JPH08159714A - Position detection sensor - Google Patents

Position detection sensor

Info

Publication number
JPH08159714A
JPH08159714A JP32390294A JP32390294A JPH08159714A JP H08159714 A JPH08159714 A JP H08159714A JP 32390294 A JP32390294 A JP 32390294A JP 32390294 A JP32390294 A JP 32390294A JP H08159714 A JPH08159714 A JP H08159714A
Authority
JP
Japan
Prior art keywords
light
position detection
mask
shadow
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32390294A
Other languages
Japanese (ja)
Inventor
Masahiro Adachi
雅浩 安達
Hiroshi Sekii
宏 関井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP32390294A priority Critical patent/JPH08159714A/en
Publication of JPH08159714A publication Critical patent/JPH08159714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To construct an optical system on the photodetecting side simply in a position detection sensor using triangulation. CONSTITUTION: Light is radiated from a projection element 2 to irradiate an object detection area with a projection beam 4. The reflected light from an object to be detected is received by a position detection sensor 7. When a mask 20 is arranged right before the position detection sensor 7, a shadow of the mask 20 is formed on a position detector 7 and hence, a position signal is outputted to the object to be detected from the position of the center of the shadow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三角測量法を用いて物体
までの距離を測定する位置検出センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting sensor for measuring a distance to an object by using a triangulation method.

【0002】[0002]

【従来の技術】従来三角測量法を用いた変位測定装置と
しては、特開平3−120412号等の変位測定装置が提案さ
れている。これは図8に示すように、一定周期毎に生じ
る投光パルスに基づいて駆動回路1を介して投光素子2
を駆動し、投光レンズ3により平行な光ビーム4を物体
検知領域に照射している。そして検知物体5からの反射
光を受光レンズ6を介して位置検出素子7、例えばポジ
ションセンシティブディバイス(PSD)で受光してい
る。位置検出素子7は受光位置に応じてその両端の電流
の出力比が変化する素子であって、その両端の出力はI
/V変換器8及び9によって電圧信号に変換される。I
/V変換器8及び9の出力は夫々加算器10,減算器1
1に与えられ、加算及び減算されて割算回路12に入力
される。割算回路12は減算値を加算値で割算すること
によって検知物体5の位置信号を出力するものであり、
その出力は補正回路13を介して距離に対応した直線的
な電圧信号として出力するようにしている。この補正回
路13は、位置検出素子7の不均一性や受光レンズ6に
よる誤差が生じるため、装置から測定対象物までの距離
と割算回路の出力である電圧値が直線性を有するように
補正するものである。
2. Description of the Related Art Conventionally, as a displacement measuring device using a triangulation method, a displacement measuring device such as Japanese Patent Laid-Open No. 3-120412 has been proposed. This is as shown in FIG.
Is driven to irradiate the object detection area with the parallel light beam 4 by the light projecting lens 3. The reflected light from the detection object 5 is received by the position detection element 7, for example, a position sensitive device (PSD), via the light receiving lens 6. The position detection element 7 is an element in which the output ratio of the current at both ends changes according to the light receiving position, and the output at both ends is I.
It is converted into a voltage signal by the / V converters 8 and 9. I
The outputs of the / V converters 8 and 9 are the adder 10 and the subtractor 1, respectively.
1 is added, subtracted and added, and input to the division circuit 12. The division circuit 12 outputs the position signal of the detection object 5 by dividing the subtraction value by the addition value,
The output is output as a linear voltage signal corresponding to the distance via the correction circuit 13. The correction circuit 13 corrects so that the distance from the device to the object to be measured and the voltage value output from the division circuit have linearity because the nonuniformity of the position detection element 7 and the error due to the light receiving lens 6 occur. To do.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な従来の位置検出センサでは、受光側にレンズ6を用い
て反射光を集光させて位置検出素子7で受光している。
そのため受光側にレンズ等を用いる必要があり、装置自
体が大型となる。又受光量が小さく分解能にも限界があ
り、出力の直線性を保持するための処理回路を必要とす
るという欠点があった。又対象物からの反射光のビーム
径で線形の幅が決定され、センサの仕様を変更する際に
構成を変更する必要があり、容易に変更することができ
なくなるという欠点があった。
However, in such a conventional position detecting sensor, the lens 6 is used on the light receiving side to collect the reflected light and the position detecting element 7 receives the reflected light.
Therefore, it is necessary to use a lens or the like on the light receiving side, and the device itself becomes large. Further, the amount of received light is small, the resolution is limited, and a processing circuit for maintaining the linearity of the output is required. In addition, the beam width of the reflected light from the object determines the linear width, and it is necessary to change the configuration when changing the specifications of the sensor, which is a drawback that it cannot be changed easily.

