JPH0816177B2 - Polymer-metal cluster composite having high elastic modulus and method for producing the same - Google Patents

Polymer-metal cluster composite having high elastic modulus and method for producing the same

Info

Publication number
JPH0816177B2
JPH0816177B2 JP5251074A JP25107493A JPH0816177B2 JP H0816177 B2 JPH0816177 B2 JP H0816177B2 JP 5251074 A JP5251074 A JP 5251074A JP 25107493 A JP25107493 A JP 25107493A JP H0816177 B2 JPH0816177 B2 JP H0816177B2
Authority
JP
Japan
Prior art keywords
elastic modulus
polymer
particles
heat treatment
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5251074A
Other languages
Japanese (ja)
Other versions
JPH0782410A (en
Inventor
詔彦 中野
幸道 中尾
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP5251074A priority Critical patent/JPH0816177B2/en
Publication of JPH0782410A publication Critical patent/JPH0782410A/en
Publication of JPH0816177B2 publication Critical patent/JPH0816177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高弾性率を有する高分子
−金属クラスター複合体及びその製造方法、さらに詳し
くは、家庭用品、電器、機械、建築、土木、航空、宇宙
など多くの分野において有効に用いられる新規な材料、
すなわち高分子−金属錯体複合体を熱処理することによ
り金属クラスターが均一に分散し高分子マトリックスと
の接着が良好な高弾性率を有する高分子−金属クラスタ
ー複合体及びそれを効率よく製造するための方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer-metal cluster composite having a high elastic modulus and a method for producing the same, and more particularly in many fields such as household appliances, electric appliances, machinery, construction, civil engineering, aviation and space. New materials used effectively
That is, by heat-treating a polymer-metal complex composite, the metal cluster is uniformly dispersed, and the polymer-metal cluster composite having a high elastic modulus with good adhesion to the polymer matrix and an efficient production method thereof are provided. It is about the method.

【0002】[0002]

【従来の技術】高分子材料は、加工性が良い、軽い、耐
水耐薬品性が良い、審美性が良い等、多くの特性により
身近なプラスチック製家庭用品をはじめ、電気、機械、
車輌、建築、土木、農業水産、航空、宇宙など多くの分
野にとって欠くことのできない主要材料のひとつであ
る。反面、耐久性や機械的強度等が低い等の欠点があ
る。特性を損なうことなく欠点を補う方法に耐久性や機
械的強度が高い微粒子を複合する方法がある。この方法
で耐久性や機械的特性を飛躍的に上昇させるためには、
は、粒子が小さいこと、粒子の分散性がよいこと、
粒子とマトリックスの接着性が良いことの三点が重要
な要素となっているが、粒子が小さくなると会合して分
散性が悪くなったり、粒子とマトリックスの接着性が良
好でない等の欠点が顕れて満足な材料は得られていな
い。
2. Description of the Related Art Polymer materials have many characteristics such as good workability, light weight, good resistance to water and chemicals, good aesthetics, and many other familiar properties.
It is one of the main materials indispensable for many fields such as vehicles, construction, civil engineering, agriculture, fisheries, aviation and space. On the other hand, it has drawbacks such as low durability and low mechanical strength. As a method of compensating for the defects without impairing the properties, there is a method of combining fine particles having high durability and mechanical strength. In order to dramatically increase durability and mechanical properties with this method,
Means that the particles are small, that the dispersibility of the particles is good,
Three important points are that the adhesion between the particles and the matrix is good, but when the particles become smaller, they may associate with each other and the dispersibility may deteriorate, or the adhesion between the particles and the matrix may become poor. And satisfactory materials have not been obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これらの欠
点を克服する粒子が小さく、粒子の分散性が良く、
粒子とマトリックスの接着性が良く、そのために高弾
性率となる高分子複合材料及びその製造方法を提供する
ことを目的としている。
DISCLOSURE OF THE INVENTION The present invention is directed to overcoming these drawbacks in that the particles are small, the dispersibility of the particles is good,
It is an object of the present invention to provide a polymer composite material having good adhesiveness between particles and a matrix and therefore having a high elastic modulus, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、このよう
な問題を解決すべく鋭意研究を重ねた結果、金属錯体を
モノマーに溶解し、これを重合・固化させた後、加熱還
元することにより弾性率の高い複合体が得られることを
見出し、この知見に基づいて本発明を完成するに至っ
た。
As a result of intensive studies to solve such problems, the present inventors have dissolved a metal complex in a monomer, polymerized and solidified it, and then reduced it by heating. As a result, it was found that a composite having a high elastic modulus can be obtained, and the present invention has been completed based on this finding.

