JPH08154335A - Phase angle difference, frequency difference and frequency calculation method in digital protection relay - Google Patents

Phase angle difference, frequency difference and frequency calculation method in digital protection relay

Info

Publication number
JPH08154335A
JPH08154335A JP6293080A JP29308094A JPH08154335A JP H08154335 A JPH08154335 A JP H08154335A JP 6293080 A JP6293080 A JP 6293080A JP 29308094 A JP29308094 A JP 29308094A JP H08154335 A JPH08154335 A JP H08154335A
Authority
JP
Japan
Prior art keywords
frequency
phase angle
difference
angle difference
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6293080A
Other languages
Japanese (ja)
Other versions
JP3612354B2 (en
Inventor
Takeshi Yanagibashi
健 柳橋
Takafumi Maeda
隆文 前田
Toshiro Fujimoto
敏朗 藤本
Hiroshi Yamaguchi
浩史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP29308094A priority Critical patent/JP3612354B2/en
Publication of JPH08154335A publication Critical patent/JPH08154335A/en
Application granted granted Critical
Publication of JP3612354B2 publication Critical patent/JP3612354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE: To decide a phase angle difference with high precision and decide a frequency difference and a frequency accurately and continuously at arbitrary timings without depending upon sampling timings. CONSTITUTION: The product calculation of the values of sampling data 2 is performed in a process 1. The outputs of the calculation process 1 are inputted to n-step digital filters 2, 3,... to reduce the gain near a second harmonics and perform the suppression of errors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はディジタル形保護継電
器における位相角差、周波数差及び周波数演算方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase angle difference, a frequency difference and a frequency calculating method in a digital protective relay.

【0002】[0002]

【従来の技術】ディジタル形継電器は、継電器の入力で
ある電圧、電流情報を、適当な周期でサンプリングし、
量子化されたディジタル量に変換し、これをあらかじめ
用意されたプログラムで計算処理して、系統事故の有無
を判断する継電器である。
2. Description of the Related Art A digital relay samples voltage and current information that is input to the relay at an appropriate cycle,
It is a relay that converts into a quantized digital quantity and calculates it with a program prepared in advance to judge the presence or absence of a system fault.

【0003】このディジタル継電器において、2つの交
流電気量間の位相差や周波数差を判定する方法には、電
圧、電流の交流波形の1周期時間と2つの交流波形間の
立ち上がり時間、立ち下がり時間を、高精度発振器(ク
リスタル発振器等)を用いてカウントする、いわゆるパ
ルスカウント方式と称される第1の方法がある。
In this digital relay, a method for determining a phase difference or a frequency difference between two AC electric quantities is one cycle time of AC waveforms of voltage and current and rising time and falling time between two AC waveforms. There is a first method called a so-called pulse counting method in which a high-precision oscillator (crystal oscillator or the like) is used to count.

【0004】また、サンプリングされた交流波形瞬時値
より、ゼロクロス時間を求め、これより、周期や位相差
を演算する、いわゆるゼロクロス近似方式と称される第
2の方法がある。
There is also a second method called a so-called zero-cross approximation method in which the zero-cross time is obtained from the sampled AC waveform instantaneous value and the period and the phase difference are calculated from this.

【0005】さらに、サンプリングされた交流波形瞬時
値の積和演算により、2つの交流波形間の位相差に応じ
た正弦値、余弦値を求める、いわゆる積和演算方式と称
される第3の方法がある。
Furthermore, a third method, which is a so-called product-sum calculation method, which obtains a sine value and a cosine value according to the phase difference between two AC waveforms by a product-sum operation of sampled AC waveform instantaneous values There is.