【0004】本発明はこのような従来の問題点に鑑みて
なされたものであって、受光素子のビーム分布を凹状と
することによって従来の問題点を解決することを目的と
する。
The present invention has been made in view of such conventional problems, and an object thereof is to solve the conventional problems by making the beam distribution of the light receiving element concave.

【0005】[0005]

【課題を解決するための手段】本願の請求項1の発明
は、光を物体検知領域に照射する投光素子を有する投光
部と、検知物体からの反射光を受光し、その受光位置に
応じた位置検知信号を出力する位置検出素子と、位置検
出素子の受光面に近接して配置され、反射光の一部を遮
光するマスク手段と、位置検出素子に得られるマスク手
段の影の位置に基づいて物体までの距離を検出する信号
処理手段と、を具備することを特徴とするものである。
According to the invention of claim 1 of the present application, a light projecting portion having a light projecting element for irradiating an object detection region with light, and reflected light from a detected object are received, and the light is received at the light receiving position. A position detection element that outputs a position detection signal corresponding to the position detection element, a mask means that is arranged close to the light receiving surface of the position detection element and that shields part of the reflected light, and the position of the shadow of the mask means that is obtained by the position detection element. Signal processing means for detecting a distance to an object based on the above.

【0006】本願の請求項2の発明は、光を物体検知領
域に照射する投光素子を有する投光部と、投光部より照
射される光と平行に配置され、検知物体からの反射光を
受光し、その受光位置に応じた位置検知信号を出力する
位置検出素子と、位置検出素子の受光面に近接して配置
され反射光の一部を遮光するマスク手段と、位置検出素
子に得られるマスク手段の影の位置に基づいて物体まで
の距離を検出する信号処理手段と、を具備することを特
徴とするものである。
According to a second aspect of the present invention, a light projecting portion having a light projecting element for irradiating the object detection area with light, and light reflected by the detected object are arranged in parallel with the light emitted from the light projecting portion. The position detection element that receives the light and outputs a position detection signal according to the light receiving position, the mask means that is arranged close to the light receiving surface of the position detection element and that blocks a part of the reflected light, and the position detection element Signal processing means for detecting the distance to the object based on the position of the shadow of the mask means.

【0007】[0007]

【作用】このような特徴を有する本願の請求項1の発明
によれば、投光部の光軸上にセンサから離れた位置にあ
る検知物体に光が照射されると、その反射光がマスク手
段を介して位置検出素子に受光される。そして検知物体
までの距離に応じてマスク手段で遮光される影の位置が
異なるため、位置検出素子に得られる影の位置に基づい
て物体までの距離を検出することができる。又請求項2
の発明では、位置検出素子の受光軸と投光軸とを平行に
配置しておくことにより、影の中心と検知物体とを結ぶ
線分は常に一定の点を通過することとなる。従って投光
軸と位置検出センサ及びこの一定の点を通る投光ビーム
に垂直な線との成す線分から常に相似の三角形が得ら
れ、検知物体までの距離と位置検出素子上の光の重心と
は常に比例関係にある。従って物体までの距離を直線化
した出力が得られることとなる。
According to the invention of claim 1 of the present application having such a feature, when light is applied to a detection object located at a position apart from the sensor on the optical axis of the light projecting portion, the reflected light is masked. The light is received by the position detection element via the means. Since the position of the shadow shielded by the mask means differs depending on the distance to the detected object, the distance to the object can be detected based on the position of the shadow obtained by the position detection element. Claim 2
In the invention described above, by arranging the light receiving axis of the position detecting element and the light projecting axis in parallel, the line segment connecting the center of the shadow and the detected object always passes through a fixed point. Therefore, a similar triangle is always obtained from the line segment formed by the projection axis, the position detection sensor, and the line perpendicular to the projection beam that passes through this fixed point, and the distance to the detection object and the center of gravity of the light on the position detection element Is always proportional. Therefore, an output obtained by linearizing the distance to the object can be obtained.

