JPH08157693A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH08157693A
JPH08157693A JP30214394A JP30214394A JPH08157693A JP H08157693 A JPH08157693 A JP H08157693A JP 30214394 A JP30214394 A JP 30214394A JP 30214394 A JP30214394 A JP 30214394A JP H08157693 A JPH08157693 A JP H08157693A
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
type epoxy
parts
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30214394A
Other languages
Japanese (ja)
Inventor
Shinji Ikeda
信二 池田
Takayuki Suzuki
孝之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP30214394A priority Critical patent/JPH08157693A/en
Publication of JPH08157693A publication Critical patent/JPH08157693A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject composition suitably usable for parts, conventionally unusable in automotive and electrical fields and requiring heat radiating properties due to high levels of toughness and thermal conductivity and good injection moldability possessed thereby. CONSTITUTION: This epoxy resin composition comprises 10-60 pts.wt. total amount of an epoxy resin and a curing agent, 1-10 pts.wt. butadiene-based rubber and 40-80 pts.wt. inorganic substrate. A bisphenol type and a novolak type epoxy resins are used in combination as the epoxy resin and the content of the bisphenol type epoxy resin used is 35-60wt.% based on the sum total of both the resins. Furthermore, 20-100wt.% inorganic substrate uses magnesium oxide and/or zinc oxide or further crystalline silica in combination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性、熱放散性に優
れ、かつ高靭性を有する射出成形可能な熱硬化性樹脂組
成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection-moldable thermosetting resin composition having excellent heat resistance and heat dissipation and having high toughness.

【0002】[0002]

【従来の技術】近年、自動車部品において、軽量化やト
ータルコストの低減を目的に鉄、アルミニウム等の金属
部品の代替えとして熱硬化性樹脂の適用が進められてき
た。金属と比較すると耐熱性、絶対強度が劣るものの、
耐熱性については樹脂の改質、充填材の研究等によりガ
ラス転移温度300℃以上を有するタイプのものも開発
され、絶対強度についても高強度、高靱性タイプの開発
及び部品の設計変更により、機構部品に適用できるレベ
ルに達している。
2. Description of the Related Art In recent years, thermosetting resins have been applied to automobile parts as a substitute for metal parts such as iron and aluminum for the purpose of weight reduction and reduction of total cost. Although heat resistance and absolute strength are inferior to those of metals,
Regarding heat resistance, a type with a glass transition temperature of 300 ° C or higher was developed due to resin modification, research into fillers, etc., and regarding absolute strength, the development of a high-strength, high-toughness type and design change of parts resulted in a mechanism It has reached the level applicable to parts.

【0003】しかしながら、部品自体が発熱する場合、
プラスチックの熱伝導性の低さは大きな欠点であり、金
属使用時にはさほど重要でなかった熱放散性を十分考慮
した形状にする必要性が生じてきた。熱伝導率が低いこ
とは断熱の意味では逆に有利な特性といえるが、熱を外
に逃がしにくいという特性は部品の性能として多くの場
合デメリットになることが多い。自動車部品に限らず電
気部品についても同様に熱放散性の高い樹脂が望まれて
いる。例えばコイル等を巻くボビンなどでも熱放散性が
高い方が部品信頼性の上で有利であるといえる。しか
し、従来の高熱伝導性材料は結晶性シリカ、アルミナ、
チッ化ケイ素、酸化マグネシウムが主基材に使用されて
おり、高弾性化につながり硬化物の脆さが増大する欠点
を持っていた。
However, when the parts themselves generate heat,
The low thermal conductivity of plastics is a major drawback, and it has become necessary to make a shape that takes into consideration heat dissipation, which was not so important when using metal. The low thermal conductivity is conversely advantageous in terms of heat insulation, but the characteristic that heat is difficult to escape is often a demerit in the performance of parts. A resin having a high heat dissipation property is desired not only for automobile parts but also for electric parts. For example, even in a bobbin around which a coil or the like is wound, it can be said that higher heat dissipation is advantageous in terms of component reliability. However, conventional high thermal conductivity materials include crystalline silica, alumina,
Since silicon nitride and magnesium oxide are used as the main base material, they have the drawback of increasing the elasticity and increasing the brittleness of the cured product.