【0006】[0006]

【発明が解決しようとする課題】上述した第1の方法は
専用のパルスカウント回路が必要となるため、ディジタ
ル継電器の構成が複雑となるとともにパルスカウントが
1周期に1回の判定しか出来ない問題がある。また、第
2の方法もゼロクロス時間検出が1周期に1回の判定し
か出来ない。さらに、第3の方法は周波数変動時に演算
誤差が生じ、幅広い周波数変動が想定される用途におい
ては実用精度を満足し得ない。
The above-mentioned first method requires a dedicated pulse counting circuit, which complicates the configuration of the digital relay and makes it possible to make only one pulse count determination per cycle. There is. In the second method, the zero-cross time detection can be made only once in one cycle. Further, the third method causes a calculation error when the frequency fluctuates, and cannot satisfy the practical accuracy in applications where a wide frequency fluctuation is expected.

【0007】この発明は上記の事情に鑑みてなされたも
ので、精度良く位相角差を判定できるとともにサンプリ
ング点に依存されずに、任意の時刻に連続して正確な周
波数差及び周波数が判定できるディジタル形保護継電器
における位相角差、周波数差及び周波数演算方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances. It is possible to accurately determine a phase angle difference and to determine an accurate frequency difference and frequency continuously at any time without depending on a sampling point. An object of the present invention is to provide a phase angle difference, a frequency difference and a frequency calculation method in a digital protective relay.

【0008】[0008]

【課題を解決するための手段】この発明は上記の目的を
達成するために、第1発明は、一定間隔でサンプリング
された交流電気量の瞬時値データを用いて交流量の大き
さや交流量間の位相角差をプロセッサで判定するディジ
タル保護継電器において、2つのサンプリングデータ量
の積演算を行う工程と、この演算値をディジタルフィル
タで処理する工程とからなる位相角差判定処理工程を前
記プロセッサにて行うようにしたことを特徴とするもの
である。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the first invention is to use the instantaneous value data of the alternating current electricity quantity sampled at a constant interval to measure the magnitude of the alternating current quantity or the alternating current quantity. In the digital protective relay for determining the phase angle difference of the above, a phase angle difference determination processing step including a step of performing a product operation of two sampling data amounts and a step of processing the calculated value with a digital filter is performed by the processor. It is characterized in that it is carried out by.

【0009】第2発明は、第1発明の結果として得られ
るところの単位時間当たりの位相角差の変化量を検出し
て2つの電気量間の周波数差を算出することを特徴とす
るものである。
The second invention is characterized by detecting the amount of change in the phase angle difference per unit time, which is obtained as a result of the first invention, and calculating the frequency difference between the two electric quantities. is there.

【0010】第3発明は、第2発明のディジタル保護継
電器の一方の入力に系統の電圧を与え、他方の入力に既
知基準交流発振器の電圧を与えることで系統の周波数を
判定するようにしたことを特徴とするものである。
According to a third aspect of the invention, the frequency of the system is judged by applying a system voltage to one input of the digital protective relay of the second invention and applying a voltage of a known reference AC oscillator to the other input. It is characterized by.

【0011】第4発明は、前記既知の基準交流発振器の
電圧に代えて、その電圧に相当するデータを前記プロセ
ッサに持つようにしたことを特徴とするものである。
The fourth invention is characterized in that the processor has data corresponding to the voltage of the known reference AC oscillator instead of the voltage of the known reference AC oscillator.

【0012】[0012]

【作用】2つのサンプリングデータ量を積演算した値を
ディジタルフィルタ処理工程にて処理したので、位相誤
差を極めて小さくできる。また、周波数差の判定も単位
時間当たりの位相角の変化量を検出することによって簡
単に判定できる。さらに、既知基準交流発振器の電圧及
びその電圧に相当するデータを用いることにより、周波
数演算が可能となる。
Since the value obtained by multiplying two sampling data amounts is processed in the digital filter processing step, the phase error can be made extremely small. The frequency difference can be easily determined by detecting the amount of change in the phase angle per unit time. Further, the frequency can be calculated by using the voltage of the known reference AC oscillator and the data corresponding to the voltage.

【0013】[0013]

【実施例】以下この発明の一実施例を図面に基づいて説
明する。図1は周波数の異なる2つの電気量a(t),
b(t)とサンプリングデータの関係を示す説明図で、
この図1において、時刻tにおけるそれぞれの値は次式
で表される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows two electric quantities a (t) with different frequencies,
It is explanatory drawing which shows the relationship between b (t) and sampling data,
In FIG. 1, each value at time t is represented by the following equation.