【0008】[0008]

【実施例】図1は本発明の一実施例による位置検出セン
サの全体構成を示すブロック図である。本図において前
述した従来例と同一部分は同一符号を付して詳細な説明
を省略する。本実施例の位置検出センサも従来例と同様
に駆動回路1を介して投光素子2を駆動する。そしてこ
の投光素子と所定間隔を隔てて位置検出素子7を設け
る。位置検出素子7はPSDやCCD等の1次元の受光
素子を用いる。位置検出素子をPSDとすると、その両
端に入射される光の重心位置に応じた電流が両端に出力
される。この出力はI/V変換器8及び9によって電圧
信号に変換される。I/V変換器8及び9の出力は夫々
加算器10,減算器11に与えられて加算及び減算され
て、割算回路12に入力される。割算回路12は減算値
を加算値で割算することによって検知物体の位置信号を
出力するものである。I/V変換器8,9、加算器1
0、減算器11及び割算回路12は、光の重心に基づい
て物体までの距離を検出する信号処理手段を構成してい
る。
1 is a block diagram showing the overall construction of a position detecting sensor according to an embodiment of the present invention. In this figure, the same parts as those of the conventional example described above are designated by the same reference numerals, and detailed description thereof is omitted. The position detection sensor of this embodiment also drives the light projecting element 2 via the drive circuit 1 as in the conventional example. The position detecting element 7 is provided at a predetermined distance from the light projecting element. As the position detecting element 7, a one-dimensional light receiving element such as PSD or CCD is used. When the position detection element is PSD, a current corresponding to the barycentric position of light incident on both ends of the PSD is output to both ends. This output is converted into a voltage signal by the I / V converters 8 and 9. The outputs of the I / V converters 8 and 9 are given to the adder 10 and the subtractor 11, added and subtracted, and input to the division circuit 12. The division circuit 12 outputs the position signal of the detected object by dividing the subtracted value by the added value. I / V converters 8 and 9, adder 1
0, the subtractor 11 and the division circuit 12 constitute a signal processing means for detecting the distance to the object based on the center of gravity of the light.

【0009】さて本実施例では、位置検出素子7の直前
に図示のように反射光の一部を遮光するためのマスク2
0を設けておく。このマスク20は位置検出素子7に受
光される反射光を遮光するマスク手段であり、遮光によ
って得られる影の位置によって物体の位置を検出するよ
うにしている。又位置検出素子7を1次元CCDとする
と、1ライン分を読出してその影の中心位置を出力する
ものとする。
In this embodiment, the mask 2 for blocking a part of the reflected light is provided immediately before the position detecting element 7 as shown in the figure.
0 is set. This mask 20 is a mask means for blocking the reflected light received by the position detecting element 7, and detects the position of the object by the position of the shadow obtained by the light blocking. When the position detecting element 7 is a one-dimensional CCD, one line is read and the center position of the shadow is output.

【0010】次に本実施例の動作について図2を参照し
つつ説明する。図2(a)に示すようにこの位置検出セ
ンサからの距離L1に検知物体5Aが位置する場合に
は、その反射光の一部はマスク20によって遮光され
る。図2(b)は位置検出素子までの距離L1に検知物
体5Aが位置する場合に、光の位置検出素子7上の反射
光の分布を示すものである。又図2(c)は検知物体5
Bが距離L2にある場合の反射光の分布を示す図であ
る。図2(b),(c)に示すようにマスク20によっ
て反射光が遮光されるが、その遮光される位置が検知物
体までの距離に応じて変化する。×印で示す受光した光
の重心はこの影の位置によって変化するため、光の重心
も同様にして物体までの距離に応じて変化することとな
る。従ってI/V変換器8,9から割算回路12までの
信号処理手段により、影の中心位置を検出することによ
って、距離信号を出力することができる。この方法によ
れば受光レンズを要せず、光を集束させて位置検出素子
7に導く必要がなく、構成が簡単となり、センサ自体の
小型化及び薄型化も可能となる。
Next, the operation of this embodiment will be described with reference to FIG. As shown in FIG. 2A, when the detection object 5A is located at a distance L1 from the position detection sensor, a part of the reflected light is blocked by the mask 20. FIG. 2B shows a distribution of reflected light on the position detecting element 7 of light when the detection object 5A is located at a distance L1 to the position detecting element. Further, FIG. 2C shows the detection object 5
It is a figure which shows distribution of the reflected light when B is in the distance L2. As shown in FIGS. 2B and 2C, the mask 20 shields the reflected light, and the shielded position changes depending on the distance to the detection object. Since the center of gravity of the received light indicated by X changes depending on the position of this shadow, the center of gravity of the light also changes in accordance with the distance to the object. Therefore, the distance signal can be output by detecting the center position of the shadow by the signal processing means from the I / V converters 8 and 9 to the division circuit 12. According to this method, it is not necessary to use a light receiving lens, and it is not necessary to focus light to be guided to the position detecting element 7, the configuration is simplified, and the sensor itself can be made smaller and thinner.