【0004】また、近年熱硬化性樹脂の成形方法として
は射出成形が圧倒的に増加しているが、熱伝導性付与の
ために酸化金属系の充填材を添加すると離型性が悪化し
たり、増粘することから射出成形性が悪くなる問題があ
った。特にエポキシ樹脂ではシリンダー内での安定性、
硬化性に劣り射出成形は難しいとされてきた。
In recent years, injection molding has been overwhelmingly increased as a thermosetting resin molding method. However, if a metal oxide filler is added to impart thermal conductivity, the releasability is deteriorated. However, there is a problem that the injection moldability is deteriorated due to the increased viscosity. Especially with epoxy resin, stability in the cylinder,
It has been considered difficult to perform injection molding due to poor curability.

【0005】[0005]

【発明が解決しようとする課題】本発明は高位の靭性、
熱伝導性を有し、かつ射出成形性の良好なエポキシ樹脂
組成物を得ることにある。
The present invention has a high toughness,
It is to obtain an epoxy resin composition having thermal conductivity and good injection moldability.

【0006】[0006]

【課題を解決するための手段】本発明は、エポキシ樹脂
と硬化剤合わせて10〜60重量部、ブタジエン系ゴム
1〜10重量部、無機基材40〜80重量部からなり、
エポキシ樹脂にはビスフェノール型エポキシ樹脂とノボ
ラック型エポキシ樹脂とを併用し、両樹脂の合計に対し
てビスフェノール型エポキシ樹脂の使用割合が35〜6
0重量%であり、無機基材のうち20〜100重量%が
酸化マグネシウム及び又は酸化亜鉛、あるいは更に結晶
性シリカを併用することを特徴とし、高位の靭性及び熱
伝導性を有し、かつ射出成形性の良好なエポキシ樹脂組
成物を提供するものである。
The present invention comprises 10 to 60 parts by weight in total of an epoxy resin and a curing agent, 1 to 10 parts by weight of butadiene rubber, and 40 to 80 parts by weight of an inorganic base material.
The bisphenol type epoxy resin and the novolac type epoxy resin are used together as the epoxy resin, and the ratio of the bisphenol type epoxy resin used is 35 to 6 with respect to the total of both resins.
0% by weight, 20 to 100% by weight of the inorganic base material is characterized in that magnesium oxide and / or zinc oxide, or further crystalline silica is used in combination, and has high toughness and thermal conductivity, and injection. An epoxy resin composition having good moldability is provided.

【0007】ここで使用される主要なエポキシ樹脂はビ
スフェノールA型エポキシ樹脂とノボラック型エポキシ
樹脂である。これらのエポキシ樹脂を併用することによ
りビスフェノールA型エポキシ樹脂に硬化性、強度等を
向上させる。ビスフェノールA型エポキシ樹脂のエポキ
シ当量は特に限定しないが、エポキシ当量の大きなもの
は硬化性を低下させるのでエポキシ当量は600以下が
望ましい。ノボラック型エポキシ樹脂についても、フェ
ノールノボラック型、オルソクレゾールノボラック型等
のアルキルフェノールノボラック型、ビスフェノールA
ノボラック型などがあり、特に限定されないが、オルソ
クレゾールノボラック型及びビスフェノールAノボラッ
ク型のものが強度、靭性などの点で好ましい。ノボラッ
ク型エポキシ樹脂の配合割合が多く、ビスフェノールA
型エポキシ樹脂の配合割合が35%以下では、硬化物が
高弾性となり脆くなるので好ましくなく、一方、ビスフ
ェノールA型エポキシ樹脂の配合割合が60%以上では
遅硬化性となり射出成形上好ましくない。
The main epoxy resins used here are bisphenol A type epoxy resins and novolac type epoxy resins. By using these epoxy resins together, the bisphenol A type epoxy resin is improved in curability, strength and the like. The epoxy equivalent of the bisphenol A type epoxy resin is not particularly limited, but a resin having a large epoxy equivalent lowers the curability, so that the epoxy equivalent is preferably 600 or less. As for novolac type epoxy resin, alkyl novolac type such as phenol novolac type and orthocresol novolac type, bisphenol A
There are novolac types and the like, and there is no particular limitation, but orthocresol novolac types and bisphenol A novolac types are preferable in terms of strength and toughness. A large proportion of novolac type epoxy resin is used, and bisphenol A
When the compounding ratio of the type epoxy resin is 35% or less, the cured product becomes highly elastic and becomes brittle, which is not preferable. On the other hand, when the compounding ratio of the bisphenol A type epoxy resin is 60% or more, it is slow-curing and not preferable for injection molding.

