (2) was housed in the inner surface of the positive electrode container (1) made of stainless steel via the positive electrode collector (3) made of stainless expanded metal having a diameter of 12 mm and a thickness of 0.05 mm. A separator (4) in which a polypropylene nonwoven fabric was impregnated with an electrolytic solution prepared by dissolving lithium perchlorate in propylene carbonate to a concentration of 0.7 mol / l was placed on the positive electrode (2). The inner surface of the negative electrode container (5) made of stainless steel has a diameter of 12 m.
A negative electrode (7) was attached via a negative electrode current collector (6) made of nickel expanded metal having a thickness of m and a thickness of 0.10 mm. Finally, the negative electrode container is fitted into the opening of the positive electrode container (1) through an insulating gasket (8), and the positive electrode container (1) is caulked to form the positive electrode container (1) and the negative electrode container (5). The positive electrode (2), the separator (4) and the negative electrode (7) were sealed inside, and a coin type non-aqueous solvent secondary battery having an outer diameter of 20 mm and a thickness of 2.5 mm was assembled.

【0025】(4)電池のエージング 上記のように電池を組み立た後に、20℃の温度で7〜
14日間エージングを行った。なお、エージング後の電
池開路電圧は3.4V であった。
(4) Aging of battery After assembling the battery as described above, the temperature of 7 to 7
It was aged for 14 days. The battery open circuit voltage after aging was 3.4V.

【0026】(5)放電試験 上記のようにして得られた試験用電池を、250μA の
定電流で2.0V まで放電試験を行い、電池容量を測定
した。結果を表1の貯蔵前の容量として示す。
(5) Discharge test The test battery obtained as described above was subjected to a discharge test at a constant current of 250 μA up to 2.0 V to measure the battery capacity. The results are shown in Table 1 as the capacity before storage.

【0027】(6)貯蔵試験 同じく上記のように電池を組み立てた後に、60℃の温
度で20日間エージングを行った。エージング後の電池
開路電圧は3.4V であった。250μA の定電流で
2.0V まで放電し、残存容量を測定した。結果を表1
に示す。
(6) Storage Test After assembling the battery as described above, the battery was aged at a temperature of 60 ° C. for 20 days. The battery open circuit voltage after aging was 3.4V. The battery was discharged at a constant current of 250 μA to 2.0 V and the remaining capacity was measured. The results are shown in Table 1.
Shown in

【0028】実施例2〜実施例4 表1に示す粒度分布の球状炭素粒子を使用した以外は、
実施例1と同様にしてコイン形リチウム二次電池を作製
し、電池をエージングし、そして放電試験および貯蔵試
験を行った。結果を表1に示す。
Examples 2 to 4 Except that spherical carbon particles having a particle size distribution shown in Table 1 were used,
A coin-type lithium secondary battery was prepared in the same manner as in Example 1, the battery was aged, and a discharge test and a storage test were performed. The results are shown in Table 1.

【0029】比較例1及び2 表1に示す粒度分布の球状炭素粒子を使用した以外は、
実施例1と同様にして、コイン形リチウム二次電池を作
製し、電池をエージングし、そして放電試験および貯蔵
試験を行った。結果を表1に示す。
Comparative Examples 1 and 2 except that spherical carbon particles having a particle size distribution shown in Table 1 were used.
In the same manner as in Example 1, a coin-type lithium secondary battery was prepared, the battery was aged, and a discharge test and a storage test were performed. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明のリチウム二次電池では、負極で
ある炭素質材料として粒度分布がD10%=3〜10μ
m 、D50%=10〜25μm 、D90%=25〜50
μm の球状炭素質粒子を用いることによって、高容量で
かつ自己放電の少ないリチウム二次電池が得られる。な
お、本発明のリチウム二次電池は、コイン形、円筒形、
偏平形、角形等の形状に適用することもできる。
In the lithium secondary battery of the present invention, the carbonaceous material as the negative electrode has a particle size distribution of D10% = 3 to 10 μm.
m, D50% = 10 to 25 μm, D90% = 25 to 50
By using spherical carbonaceous particles of μm, it is possible to obtain a lithium secondary battery with high capacity and less self-discharge. Incidentally, the lithium secondary battery of the present invention, coin-shaped, cylindrical,
It can also be applied to a flat shape, a rectangular shape, or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の断面図である。FIG. 1 is a cross-sectional view of a lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1……正極容器 2……正極 3……正極集電体 4……セパレータ 5……負極容器 6……負極集電体 7……負極 8……絶縁ガスケット 1 ... Positive electrode container 2 ... Positive electrode 3 ... Positive electrode current collector 4 ... Separator 5 ... Negative electrode container 6 ... Negative electrode current collector 7 ... Negative electrode 8 ... Insulation gasket