【0011】次に本発明の第2実施例について説明す
る。図3は第2実施例の光学系部分と反射光を示す説明
図、図5はその信号処理部を示すブロック図である。本
実施例は投光ビーム4に平行に位置検出素子7を配置し
たものである。そしてその前面には第1実施例と同様に
マスク20を配置しておく。そして投光素子1の投光面
と位置検出素子7の端部を投光ビーム4と垂直とする。
そして検知物体5Aが距離L1の位置にあるときに、そ
の反射光が位置検出素子7に受光される。ここでその反
射光の一部はマスク20によって遮光される。ここで図
3において投光軸4をY軸、これと垂直な位置検出素子
7の上面を通る直線をX軸とし、マスク2の右上端部
の座標を(x1,y1)、左下端部を(x2,y2)
とする。そして検知物体5Aの位置を座標(0,y
3)、検知物体5Bの位置を座標(0,y4)で表
す。このとき検知物体5Aで反射され、点,を通過
する直線A1は次式(1)で示される。
Next, a second embodiment of the present invention will be described. FIG. 3 is an explanatory view showing an optical system portion and reflected light of the second embodiment, and FIG. 5 is a block diagram showing its signal processing unit. In this embodiment, the position detecting element 7 is arranged in parallel with the projection beam 4. Then, the mask 20 is arranged on the front surface thereof as in the first embodiment. The light projecting surface of the light projecting element 1 and the end of the position detecting element 7 are perpendicular to the light projecting beam 4.
Then, when the detection object 5A is at the position of the distance L1, the reflected light is received by the position detection element 7. Here, a part of the reflected light is blocked by the mask 20. Here, in FIG. 3, the light projection axis 4 is the Y axis, the straight line passing through the upper surface of the position detection element 7 perpendicular thereto is the X axis, the coordinates of the upper right end of the mask 2 are (x1, y1), and the lower left end is (X2, y2)
And Then, the position of the detected object 5A is set to coordinates (0, y
3), the position of the detection object 5B is represented by coordinates (0, y4). At this time, a straight line A1 that is reflected by the detection object 5A and passes through the point is expressed by the following equation (1).

【数1】 又検知物体5Aの点と頂点を通る直線A2は次式
(2)で示される。
[Equation 1] A straight line A2 passing through the point and the apex of the detected object 5A is expressed by the following equation (2).

【数2】 そして直線A1,A2で示される範囲が位置検出素子7
上の影の領域となる。そして投光ビーム4と検知物体5
Aの表面の交点と、この影の中心とを結ぶ直線A3を
考えると、影の中心(x5,y5)のY座標y5は次
式で示される。
[Equation 2] The area indicated by the straight lines A1 and A2 is the position detecting element 7.
It becomes the upper shadow area. Then, the projection beam 4 and the detection object 5
Considering a straight line A3 connecting the intersection of the surface of A and the center of this shadow, the Y coordinate y5 of the center (x5, y5) of the shadow is expressed by the following equation.

【数3】 従って直線A3は次式(4)で示される。(Equation 3) Therefore, the straight line A3 is expressed by the following equation (4).

【数4】 但しP,Qを次式(5)とする。[Equation 4] However, P and Q are set to the following formula (5).

【数5】 同様にしてマスク20の頂点,を通り、位置検出物
体5Bを通過する直線B1,B2は夫々次式(6),
(7)で示される。
(Equation 5) Similarly, straight lines B1 and B2 passing through the apex of the mask 20 and passing through the position detection object 5B are expressed by the following equations (6),
This is indicated by (7).

【数6】 そして同様にその位置検出素子7上の中点と点を通る
直線B3は次式(8)で示される。
(Equation 6) Similarly, a straight line B3 passing through the midpoint and the point on the position detecting element 7 is expressed by the following equation (8).

【数7】 そして直線A3とB3の交わる点Kの座標は(Q/2,
P/Q)で示され、式(5)より明らかなように点,
の座標によってのみ定まる。従って投光素子2から検
知物体までの距離にかかわらず常に一点Kを通過するこ
ととなる。X軸に平行な点Kを通る直線Cと、直線A
3、投光ビーム4及び位置検出素子7の表面で成す2つ
の三角形は相似となる。
(Equation 7) The coordinates of the point K where the straight lines A3 and B3 intersect are (Q / 2,
P / Q), as is clear from the equation (5),
Only determined by the coordinates of. Therefore, the point K always passes regardless of the distance from the light projecting element 2 to the detected object. A straight line C passing through a point K parallel to the X axis and a straight line A
3, the two triangles formed by the surface of the projection beam 4 and the position detection element 7 are similar.