【0005】すなわち、本発明は(1)熱可塑性又は熱硬化性重合体マトリックスに対し
て、粒径10〜20オングストロームの貴金属粒子を、
体積分率0.005〜0.01%で、均一に分散、充填
してなる、弾性率の向上した高分子−金属クラスター複
合体、及び (2)貴金属錯体をモノマーに溶解し、これを重合・固
化させて高分子−貴金属錯体複合体を形成させた後、熱
処理を行うことにより貴金属錯体を貴金属クラスターに
変換し、高弾性率を得ることを特徴とする高分子−金属
クラスター複合体の製造方法提供するものである。
That is, the present invention relates to (1) a thermoplastic or thermosetting polymer matrix
The precious metal particles having a particle size of 10 to 20 angstroms,
Uniformly dispersed and filled with a volume fraction of 0.005-0.01%
The polymer-metal cluster composite with improved elastic modulus
Combined, and (2) dissolving the noble metal complex in the monomer and polymerizing and solidifying it.
To form a polymer-noble metal complex complex,
The precious metal complex is converted into a precious metal cluster by performing the treatment.
Polymer-metal characterized by conversion to obtain high elastic modulus
A method for producing a cluster complex is provided .

【0006】この際マトリックス材料としては、メチル
メタクリレート、スチレン、酢酸ビニル、イソプレン、
ジイソシアネート類などの熱可塑性材料、エポキシ化合
物などの熱硬化性材料、さらにこれらの2種またはそれ
以上の異なった材料が重合した共重合体材料などが用い
られ、金属錯体としてはパラジウム(II)又は白金(I
I)のアセチルアセトナート塩、塩化金(III) 酸、テト
ラクロロパラジウム(II)酸ナトリウムなどの貴金属錯
が用いられる。
At this time, as the matrix material, methyl methacrylate, styrene, vinyl acetate, isoprene,
Thermoplastic materials such as diisocyanates, thermosetting materials such as epoxy compounds, and copolymer materials obtained by polymerizing these two or more different materials are used. The metal complex is palladium (II) or Platinum (I
I) Acetylacetonate salt, gold (III) chloride, sodium tetrachloropalladium (II) and other precious metal complexes
The body is used.

【0007】熱処理の温度、時間、速度によりマトリッ
クスと微粒子の接着程度が変化し、それぞれ極大値をも
つので、最も弾性率が高くなる条件の設定が必要であ
る。概ね処理温度は120℃〜150℃、処理時間は
0.5時間〜5時間、温度上昇速度は0.5℃/分〜5
℃/分の範囲の条件が用いられ、温度が高い程、速度が
遅い程短時間で極大値が得られる。但し極大値と最大値
は一致しない。
Since the degree of adhesion between the matrix and the fine particles varies depending on the temperature, time and speed of the heat treatment, and each has a maximum value, it is necessary to set the conditions that maximize the elastic modulus. Generally, the processing temperature is 120 ° C to 150 ° C, the processing time is 0.5 hours to 5 hours, and the temperature rising rate is 0.5 ° C / minute to 5 ° C.
A condition in the range of ° C / min is used, and the higher the temperature and the slower the speed, the shorter the maximum value can be obtained. However, the maximum and maximum values do not match.

【0008】次に、本発明の原理について説明する。本
発明は金属錯体をモノマーに溶解し、重合・固化させ
て高分子−金属錯体複合体を形成した後に還元により
金属微粒子となるので、均一に分散すると共に粒子の
会合がおさえられるので粒子が非常に小さくなる。また
熱処理により、マトリックスの分子鎖が適当に移動する
ことにより粒子とマトリックスの接着が最適となる条件
があらわれる。微粒子に基づく弾性率補強理論は種々考
えられるが、微粒子の半径が非常に小さい場合には、表
面積が相対的に大きくなり、界面相互領域の厚さの効果
が大きくなる。図1に示すように界面相互領域の厚さを
rとし微粒子の半径をR0 とすると、微粒子の体積に対
する界面相互領域を含めた体積の倍率Bは一般式(1)
で示すことができる。 B=(1+r/R03 (1)
Next, the principle of the present invention will be described. The present invention is a noble metal complex was dissolved in the monomer, it is polymerized and solidified polymer - by reduction after the formation of the noble metal complex conjugates
Since the noble metal particles, the association of the particles is suppressed particles with uniform dispersion is very small. In addition, the heat treatment causes the matrix molecular chains to move appropriately, whereby conditions under which the adhesion between the particles and the matrix is optimum appear. Although various elastic modulus reinforcement theories based on fine particles can be considered, when the radius of the fine particles is very small, the surface area becomes relatively large and the effect of the thickness of the interfacial mutual region becomes large. As shown in FIG. 1, when the thickness of the interfacial area is r and the radius of the fine particles is R 0 , the volume ratio B including the interfacial area to the volume of the fine particles is expressed by the general formula (1).
Can be shown as B = (1 + r / R 0 ) 3 (1)