【0008】硬化剤は特に限定しないが、酸無水系、ア
ミン系、フェノール系等多くの硬化剤が上げられるが、
耐熱性、射出成形性を考慮するとノボラック型フェノー
ル樹脂を硬化剤に使用するのが望ましい。
The curing agent is not particularly limited, but many curing agents such as acid anhydride type, amine type and phenol type are mentioned.
Considering heat resistance and injection moldability, it is preferable to use a novolac type phenol resin as a curing agent.

【0009】ブタジエン系ゴムとしてはブタジエンゴ
ム、アクリロニトリルブタジエンゴム、スチレンブタジ
エンゴム等が使用できる。変性の有無は限定しないが、
樹脂との反応性を有する変性基(カルボキシル基、アミ
ノ基など)を持たないものが、粘度上昇が抑えられ良好
な成形性を保持できるので好ましい。ブタジエンゴムの
配合量は組成物全体に対して1〜10重量%である。1
重量%未満では成形性に対する効果が小さく、10重量
%を越えると耐熱性が低下するようになる。
As the butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber, styrene butadiene rubber and the like can be used. The presence or absence of denaturation is not limited,
Those which do not have a modifying group (carboxyl group, amino group, etc.) having reactivity with the resin are preferable because increase in viscosity can be suppressed and good moldability can be maintained. The compounding amount of butadiene rubber is 1 to 10% by weight based on the whole composition. 1
If it is less than 10% by weight, the effect on the moldability is small, and if it exceeds 10% by weight, the heat resistance is lowered.

【0010】本発明においては、樹脂組成物の熱伝導性
を向上させるために、酸化マグネシウム及び又は酸化亜
鉛、あるいは更に結晶性シリカを無機基材の全部又は一
部として使用する。これらの無機基材は樹脂組成物ある
いは成形材料の基材として使用した場合、得られた成形
品の熱伝導性を大幅に向上させる。特に、酸化マグネシ
ウムと酸化亜鉛は熱伝導性向上の効果が大きい。ただ
し、酸化マグネシウム、酸化亜鉛は機械的強度を低下さ
せる傾向があるので、熱伝導性の許容範囲内で結晶性シ
リカを併用することが好ましい。また、熱伝導性の高い
無機基材は樹脂の硬化性を高める効果もあり、硬化の遅
いビスフェノールA型エポキシ樹脂をエポキシ樹脂全体
の60%まで併用しても射出成形可能な硬化性を保持で
きるのは高熱伝導性によるところが大きい。かかる無機
基材の使用量は無機基材全体の20重量%以上である。
20重量%未満ではその配合効果、即ち高熱伝導性が十
分に得られない。
In the present invention, in order to improve the thermal conductivity of the resin composition, magnesium oxide and / or zinc oxide, or further crystalline silica is used as all or part of the inorganic base material. When these inorganic base materials are used as the base material of the resin composition or the molding material, the thermal conductivity of the obtained molded product is significantly improved. Particularly, magnesium oxide and zinc oxide have a great effect of improving thermal conductivity. However, since magnesium oxide and zinc oxide tend to lower the mechanical strength, it is preferable to use crystalline silica in combination within the allowable range of thermal conductivity. Further, the inorganic base material having high thermal conductivity also has the effect of enhancing the curability of the resin, and even if the slow curing bisphenol A type epoxy resin is used together up to 60% of the whole epoxy resin, the curability capable of injection molding can be maintained. It is largely due to its high thermal conductivity. The amount of the inorganic base material used is 20% by weight or more based on the total weight of the inorganic base material.
If it is less than 20% by weight, the compounding effect, that is, high thermal conductivity cannot be sufficiently obtained.