【0014】 Vs=a(t)=Asin(ωot+Δω1t+θ)……(1) Vr=b(t)=Bsin(ωot+Δω2t)……(2) 但し、ω0;定格角速度 Δω1、Δω2;定格角速度に対する差分角速度 θ;t=0における位相角差 任意時刻tで同時にサンプリングされた、瞬時データど
おしの積は、次の(3)式のようになる。
Vs = a (t) = Asin (ω o t + Δω 1 t + θ) (1) Vr = b (t) = B sin (ω o t + Δω 2 t) (2) where ω 0 ; rated angular velocity Δω 1 , Δω 2 ; differential angular velocity with respect to rated angular velocity θ; phase angle difference at t = 0 The product of instantaneous data sampled simultaneously at an arbitrary time t is given by the following equation (3).

【0015】 a(t)b(t)=Asin(ω0t+Δω1t+θ) ×Bsin(ω0t+Δω2t) =AB/2{cos(Δω1t−Δω2t+θ) −cos(2ω0t+Δω1t+Δω2t+θ)}……(3) 上記(3)式の右辺第1項は、本来求めたい位相角差に
相当するところの差分角速度(Δω1−Δω2)の余弦で
ある。第2項は定格のほぼ2倍(≒2ω0)の角速度を
持つ項となる。
[0015] a (t) b (t) = Asin (ω 0 t + Δω 1 t + θ) × Bsin (ω 0 t + Δω 2 t) = AB / 2 {cos (Δω 1 t-Δω 2 t + θ) -cos (2ω 0 t + Δω 1 t + Δω 2 t + θ)} (3) The first term on the right-hand side of the above equation (3) is the cosine of the differential angular velocity (Δω 1 −Δω 2 ) that corresponds to the phase angle difference originally desired. The second term is a term having an angular velocity that is almost twice the rated value (≈2ω 0 ).

【0016】定格周波数の12倍のサンプリング周波数
を持つディジタルリレーでは、系統周波数が定格の場合
のみ、3サンプル離れたところの瞬時値データの積(a
(t)b(t))を加算することで第2項を完全に消去
することが可能である。しかしながら、周波数が変動し
ている場合は「サンプリング周波数=系統周波数×12
倍」の関係を満足しないで、第2項が消去しきれず、こ
れが誤差となる。次にこの概要を説明する。
In a digital relay having a sampling frequency 12 times the rated frequency, only when the system frequency is rated, the product of instantaneous value data (a
It is possible to completely eliminate the second term by adding (t) b (t)). However, when the frequency is fluctuating, “sampling frequency = system frequency × 12
The second term cannot be completely erased without satisfying the relation of "double", which causes an error. Next, this outline will be described.

【0017】サンプリング間隔をT=2π/(ωO・1
2)とおけば、任意の時刻に対して前後のn個のデータ
のサンプリングタイミングは t+n・T=t+n・π/6ωo………(4) となる。現時点(n=0)のサンプリングデータを
0、b0、これより3サンプリング後(n=3)のデー
タをa3、b3、とすれば、これら瞬時値積X0,0、X0,3
は(1)、(2)式により、次の(5)、(6)式とな
る。
The sampling interval is T = 2π / (ω O · 1
Speaking of 2), the sampling timing of n data before and after an arbitrary time is t + n · T = t + n · π / 6ω o (4). Assuming that the sampling data at the present time (n = 0) is a 0 , b 0 and the data after 3 samplings (n = 3) is a 3 , b 3 , these instantaneous value products X 0 , 0 , X 0 , 3
The following equations (5) and (6) are obtained from equations (1) and (2).

【0018】[0018]

【数1】 [Equation 1]

【0019】なお、(5)、(6)式において、Δ
ωa,Δωb,βa,βbを次の(7)式のようにした。
In equations (5) and (6), Δ
ω a , Δω b , β a , and β b are set as in the following equation (7).