【0012】又同様にして直線B3,Cと投光ビーム
4,位置検出素子7の表面で2つの相似な三角形が形成
される。従って投光素子から検知物体5A,5Bまでの
距離に対応して位置検出素子7の上部の端部から影の中
心までの距離は、図4に示すように直線的に変化するこ
ととなる。
Similarly, two similar triangles are formed on the surfaces of the straight lines B3 and C, the projection beam 4 and the position detecting element 7. Therefore, the distance from the upper end of the position detecting element 7 to the center of the shadow corresponding to the distance from the light projecting element to the detection objects 5A and 5B changes linearly as shown in FIG.

【0013】次に図5を用いて信号処理部の構成につい
て説明する。本実施例では影の中心を検出するため位置
検出素子7をCCDとし、CCD駆動回路21によって
位置検出素子7を駆動する。そして位置検出素子7から
読出された信号をコンパレータ22によって所定レベル
で弁別し、ラインメモリ23に一旦保持する。ラインメ
モリ23は受光レベルを二値化したCCDの1ライン分
の信号を保持するものであり、CCDのビット数に対応
している。そしてこのラインメモリ23を走査すること
によって零レベルの中心、即ち影の中心位置を中心検出
部24によって読出す。こうすれば前述したように物体
までの距離Lに応じて直線化された位置信号を出力する
ことができる。この場合には線形補正する回路が不要と
なり、部品点数を少なくすることができる。又図3にお
いてマスク20の位置や形状を変化させることによっ
て、位置検出素子7に入射するビームプロファイルを自
由に設定することができ、検知物体の測定範囲も任意に
選択することができる。
Next, the configuration of the signal processing section will be described with reference to FIG. In the present embodiment, the position detecting element 7 is a CCD for detecting the center of the shadow, and the CCD driving circuit 21 drives the position detecting element 7. Then, the signal read from the position detection element 7 is discriminated at a predetermined level by the comparator 22, and is temporarily held in the line memory 23. The line memory 23 holds a signal for one line of the CCD whose light reception level has been binarized and corresponds to the number of bits of the CCD. Then, by scanning the line memory 23, the center of the zero level, that is, the center position of the shadow is read by the center detector 24. By doing this, as described above, it is possible to output the position signal linearized according to the distance L to the object. In this case, a circuit for linear correction becomes unnecessary, and the number of parts can be reduced. Further, by changing the position and shape of the mask 20 in FIG. 3, the beam profile incident on the position detecting element 7 can be freely set, and the measurement range of the detection object can be arbitrarily selected.

【0014】次に本発明の第3実施例について説明す
る。図6は第3実施例の光学系部分を示す概略図であ
る。又信号処理部は図1又は図5のものを用いる。本実
施例では図6(a)に示すように位置検出素子7より所
定距離を離れてフィルタ板30を配置する。フィルタ板
30は図6(b)及び(c)に上面図及び側面図を示す
ように、可視光をカットするフィルタ31とその中心に
ライン上に形成された特定波長をカットするフィルタ3
2とから構成されている。図7はこのフィルタ31,3
2の透過特性、及び投光素子3の発光特性を示すグラフ
である。本図に示すように可視範囲より長い波長の光を
投光素子2より発光するものとすると、フィルタ31は
この特定波長を含む領域の波長を通過し可視光領域をカ
ットする特性を有しており、フィルタ32は投光素子2
の波長より短い可視光領域を通過させる特性を有してい
るものとする。この場合には反射光を一部遮光するフィ
ルタ板30を位置検出素子7より離れて配置しておくだ
けでビームプロファイルを凹状とすることができ、又線
形幅を変化させることによって容易に測定範囲を規定す
ることができる。又フィルタを交換する場合には自由に
線形で距離を検知する範囲が規定できることとなる。
Next, a third embodiment of the present invention will be described. FIG. 6 is a schematic view showing an optical system portion of the third embodiment. As the signal processing unit, the one shown in FIG. 1 or 5 is used. In this embodiment, as shown in FIG. 6A, the filter plate 30 is arranged at a predetermined distance from the position detecting element 7. As shown in the top view and the side view of FIGS. 6B and 6C, the filter plate 30 includes a filter 31 that cuts visible light and a filter 3 that cuts a specific wavelength formed on the line at the center thereof.
2 and. FIG. 7 shows the filters 31, 3
3 is a graph showing the transmission characteristics of No. 2 and the emission characteristics of the light projecting element 3. As shown in the figure, when light having a wavelength longer than the visible range is emitted from the light projecting element 2, the filter 31 has a characteristic of passing a wavelength in the range including the specific wavelength and cutting the visible range. And the filter 32 is the light projecting element 2
It has a characteristic of transmitting a visible light region shorter than the wavelength of. In this case, the beam profile can be made concave by merely disposing the filter plate 30 that partially shields the reflected light from the position detection element 7, and the linear range can be changed to easily measure the measurement range. Can be defined. Further, when the filter is replaced, the range for detecting the distance can be freely defined.