【0009】したがってマトリックスと微粒子の接着が
極めて良い場合には、ECを複合体の弾性率、E1をマト
リックスの弾性率、E2を微粒子の弾性率、φを微粒子
の体積分率とするとき弾性率補強理論式は完全並列型の
一般式(2)で示される。 EC/E1=1+(E2/E1)Bφ (2) この式に従うことにより微粒子の量が少ないのにもかか
わらず弾性率が異常に高くなるものと考えられる。
Therefore, when the adhesion between the matrix and the fine particles is extremely good, E C is the elastic modulus of the composite, E 1 is the elastic modulus of the matrix, E 2 is the elastic modulus of the fine particles, and φ is the volume fraction of the fine particles. At this time, the elastic modulus reinforcement theoretical formula is expressed by the general formula (2) of the complete parallel type. E C / E 1 = 1 + (E 2 / E 1 ) Bφ (2) It is considered that by following this formula, the elastic modulus becomes abnormally high despite the small amount of fine particles.

【0010】[0010]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail by way of examples.

【0011】実施例1 減圧蒸留により精製したメチルメタクリレート(モノマ
ー)にパラジウムアセチルアセトナート(金属錯体)及
び過酸化ベンゾイル(開始剤)を溶解し、70℃で約3
5分間加熱した後、ガラス製鋳型に移し、さらに45℃
で24時間加熱して、黄色透明のポリメチルメタクリレ
ート−パラジウム錯体複合体を得た。これをさらに熱処
理することにより、褐色透明のポリメチルメタクリレー
ト−パラジウムクラスター複合体を得た。電子顕微鏡に
よる観察により粒径10〜20オングストローム程度の
パラジウム微粒子が凝集することなく、均一に分散して
いることが明らかになった。用いた試料のパラジウムの
体積分率は、0.005、0.006、及び0.010
%である。熱処理条件は昇温速度を0.5、1及び5℃
/分、初期温度を20℃、最終温度( 熱処理温度) を1
20℃、130℃、140℃及び150℃とし、初期温
度からの経過時間を熱処理時間とした。
Example 1 Palladium acetylacetonate (metal complex) and benzoyl peroxide (initiator) were dissolved in methyl methacrylate (monomer) purified by vacuum distillation, and the mixture was dissolved at 70 ° C. for about 3 times.
After heating for 5 minutes, transfer to a glass mold and further 45 ° C.
After heating for 24 hours, a yellow transparent polymethylmethacrylate-palladium complex complex was obtained. By further heat-treating this, a brown transparent polymethylmethacrylate-palladium cluster composite was obtained. Observation by an electron microscope revealed that the fine palladium particles having a particle size of about 10 to 20 angstrom were uniformly dispersed without agglomeration. The volume fraction of palladium in the sample used was 0.005, 0.006, and 0.010.
%. The heat treatment conditions are temperature rising rates of 0.5, 1 and 5 ° C.
/ Min, initial temperature is 20 ° C, final temperature (heat treatment temperature) is 1
The temperature was 20 ° C., 130 ° C., 140 ° C. and 150 ° C., and the time elapsed from the initial temperature was the heat treatment time.

【0012】図2は温度上昇速度が5℃/分のときの熱
処理温度と熱処理時間による弾性率の変化を示したもの
である。弾性率は処理時間に対して極大を示し、処理温
度が高くなるに従い弾性率が極大を示す時間がはやくな
る。この範囲では弾性率の極大値は3.5〜3.7GP
a を示す。この場合熱処理時間0はポリメチルメタクリ
レート−パラジウム錯体複合体の弾性率を示す。ポリメ
チルメタクリレート単体の弾性率は2GPa であった。
FIG. 2 shows changes in elastic modulus depending on the heat treatment temperature and the heat treatment time when the temperature rising rate is 5 ° C./min. The elastic modulus shows a maximum with respect to the processing time, and the time the elastic modulus shows a maximum becomes shorter as the processing temperature becomes higher. In this range, the maximum value of the elastic modulus is 3.5 to 3.7 GP.
shows the a. In this case, the heat treatment time of 0 indicates the elastic modulus of the polymethylmethacrylate-palladium complex composite. The elastic modulus of the polymethylmethacrylate simple substance was 2 GP a .