【0020】[0020]

【数2】 [Equation 2]

【0021】よって、3サンプル離れた瞬時値積の加算
結果X1,0は次の(8)式となる。
Therefore, the addition result X 1 , 0 of the instantaneous value products separated by 3 samples is given by the following expression (8).

【0022】 X1,0=X0,0+X0,3=cos(Δωat+βa+θ)cosβa −sin(2ω0t+Δβbt+βb+θ)sinβb………(8) すなわち、周波数定格からずれていると、sinβb
0となり、(8)式の第2項を消去することができな
い。ちなみに、Δωb/ω0=0.2の場合では、第1項の約
15.8%と、かなりの誤差となる。
[0022] X 1, 0 = X 0, 0 + X 0, 3 = cos (Δω a t + β a + θ) cosβ a -sin (2ω 0 t + Δβ b t + β b + θ) sinβ b ......... (8) In other words, the frequency rated If deviates from sin β b
It becomes 0, and the second term of the equation (8) cannot be erased. By the way, in the case of Δω b / ω 0 = 0.2, about the first term
This is a considerable error of 15.8%.

【0023】 この加算演算は、積演算結果に含まれる
第2調波成分を除去するディジタルフィルタ(以下DF
と称する)演算に他ならない。加算処理を繰り返すこと
は、このDFの段数を増やすことに相当する。これによ
り第2調波近傍のゲインを下げ、第2項の抑圧を行う。
DFの段数と誤差抑圧の関係を以下に示す。
This addition operation is performed by a digital filter (hereinafter DF) that removes the second harmonic component included in the product operation result.
It is nothing but a calculation. Repeating the addition process corresponds to increasing the number of stages of this DF. This reduces the gain near the second harmonic and suppresses the second term.
The relationship between the number of DF stages and error suppression is shown below.

【0024】 [DF2段の余弦] X1,0=a00+a331,3=a33+a66 とおき、X2,0=X1,0+X1,3を計算すれば、 X2,0=2cos(Δωat+2βa+θ)cos2βa −2sin(2ω0t+Δωbt+2βb+θ)sin2βb ………(9) となる。以後同様に計算することで、n段の加算処理実
施後の、任意サンプリング点(i)で求められる余弦の
一般式として以下を得る。
[0024] [DF2 stage cosine] X 1, 0 = a 0 b 0 + a 3 b 3 X 1, 3 = a 3 b 3 + a 6 b 6 Distant, X 2, 0 = X 1 , 0 + X 1, When 3 is calculated, X 2 , 0 = 2cos (Δω a t + 2β a + θ) cos 2 β a −2 sin (2ω 0 t + Δω b t + 2β b + θ) sin 2 β b (9) By performing the same calculation thereafter, the following is obtained as a general expression of the cosine obtained at the arbitrary sampling point (i) after performing the n-stage addition processing.

【0025】[DFn段の余弦] Xn,i=2n-1cos(Δωat+nβa+θ)cosnβa −2n-1sin(2ω0t+Δωbt+nβb+θ)sinnβb ………(10) また、正弦を求める場合は、初段の積演算において、Y
0,0=a03、Y0,3=−a30を計算し、以降余弦を求
めた場合と同様に、3サンプル離れたものの加算処理、
1,0=Y0,0+Y0,3を行えばよい。これによって得られ
るn段の加算処理実施後の任意サンプリング点(i)で
の正弦の一般式を下記(11)式に示す。
[0025] [cosine of DFn stage] X n, i = 2 n -1 cos (Δω a t + nβ a + θ) cos n β a -2 n-1 sin (2ω 0 t + Δω b t + nβ b + θ) sin n β b ... ...... (10) When obtaining the sine, in the product operation of the first stage, Y
0, 0 = a 0 b 3 , Y 0, 3 = -a 3 b 0 was calculated, in the same manner as that for determining the cosine later addition process but spaced 3 samples,
Y 1, 0 = Y 0, 0 + Y 0, 3 may be a performed. The general formula of the sine at the arbitrary sampling point (i) after the addition process of n stages obtained by this is shown in the following formula (11).