【0015】[0015]

【発明の効果】以上詳細に説明したように本願の請求項
1及び2の発明では、入射光量が多いためノイズ等の影
響が相対的に少なくなり、精度を向上させることができ
る。又受光側にレンズ等の光を集束させる光学部品が不
要となるため、装置自体を小型,薄型化することができ
る。又ビームプロファイルが凹状となるため、反射光の
頂点が位置検出素子の受光面に入射する必要がなくな
り、投光ビームの幅を適宜選択することができる。この
ように光学系の構成を容易にすることができる。更に請
求項2の発明では、マスクの形状を変化させることによ
って所定範囲を線形で検出することができる。従って線
形補正回路が不要となり、装置が小型化でき、部品点数
を少なくすることができるという効果が得られる。
As described in detail above, in the inventions of claims 1 and 2 of the present application, since the amount of incident light is large, the influence of noise or the like is relatively small, and the accuracy can be improved. Further, since an optical component such as a lens for focusing light on the light receiving side is unnecessary, the device itself can be made small and thin. Further, since the beam profile is concave, the apex of the reflected light does not need to be incident on the light receiving surface of the position detecting element, and the width of the projected beam can be appropriately selected. In this way, the configuration of the optical system can be facilitated. Further, according to the invention of claim 2, the predetermined range can be detected linearly by changing the shape of the mask. Therefore, the effect that the linear correction circuit becomes unnecessary, the device can be downsized, and the number of parts can be reduced can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による位置検出センサの全
体構成を示すブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a position detection sensor according to a first embodiment of the present invention.

【図2】(a)は本実施例の光学系部分を示す概略図、
(b)及び(c)は位置検出素子上の受光レベルの変化
を示すグラフである。
FIG. 2A is a schematic diagram showing an optical system portion of this embodiment,
(B) and (c) are graphs showing changes in the light receiving level on the position detecting element.

【図3】本発明の第2実施例による位置検出センサの光
学系部分を示す構成図である。
FIG. 3 is a configuration diagram showing an optical system portion of a position detection sensor according to a second embodiment of the present invention.

【図4】第2実施例による位置検出センサの検知物体ま
での距離に対する影の重心位置の変化を示すグラフであ
る。
FIG. 4 is a graph showing changes in the position of the center of gravity of the shadow with respect to the distance to the detection object of the position detection sensor according to the second example.

【図5】本発明の第2実施例による位置検出センサの全
体構成を示すブロック図である。
FIG. 5 is a block diagram showing an overall configuration of a position detection sensor according to a second embodiment of the present invention.

【図6】本発明の第3実施例による位置検出センサの光
学系部分を示す概略図である。
FIG. 6 is a schematic diagram showing an optical system portion of a position detection sensor according to a third embodiment of the present invention.

【図7】第3実施例の位置検出センサのフィルタ板30
及び投光素子2の波長特性を示すグラフである。
FIG. 7 is a filter plate 30 of the position detection sensor of the third embodiment.
3 is a graph showing the wavelength characteristics of the light projecting element 2.

【図8】従来の位置検出センサの一例を示すブロック図
である。
FIG. 8 is a block diagram showing an example of a conventional position detection sensor.