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、リチウムイオンを吸蔵・放出可能
な炭素質材料からなる負極およびリチウムイオン伝導性
電解質とを備えるリチウム二次電池において、前記炭素
質材料が、光学的異方性組織がランダムに展開したピッ
チ系炭素質粒子からなり、粒度分布がD10%=3〜1
0μm 、D50%=10〜25μm 、D90%=25〜
50μm の範囲であることを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode made of a carbonaceous material capable of absorbing and desorbing lithium ions, and a lithium ion conductive electrolyte, wherein the carbonaceous material has a random optically anisotropic structure. It consists of pitch-based carbonaceous particles, and the particle size distribution is D10% = 3 to 1
0 μm, D50% = 10 to 25 μm, D90% = 25 to
A lithium secondary battery having a range of 50 μm.
JP6302303A 1994-12-06 1994-12-06 Lithium secondary battery Pending JPH08162096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6302303A JPH08162096A (en) 1994-12-06 1994-12-06 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6302303A JPH08162096A (en) 1994-12-06 1994-12-06 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08162096A true JPH08162096A (en) 1996-06-21

Family

ID=17907354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6302303A Pending JPH08162096A (en) 1994-12-06 1994-12-06 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08162096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
JP2009140904A (en) * 2007-11-14 2009-06-25 Sony Corp Non-aqueous electrolyte battery
JP2009295400A (en) * 2008-06-04 2009-12-17 Fdk Corp Nonaqueous power storage element
JP2014026991A (en) * 2013-11-05 2014-02-06 Sony Corp Secondary battery, and graphite material for secondary battery
JPWO2012161335A1 (en) * 2011-05-23 2014-07-31 帝人株式会社 Particulate carbon catalyst and method for producing the same
WO2020137909A1 (en) * 2018-12-26 2020-07-02 昭和電工株式会社 Graphite material for negative electrode of lithium-ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
CN1316651C (en) * 2002-02-26 2007-05-16 索尼公司 Nonaqueous electrolyte battery
US7749659B2 (en) 2002-02-26 2010-07-06 Sony Corporation Nonaqueous electrolyte battery
JP2009140904A (en) * 2007-11-14 2009-06-25 Sony Corp Non-aqueous electrolyte battery
JP2009295400A (en) * 2008-06-04 2009-12-17 Fdk Corp Nonaqueous power storage element
JPWO2012161335A1 (en) * 2011-05-23 2014-07-31 帝人株式会社 Particulate carbon catalyst and method for producing the same
US9692060B2 (en) 2011-05-23 2017-06-27 Teijin Limited Particulate carbon catalyst including nitrogen and metal and method for producing the same
JP2014026991A (en) * 2013-11-05 2014-02-06 Sony Corp Secondary battery, and graphite material for secondary battery
WO2020137909A1 (en) * 2018-12-26 2020-07-02 昭和電工株式会社 Graphite material for negative electrode of lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US5612155A (en) Lithium ion secondary battery
US5312611A (en) Lithium secondary battery process for making carbonaceous material for a negative electrode of lithium secondary battery
US5340670A (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5753387A (en) Lithium secondary battery
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH0785888A (en) Lithium secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JP3727666B2 (en) Lithium secondary battery
JP3140880B2 (en) Lithium secondary battery
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
JPH08162096A (en) Lithium secondary battery
JPH09115546A (en) Secondary battery provided with non-aqueous solvent
JP2637305B2 (en) Lithium secondary battery
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JP3863514B2 (en) Lithium secondary battery
JPH09306489A (en) Nonaqueous electrolyte secondary battery negative electrode material, manufacture of this nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery using this negative electrode material
JP3410291B2 (en) Coin type non-aqueous solvent secondary battery
JPH0831410A (en) Lithium secondary battery
JPH0521065A (en) Lithium secondary battery
JPH1083837A (en) Lithium secondary battery
JPH11250910A (en) Lithium secondary battery
JPH10270080A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224