【0011】酸化マグネシウム、酸化亜鉛、結晶性シリ
カは粒度として1〜50μmのものを使用するのが望ま
しい。1μm未満では増粘効果が大きく、成形材料化し
た時に十分な流動性が得られないことがあり、50μm
を越えると分散性が悪くなり十分な効果が得られないこ
とがある。酸化マグネシウムは増粘効果が大きいため、
高温で焼成した低活性タイプのものを使用することが望
ましい。シリカは無定形シリカと結晶性シリカがある
が、熱伝導性に優れている結晶性シリカを使用する必要
がある。
It is desirable to use magnesium oxide, zinc oxide, and crystalline silica having a particle size of 1 to 50 μm. If it is less than 1 μm, the thickening effect is large, and sufficient fluidity may not be obtained when used as a molding material.
If it exceeds, the dispersibility may be deteriorated and a sufficient effect may not be obtained. Since magnesium oxide has a large thickening effect,
It is desirable to use a low activity type that has been baked at a high temperature. Silica includes amorphous silica and crystalline silica, but it is necessary to use crystalline silica having excellent thermal conductivity.

【0012】その他の無機充填材の種類は特に規定しな
いが、ガラス繊維、クレー、炭酸カルシウム、溶融シリ
カ、水酸化アルミニウム、酸化アンチモン、ホウ酸亜
鉛、タルク、ベントナイト、セピオライト、ゼオライト
等が使用できる。本発明の熱硬化性樹脂組成物は、これ
らの原料を上記に示した配合比でブレンドし、更に必要
に応じて難燃剤、離型剤、顔料、反応開始剤、シランカ
ップリング剤等を加え、加熱ロール、加圧ロール、2軸
押出し機等を用いて混練し、更に粉砕あるいは造粒して
成形材料化することができる。
Other inorganic fillers are not particularly limited, but glass fiber, clay, calcium carbonate, fused silica, aluminum hydroxide, antimony oxide, zinc borate, talc, bentonite, sepiolite, zeolite and the like can be used. The thermosetting resin composition of the present invention is prepared by blending these raw materials in the above-mentioned mixing ratio, and further adding a flame retardant, a release agent, a pigment, a reaction initiator, a silane coupling agent, etc., if necessary. It can be kneaded using a heating roll, a pressure roll, a twin-screw extruder or the like, and further pulverized or granulated to obtain a molding material.

【0013】[0013]

【実施例】以下、実施例により本発明を説明する。表1
に示す配合で混練、粉砕し、成形材料を得た。表1にお
いて配合割合は重量部を示す。
The present invention will be described below with reference to examples. Table 1
The mixture was kneaded and pulverized with the composition shown in to obtain a molding material. In Table 1, the compounding ratio is part by weight.

【0014】[0014]

【表1】 [Table 1]

【0015】これらの成形材料の特性を JIS K 6911 に
従い測定し、表2に示す結果を得た。実施例で得られた
成形材料は、良好な熱伝導性及び射出成形性を示し、そ
の他の特性は比較例(従来例)と大差が無いことがわか
る。
The characteristics of these molding materials were measured according to JIS K 6911 and the results shown in Table 2 were obtained. It can be seen that the molding materials obtained in the examples show good thermal conductivity and injection moldability, and other characteristics are not much different from those of the comparative example (conventional example).