【符号の説明】[Explanation of symbols]

1 駆動回路 2 投光素子 4 投光ビーム 5,5A,5B 検知物体 7 位置検出素子 8,9 I/V変換器 10 加算器 11 減算器 12 割算回路 20 マスク 21 CCD駆動部 22 コンパレータ 23 ラインメモリ 24 中心検出部 30 フィルタ板 31,32 フィルタ 1 Driving Circuit 2 Light Emitting Element 4 Light Emitting Beam 5, 5A, 5B Detecting Object 7 Position Detecting Element 8, 9 I / V Converter 10 Adder 11 Subtractor 12 Division Circuit 20 Mask 21 CCD Driver 22 Comparator 23 Line Memory 24 Center detector 30 Filter plate 31, 32 Filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光を物体検知領域に照射する投光素子を
有する投光部と、 検知物体からの反射光を受光し、その受光位置に応じた
位置検知信号を出力する位置検出素子と、 前記位置検出素子の受光面に近接して配置され、反射光
の一部を遮光するマスク手段と、 前記位置検出素子に得られるマスク手段の影の位置に基
づいて物体までの距離を検出する信号処理手段と、を具
備することを特徴とする位置検出センサ。
1. A light projecting portion having a light projecting element for irradiating an object detection area with light, and a position detecting element for receiving reflected light from a detected object and outputting a position detection signal corresponding to the light receiving position. A mask unit which is arranged close to the light receiving surface of the position detecting element and which shields a part of the reflected light, and a signal which detects the distance to the object based on the position of the shadow of the mask unit obtained by the position detecting element. A position detecting sensor comprising: a processing unit.
【請求項2】 光を物体検知領域に照射する投光素子を
有する投光部と、 前記投光部より照射される光と平行に配置され、検知物
体からの反射光を受光し、その受光位置に応じた位置検
知信号を出力する位置検出素子と、 前記位置検出素子の受光面に近接して配置され反射光の
一部を遮光するマスク手段と、 前記位置検出素子に得られるマスク手段の影の位置に基
づいて物体までの距離を検出する信号処理手段と、を具
備することを特徴とする位置検出センサ。
2. A light projecting portion having a light projecting element for irradiating the object detection region with light, and a light projecting portion disposed in parallel with the light projected from the light projecting portion, for receiving reflected light from the detected object and receiving the light. A position detection element that outputs a position detection signal according to the position, a mask means that is arranged close to the light receiving surface of the position detection element and that shields a part of the reflected light, and a mask means that is obtained in the position detection element. A position detection sensor, comprising: a signal processing unit that detects a distance to an object based on a position of a shadow.
JP32390294A 1994-11-30 1994-11-30 Position detection sensor Pending JPH08159714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32390294A JPH08159714A (en) 1994-11-30 1994-11-30 Position detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32390294A JPH08159714A (en) 1994-11-30 1994-11-30 Position detection sensor

Publications (1)

Publication Number Publication Date
JPH08159714A true JPH08159714A (en) 1996-06-21

Family

ID=18159894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32390294A Pending JPH08159714A (en) 1994-11-30 1994-11-30 Position detection sensor

Country Status (1)