【0013】次に、熱処理における温度上昇速度の影響
を検討した。図3は一例であるが、クラスターの体積分
率が、0.01%の試料を140℃で熱処理した時の温
度上昇速度の相違による弾性率の変化を処理時間に対し
て示したものである。5℃/分の速度では処理時間が
3.5時間付近に極大を示すのに対して1℃/分と速度
を小さくすると、処理時間の少ない2.5時間付近で極
大を示しその値も大きくなり、5GPa を示す。昇温速
度を0.5℃/分とさらに遅くすると、必然的に処理時
間が長くなるので、極大値を得ることはできなくなる。
Next, the influence of the temperature rising rate in the heat treatment was examined. FIG. 3 is an example, but shows a change in elastic modulus due to a difference in temperature rising rate when a sample having a cluster volume fraction of 0.01% is heat-treated at 140 ° C. with respect to a treatment time. . At a rate of 5 ° C / min, the processing time shows a maximum in the vicinity of 3.5 hours, whereas at a rate of 1 ° C / minute, the processing time shows a maximum in the vicinity of a short processing time of 2.5 hours, and the value is large. And shows 5 GP a . If the heating rate is further slowed down to 0.5 ° C./minute, the processing time will inevitably become long, and it will not be possible to obtain the maximum value.

【0014】実験の範囲内で最も大きな値を示した14
0℃、1℃/分の熱処理条件でパラジウム微粒子の体積
分率の相違による弾性率の変化を図4に示す。
Within the range of the experiment, the highest value was shown 14
FIG. 4 shows a change in elastic modulus due to a difference in volume fraction of palladium fine particles under heat treatment conditions of 0 ° C. and 1 ° C./min.

【0015】2.5時間のところで極大を示し、体積分
率により大きな差が現れる。これらの実験結果をあては
めると図5に示すように一般式(2)に載る。すなわち
界面相互領域を考慮した完全並列型の弾性率補強理論に
従っている。この事実は本手法で生成した高分子−金属
クラスター複合体は、微粒子とマトリックスが一体化し
ていることを意味している。熱処理条件により弾性率が
極大を示すのは、その条件において微粒子とマトリック
スが最も良好に一体化することを意味している。また一
般式(2)を体積分率0.005〜0.01%の範囲に
おいて弾性率と微粒子の半径で図示すると図6のように
なる。非常にわずかの微粒子を複合することにより本実
験のように弾性率に大きな差が出てくるのは微粒子の半
径が非常に小さいことによるものであることを示してい
る。また、界面相互領域は微粒子の大きさに依らず存在
するが、微粒子が小さくなることにより、相対的に相互
領域の影響が大きくなることを示しており、複合効果が
現れる体積分率は微粒子の大きさに依存していることを
示している。
It shows a maximum at 2.5 hours, and a large difference appears depending on the volume fraction. When these experimental results are applied, they are given in the general formula (2) as shown in FIG. In other words, it follows the fully parallel elastic modulus reinforcement theory that considers the interfacial region. This fact means that the polymer-metal cluster composite produced by this method has the fine particles and the matrix integrated. The maximum elastic modulus depending on the heat treatment condition means that the fine particles and the matrix are best integrated under the condition. Further, FIG. 6 shows the general formula (2) in terms of elastic modulus and fine particle radius in the range of volume fraction 0.005 to 0.01%. It is shown that the fact that a large difference in the elastic modulus occurs as in this experiment by combining very few fine particles is due to the very small radius of the fine particles. Moreover, although the interfacial area exists regardless of the size of the particles, it is shown that the effect of the mutual area relatively increases as the particles become smaller. It shows that it depends on the size.

【0016】[0016]

【発明の効果】以上説明したように、金属クラスター
の充填率がわずか0.005%で、弾性率がマトリック
スの2倍にもなるという複合体を効率よく製造すること
ができる。
As described in the foregoing, in the filling rate is only 0.005% of the noble metal clusters, the elastic modulus can be produced efficiently a complex that is also twice the matrix.