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明のエポキシ樹脂組成物はビスフェ
ノールA型エポキシ樹脂とノボラック型エポキシ樹脂と
を併用し、ブタジエン系ゴムを添加し、酸化マグネシウ
ム及び又は酸化亜鉛、あるいは更に結晶性シリカを併用
することにより、高位の靭性、熱伝導性を有し、かつ良
好な射出成形性を有するものである。これにより自動車
分野、電気分野などで従来使用できなかった熱放散性を
必要とする部品へ好適に使用することができる。
In the epoxy resin composition of the present invention, a bisphenol A type epoxy resin and a novolac type epoxy resin are used in combination, a butadiene rubber is added, and magnesium oxide and / or zinc oxide, or further crystalline silica is used in combination. As a result, it has high toughness, high thermal conductivity, and good injection moldability. As a result, it can be suitably used for parts that require heat dissipation, which cannot be used conventionally in the fields of automobiles and electric fields.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂と硬化剤合わせて10〜6
0重量部、ブタジエン系ゴム1〜10重量部、無機基材
40〜80重量部からなり、エポキシ樹脂にはビスフェ
ノールA型エポキシ樹脂とノボラック型エポキシ樹脂と
を併用し、両樹脂の合計に対するビスフェノールA型エ
ポキシ樹脂の使用割合が35〜60重量%であり、無機
基材のうち20〜100重量%が酸化マグネシウム及び
又は酸化亜鉛であることを特徴とする熱硬化性樹脂組成
物。
1. A total of 10 to 6 epoxy resins and curing agents.
0 parts by weight, 1 to 10 parts by weight of butadiene-based rubber, and 40 to 80 parts by weight of an inorganic base material. A bisphenol A type epoxy resin and a novolac type epoxy resin are used together as an epoxy resin, and bisphenol A based on the total of both resins. A thermosetting resin composition, wherein the use ratio of the type epoxy resin is 35 to 60% by weight, and 20 to 100% by weight of the inorganic base material is magnesium oxide and / or zinc oxide.
【請求項2】 エポキシ樹脂と硬化剤合わせて10〜6
0重量部、ブタジエン系ゴム1〜10重量部、無機基材
40〜80重量部からなり、エポキシ樹脂にはビスフェ
ノールA型エポキシ樹脂とノボラック型エポキシ樹脂と
を併用し、両樹脂の合計に対するビスフェノールA型エ
ポキシ樹脂の使用割合が35〜60重量%であり、無機
基材のうち20〜100重量%が酸化マグネシウム及び
又は酸化亜鉛と結晶性シリカとを併用することを特徴と
する熱硬化性樹脂組成物。
2. A total of 10 to 6 epoxy resin and curing agent
0 parts by weight, 1 to 10 parts by weight of butadiene-based rubber, and 40 to 80 parts by weight of an inorganic base material. A bisphenol A type epoxy resin and a novolac type epoxy resin are used together as an epoxy resin, and bisphenol A based on the total of both resins. The thermosetting resin composition is characterized in that the use ratio of the type epoxy resin is 35 to 60% by weight, and 20 to 100% by weight of the inorganic base material uses magnesium oxide and / or zinc oxide in combination with crystalline silica. Stuff.
JP30214394A 1994-12-06 1994-12-06 Epoxy resin composition Pending JPH08157693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30214394A JPH08157693A (en) 1994-12-06 1994-12-06 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30214394A JPH08157693A (en) 1994-12-06 1994-12-06 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH08157693A true JPH08157693A (en) 1996-06-18

Family

ID=17905432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30214394A Pending JPH08157693A (en) 1994-12-06 1994-12-06 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH08157693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162650A (en) * 2011-02-07 2012-08-30 Meiwa Kasei Kk Thermoconductive resin composition, and semiconductor package
WO2013009113A2 (en) * 2011-07-12 2013-01-17 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same
JP2015088513A (en) * 2013-10-28 2015-05-07 株式会社東芝 Inductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162650A (en) * 2011-02-07 2012-08-30 Meiwa Kasei Kk Thermoconductive resin composition, and semiconductor package
WO2013009113A2 (en) * 2011-07-12 2013-01-17 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same
WO2013009113A3 (en) * 2011-07-12 2013-06-13 Lg Innotek Co., Ltd. Epoxy resin compound and radiant heat circuit board using the same
JP2015088513A (en) * 2013-10-28 2015-05-07 株式会社東芝 Inductor

Similar Documents

Publication Publication Date Title
JP5547621B2 (en) Coil parts
JP4931418B2 (en) Phenolic resin composition
JPH08157693A (en) Epoxy resin composition
JPS63301219A (en) Epoxy resin composition
JPS58174416A (en) Epoxy resin composition for sealing of semiconductor
JPH08143781A (en) Thermosetting resin composition
JP2006257114A (en) Phenolic resin molding material for commutator
JP2002220507A (en) Phenol resin molding material
JP4952192B2 (en) Thermosetting resin molding material
JP2653574B2 (en) Phenolic resin composition with excellent impact strength
JPWO2006051731A1 (en) Epoxy resin composition
JPH08283534A (en) Melamine-phenol resin composition
JP3121746B2 (en) Phenolic resin composition with excellent heat resistance
JPS6159328B2 (en)
JPS61101524A (en) Sealing resin composition
JPH06107902A (en) Phenol resin composition
JPH05230326A (en) Phenolic resin molding material
JP2878044B2 (en) Phenolic resin composition
JP2006083320A (en) Phenol resin molding material
JPS6143621A (en) Sealing resin composition
JP5504798B2 (en) Bobbin
JPH0550542B2 (en)
JP2002275347A (en) Phenol resin molding material
JPS6245615A (en) Epoxy resin composition for sealing semiconductor device
JPWO2005056626A1 (en) Ester resin composition and molded product thereof