Country Link
JP (1) JPH08159714A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019979A (en) * 2007-07-11 2009-01-29 Fujitsu Ltd Light receiver, distance calculator, distance calculation program, recording medium, and distance calculation method
WO2012110924A1 (en) * 2011-02-15 2012-08-23 Basf Se Detector for optically detecting at least one object
US9001029B2 (en) 2011-02-15 2015-04-07 Basf Se Detector for optically detecting at least one object
WO2016092452A1 (en) * 2014-12-09 2016-06-16 Basf Se Optical detector
US9389315B2 (en) 2012-12-19 2016-07-12 Basf Se Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region
US9557856B2 (en) 2013-08-19 2017-01-31 Basf Se Optical detector
US9665182B2 (en) 2013-08-19 2017-05-30 Basf Se Detector for determining a position of at least one object
US9741954B2 (en) 2013-06-13 2017-08-22 Basf Se Optical detector and method for manufacturing the same
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019979A (en) * 2007-07-11 2009-01-29 Fujitsu Ltd Light receiver, distance calculator, distance calculation program, recording medium, and distance calculation method
JP2014510909A (en) * 2011-02-15 2014-05-01 ビーエーエスエフ ソシエタス・ヨーロピア Detector for optically detecting at least one object
WO2012110924A1 (en) * 2011-02-15 2012-08-23 Basf Se Detector for optically detecting at least one object
US9001029B2 (en) 2011-02-15 2015-04-07 Basf Se Detector for optically detecting at least one object
JP2019049573A (en) * 2011-02-15 2019-03-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Detector for optically detecting at least one object
CN106019305A (en) * 2011-02-15 2016-10-12 巴斯夫欧洲公司 Detector for optically detecting at least one object
CN103492835A (en) * 2011-02-15 2014-01-01 巴斯夫欧洲公司 Detector for optically detecting at least one object
US10120078B2 (en) 2012-12-19 2018-11-06 Basf Se Detector having a transversal optical sensor and a longitudinal optical sensor
US9389315B2 (en) 2012-12-19 2016-07-12 Basf Se Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region
US10823818B2 (en) 2013-06-13 2020-11-03 Basf Se Detector for optically detecting at least one object
US9741954B2 (en) 2013-06-13 2017-08-22 Basf Se Optical detector and method for manufacturing the same
US9829564B2 (en) 2013-06-13 2017-11-28 Basf Se Detector for optically detecting at least one longitudinal coordinate of one object by determining a number of illuminated pixels
US10353049B2 (en) 2013-06-13 2019-07-16 Basf Se Detector for optically detecting an orientation of at least one object
US9989623B2 (en) 2013-06-13 2018-06-05 Basf Se Detector for determining a longitudinal coordinate of an object via an intensity distribution of illuminated pixels
US10845459B2 (en) 2013-06-13 2020-11-24 Basf Se Detector for optically detecting at least one object
US9665182B2 (en) 2013-08-19 2017-05-30 Basf Se Detector for determining a position of at least one object
US9557856B2 (en) 2013-08-19 2017-01-31 Basf Se Optical detector
US10012532B2 (en) 2013-08-19 2018-07-03 Basf Se Optical detector
US9958535B2 (en) 2013-08-19 2018-05-01 Basf Se Detector for determining a position of at least one object
US11041718B2 (en) 2014-07-08 2021-06-22 Basf Se Detector for determining a position of at least one object
US10094927B2 (en) 2014-09-29 2018-10-09 Basf Se Detector for optically determining a position of at least one object
US11125880B2 (en) 2014-12-09 2021-09-21 Basf Se Optical detector
WO2016092452A1 (en) * 2014-12-09 2016-06-16 Basf Se Optical detector
US10775505B2 (en) 2015-01-30 2020-09-15 Trinamix Gmbh Detector for an optical detection of at least one object
US10955936B2 (en) 2015-07-17 2021-03-23 Trinamix Gmbh Detector for optically detecting at least one object
US10412283B2 (en) 2015-09-14 2019-09-10 Trinamix Gmbh Dual aperture 3D camera and method using differing aperture areas
US11211513B2 (en) 2016-07-29 2021-12-28 Trinamix Gmbh Optical sensor and detector for an optical detection
US10890491B2 (en) 2016-10-25 2021-01-12 Trinamix Gmbh Optical detector for an optical detection
US11428787B2 (en) 2016-10-25 2022-08-30 Trinamix Gmbh Detector for an optical detection of at least one object
US10948567B2 (en) 2016-11-17 2021-03-16 Trinamix Gmbh Detector for optically detecting at least one object
US11415661B2 (en) 2016-11-17 2022-08-16 Trinamix Gmbh Detector for optically detecting at least one object
US11635486B2 (en) 2016-11-17 2023-04-25 Trinamix Gmbh Detector for optically detecting at least one object
US11698435B2 (en) 2016-11-17 2023-07-11 Trinamix Gmbh Detector for optically detecting at least one object
US11860292B2 (en) 2016-11-17 2024-01-02 Trinamix Gmbh Detector and methods for authenticating at least one object
US11060922B2 (en) 2017-04-20 2021-07-13 Trinamix Gmbh Optical detector
US11067692B2 (en) 2017-06-26 2021-07-20 Trinamix Gmbh Detector for determining a position of at least one object

Similar Documents

Publication Publication Date Title
JPH08159714A (en) Position detection sensor
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP3073897B2 (en) Distance measuring device
JP4546047B2 (en) Optical distance measuring device
JP3695170B2 (en) Optical sensor
JP3230625B2 (en) Reflective photoelectric sensor
JPH0778429B2 (en) Ranging device
JP2816257B2 (en) Non-contact displacement measuring device
JP2522191B2 (en) IC lead height measuring device
JP2544789B2 (en) Optical displacement measuring device
JPH06258040A (en) Laser displacement meter
WO2024004166A1 (en) Distance measurement device
JP2901747B2 (en) Distance measuring device
JP2970250B2 (en) Distance measuring device
JPH0599620A (en) Edge detection device
JPH086244Y2 (en) Dimension measuring device
JPS6136884Y2 (en)
JPS59202012A (en) Optical range finder
JPH04344408A (en) Dimension measuring instrument
JP3040881B2 (en) Light beam diameter measuring device
JPH04110907U (en) Dimension measuring device
JPS61231409A (en) Optical position measuring apparatus
JP2000310509A (en) Stroke measuring device
JPH04364414A (en) Distance-measuring device
JPS6341486B2 (en)