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【図1】微粒子と界面相互領域の説明図であって図中符
号rは界面相互領域の厚さを示し、R0は微粒子の半径
を示す。
FIG. 1 is an explanatory diagram of a fine particle and an interfacial area, in which a symbol r indicates a thickness of the interfacial area, and R 0 indicates a radius of the fine particle.

【図2】ポリメチルメタクリレート−パラジウムクラス
ター複合体の弾性率の熱処理温度と熱処理時間による変
化を示す図である。
FIG. 2 is a diagram showing changes in elastic modulus of a polymethylmethacrylate-palladium cluster composite depending on heat treatment temperature and heat treatment time.

【図3】ポリメチルメタクリレート−パラジウムクラス
ター複合体の熱処理時間と弾性率の関係を熱処理速度の
異なる試料について示した図である。
FIG. 3 is a diagram showing a relationship between heat treatment time and elastic modulus of a polymethylmethacrylate-palladium cluster composite for samples having different heat treatment rates.

【図4】処理時間と弾性率の関係を体積分率の異なる試
料について示した図である。
FIG. 4 is a diagram showing the relationship between processing time and elastic modulus for samples having different volume fractions.

【図5】体積分率と比弾性率の関係を理論式とともに示
したもので、一般式(2)以外の曲線は他の理論曲線を
示している。
FIG. 5 shows the relationship between the volume fraction and the specific elastic modulus together with a theoretical formula, and curves other than the general formula (2) show other theoretical curves.

【図6】微粒子の半径と比弾性率の関係を示した図であ
る。
FIG. 6 is a diagram showing a relationship between a radius of fine particles and a specific elastic modulus.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08L 33/00 LHU (56)参考文献 特開 昭63−120759(JP,A) 特開 平5−202109(JP,A) 特開 平4−50235(JP,A) 特開 昭57−166176(JP,A) 特開 昭59−78250(JP,A) 特開 昭62−290759(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C08L 33/00 LHU (56) References JP-A-63-120759 (JP, A) JP Japanese Patent Application Laid-Open No. 5-202109 (JP, A) Japanese Patent Application Laid-Open No. 4-50235 (JP, A) Japanese Patent Application Laid-Open No. 57-166176 (JP, A) Japanese Patent Application Laid-Open 59-78250 (JP, A) Japanese Patent Application Laid-Open No. 62-290759 (JP , A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性又は熱硬化性重合体マトリック
に対して、粒径10〜20オングストロームの金属
粒子を、体積分率0.005〜0.01%で、均一に分
散、充填してなる、弾性率の向上した高分子−金属クラ
スター複合体。
Respect 1. A thermoplastic or thermoset polymer matrix, the noble metal particles having a particle size of 10 to 20 Angstroms, with a volume fraction of from 0.005 to 0.01%, evenly divided
A polymer -metal cluster composite having an improved elastic modulus, which is obtained by dispersing and filling .
【請求項2】 金属錯体をモノマーに溶解し、これを
重合・固化させて高分子−金属錯体複合体を形成させ
た後熱処理を行うことにより貴金属錯体を貴金属クラ
スターに変換し、高弾性率を得ることを特徴とする高分
子−金属クラスター複合体の製造方法。
Wherein the noble metal complex is dissolved in the monomer, which is polymerized and solidified polymer - after forming a noble metal complex conjugates, noble class noble metal complex by heat treatment
A method for producing a polymer-metal cluster composite , which comprises converting to a star to obtain a high elastic modulus.
JP5251074A 1993-09-13 1993-09-13 Polymer-metal cluster composite having high elastic modulus and method for producing the same Expired - Lifetime JPH0816177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5251074A JPH0816177B2 (en) 1993-09-13 1993-09-13 Polymer-metal cluster composite having high elastic modulus and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5251074A JPH0816177B2 (en) 1993-09-13 1993-09-13 Polymer-metal cluster composite having high elastic modulus and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0782410A JPH0782410A (en) 1995-03-28
JPH0816177B2 true JPH0816177B2 (en) 1996-02-21

Family

ID=17217250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5251074A Expired - Lifetime JPH0816177B2 (en) 1993-09-13 1993-09-13 Polymer-metal cluster composite having high elastic modulus and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0816177B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108342A1 (en) 2010-03-01 2011-09-09 新日鐵化学株式会社 Metal nanoparticle composite and process for production thereof
WO2011114812A1 (en) 2010-03-19 2011-09-22 新日鐵化学株式会社 Metal microparticle composite