【0026】[DFn段の正弦] Yn,i=2n-1sin(Δωat+nβa+θ)cosnβb +2n-1cos(2ω0t+Δωbt+nβb+θ)sinnβa ………(11) (10)式との相違は、第1項の係数がcosnβbとな
り、第2項の係数がsinnβaとなる点であるが、
βb,βa≪1の領域では誤差抑圧の関係は、ほぼ同等と
見なせる。
[0026] [DFn stage of the sine] Y n, i = 2 n -1 sin (Δω a t + nβ a + θ) cos n β b +2 n-1 cos (2ω 0 t + Δω b t + nβ b + θ) sin n β a ... (11) The difference from the equation (10) is that the coefficient of the first term becomes cos n β b and the coefficient of the second term becomes sin n β a .
In the region of β b and β a << 1, the error suppression relationship can be regarded as almost equal.

【0027】余弦を求める場合の演算原理の概要を図2
に、また、DFの段数に対する積演算結果に含まれる周
波数成分の通過特性を図3に示す。なお、DF段数によ
って直流ゲインが増加するが、ゲイン1に正規化して表
現した。また、図2はDFが3段の場合の演算原理のブ
ロック図で、1はサンプリングデータ2量の積演算(a
n・bn)を行う工程で、この演算工程1の出力は第1
段のDF12から第3段のDF34に入力されて演算が行
われる。
FIG. 2 shows the outline of the calculation principle for obtaining the cosine.
Further, FIG. 3 shows the pass characteristic of the frequency component included in the product calculation result with respect to the number of stages of DF. Although the DC gain increases depending on the number of DF stages, it is expressed as normalized to gain 1. Further, FIG. 2 is a block diagram of the operation principle when the DF has three stages, and 1 is a product operation (a
n · bn), the output of this calculation step 1 is the first
The data is input from the DF 1 2 of the stage to the DF 3 4 of the third stage and the calculation is performed.

【0028】以上により、必要精度に応じてDFの段数
を選定すれば、(10)、(11)式の第2項が無視可
能となる。ここで得られた余弦、正弦から、正接を演算
することで、時間とともに変化する位相角差の判定を行
うことができる。
From the above, if the number of stages of the DF is selected according to the required accuracy, the second term of the equations (10) and (11) can be ignored. By calculating the tangent from the cosine and sine obtained here, the phase angle difference that changes with time can be determined.

【0029】次に周波数差判定原理について述べる。2
つの電気量間に周波数差がある場合、時間とともに位相
角差が変化するので、単位時間当たりの位相角差の変化
量は周波数差に相当する。従って、前述した位相角差演
算の結果を用いて、周波数差を求める。これには任意時
間(Tk)離れた2つの余弦値と正弦値から、以下の手
段により周波数差を検出することができる。ここで、
(10)、(11)式の第2項が十分抑圧され、sin
nβa≒sinnβb≒0、かつcosnβa≒cosnβb
1と見なせる場合には時刻t,t+Tkにおける正弦、
余弦の演算結果は次の(12)式のようになる。
Next, the principle of frequency difference determination will be described. Two
When there is a frequency difference between two electric quantities, the phase angle difference changes with time, so the amount of change in the phase angle difference per unit time corresponds to the frequency difference. Therefore, the frequency difference is obtained using the result of the phase angle difference calculation described above. For this purpose, the frequency difference can be detected by the following means from two cosine values and sine values separated by an arbitrary time (T k ). here,
The second term of equations (10) and (11) is sufficiently suppressed, and sin
n β a ≈sin n β b ≈0, and cos n β a ≈cos n β b
If it can be regarded as 1, the sine at time t, t + T k ,
The calculation result of the cosine is expressed by the following expression (12).