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062748B1 (en) 1999-03-10 2000-07-12 工業技術院長 Method for producing polymer-metal cluster-composite
EP1138717B1 (en) * 2000-03-30 2005-09-14 Japan as represented by Secretary of Agency of Industrial Science and Technology Method for preparation of a polymer-metal cluster composite
JP2004067789A (en) * 2002-08-05 2004-03-04 Sumitomo Chem Co Ltd Method for manufacturing cast molded article of impact-resistant methacrylate resin
JP4000368B2 (en) * 2002-09-10 2007-10-31 独立行政法人産業技術総合研究所 Method for producing polymethyl methacrylate-metal cluster composite
DE102004062633B4 (en) * 2004-12-24 2007-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of polymers based on metal-based fine particles
JP4868385B2 (en) * 2005-08-23 2012-02-01 独立行政法人産業技術総合研究所 Heat-resistant polymer composite material in which palladium nanoparticles are dispersed, and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033074B2 (en) * 1981-04-03 1985-07-31 住友ゴム工業株式会社 solid golf ball
JPS5978250A (en) * 1982-09-20 1984-05-07 チバ−ガイギ−・アクチエンゲゼルシヤフト Stabilization of elastic high polymer material against swelling activity by petroleum products
JPS62290759A (en) * 1986-06-09 1987-12-17 Kuraray Co Ltd Composite material of metal complex and electrically conductive high-molecular material and production thereof
GB8622752D0 (en) * 1986-09-22 1986-10-29 Shell Int Research Conductive polymer compositions
JPH0450235A (en) * 1990-06-15 1992-02-19 Mita Ind Co Ltd Conductive resin material and preparation thereof
JPH05202109A (en) * 1991-07-10 1993-08-10 Seiko Epson Corp Transparent plastic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108342A1 (en) 2010-03-01 2011-09-09 新日鐵化学株式会社 Metal nanoparticle composite and process for production thereof
WO2011114812A1 (en) 2010-03-19 2011-09-22 新日鐵化学株式会社 Metal microparticle composite

Also Published As

Publication number Publication date
JPH0782410A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
US3764456A (en) Polymeric high performance composites
KR101692106B1 (en) Acrylic impact modifier with core-shell structure and composition of acrylic resin comprising thereof
KR101391048B1 (en) MBS Graft Copolymer, Method For Preparing The Same And PVC Composition Containing The Same
JPH0816177B2 (en) Polymer-metal cluster composite having high elastic modulus and method for producing the same
CN101020775A (en) High strength and high toughness modified poly-propylene material
US4134930A (en) Resinous materials for restoring crowns
EP3243875B1 (en) Thermoplastic resin, method for preparing same, and thermoplastic resin composition comprising same
CN109456583B (en) Nanowire modified unsaturated polyester resin reinforced material and preparation method thereof
KR101404942B1 (en) Graft copolymer having excellent transparency and impact strength
JP2019108534A (en) Method for producing core-shell copolymer, core-shell copolymer and resin composition including the same
CN113208932A (en) Dentin adhesive composition with antibacterial function
US3821348A (en) Process for recovering nitrile polymer solids from latex
EP3663354B1 (en) Matrix copolymer, graft copolymer, and thermoplastic resin composition
KR100274658B1 (en) A preparing method of core-shell composite particles for toughening agent of polymethyl methacrylate resin and composition containing the same
CN114573866B (en) Filler special for marble adhesive and preparation method thereof
Schneider et al. Impact modification of thermoplastics by methyl methacrylate and styrene‐grafted natural rubber latexes
JP3597590B2 (en) Graft polymer particles and rubber-reinforced thermoplastic resin composition containing the polymer particles
JPS63132956A (en) Impact-resistant resin composition
JPS63120716A (en) Production of impact-resistant resin
JPH0481443A (en) Polyvinyl chloride resin composition
KR100558675B1 (en) Manufacturing method of impact modifier for transparent acrylic resin
KR102009313B1 (en) Graft copolymer, method for preparing the copolymer and thermoplastic resin composition comprising the copolymer
CN1063187C (en) Process for preparing core-shell particle toughened polystyrene material
JPH075819B2 (en) Resin composition
KR100448027B1 (en) Methylmethacrylate-Butadiene-Styrene copolymer and method for good powder property preparing the same