【0030】 Xn,i≒2n-1cos(Δωat+nβa+θ) Xn,i+k≒2n-1cos{Δωa(t+Tk)+nβa+θ} Yn,i≒2n-1sin(Δωat+nβa+θ) Yn,i+k≒2n-1sin{Δωa(t+Tk)+nβa+θ} ………(12) これらから、周波数差に対応した余弦と正弦を次の(1
3)式で演算可能となる。 [周波数差に対応した余
弦] Xn,in,i+k+Yn,in,i+k=22(n-1)cos(Δωak)……(13) [周波数差に対応した正弦] Xn,in,i+k−Xn,i+kn,i=22(n-1)sin(Δωak)……(14) 以上より、周波数差に応じた正接tan(Δωak)を
次の(15)式により求めることができるので、これを
用いて周波数差判定を行う。ただし、正接値は2π周期
で同一値を取るので、検出しようとする周波数差に応じ
てTkを適切に選ぶ必要がある。
X n , i ≈2 n-1 cos (Δω a t + nβ a + θ) X n , i + k ≈2 n-1 cos {Δω a (t + T k ) + nβ a + θ} Y n , i ≈2 n -1 sin (Δω a t + nβ a + θ) Y n , i + k ≈ 2 n-1 sin {Δω a (t + T k ) + nβ a + θ} (12) From these, the cosine and sine corresponding to the frequency difference To (1
It can be calculated by the formula 3). [Cosine corresponding to the frequency difference] X n, i X n, i + k + Y n, i Y n, i + k = 2 2 (n-1) cos (Δω a T k) ...... (13) [ Frequency sine] X n corresponding to the difference, i Y n, i + k -X n, i + k Y n, from i = 2 2 (n-1 ) sin (Δω a T k) ...... (14) above, Since the tangent tan (Δω a T k ) according to the frequency difference can be obtained by the following expression (15), the frequency difference determination is performed using this. However, since the tangent value takes the same value in 2π cycles, it is necessary to properly select T k according to the frequency difference to be detected.

【0031】[0031]

【数3】 (Equation 3)

【0032】図4は上述の周波数差判定を用いたディジ
タルリレーのブロック構成図で、この図4に示すディジ
タルリレーは入力端子v1(t),v2(t)の一方の入
力端子v1(t)に系統入力を、他方の入力端子v
2(t)に既知の基準交流発振器OSCから電圧を入力
して、この電圧と系統入力との周波数差を判定するよう
にしたものである。基準交流発振器OSCからの電圧
は、サンプルホールド24bん直前に入力することも可
能である。このように構成すると絶縁変換器21b、ア
ナログフィルタ22bが省略できる。また、基準交流発
振器の電圧に相当するデータをCPU内のメモリ上に持
ち、このメモリ上のデータと系統入力のA/D変換値に
対して演算を適用すれば前述と同様にディジタルリレー
が構成できる。このように構成すると絶縁変換器21
b、アナログフィルタ22b、サンプルホールド回路2
4bを省略できるので、ディジタルリレーの構成を簡素
化できる利点がある。
[0032] Figure 4 is a block diagram of a digital relay using the frequency difference determination described above, the digital relay input terminals v 1 shown in FIG. 4 (t), v 2 one input terminal v 1 of (t) System input to (t) and the other input terminal v
2 (t) is input with a voltage from a known reference AC oscillator OSC, and the frequency difference between this voltage and the system input is determined. The voltage from the reference AC oscillator OSC can be input immediately before the sample hold 24b. With this configuration, the insulation converter 21b and the analog filter 22b can be omitted. Further, if the data corresponding to the voltage of the reference AC oscillator is stored in the memory in the CPU and the calculation is applied to the data in this memory and the A / D conversion value of the system input, the digital relay is constructed as described above. it can. With this configuration, the isolation converter 21
b, analog filter 22b, sample hold circuit 2
Since 4b can be omitted, there is an advantage that the configuration of the digital relay can be simplified.

【0033】図4において、21a,21b絶縁変換
器、22a,22bはアナログフィルタ、23はサンプ
リングパルス発生回路、24a,24bはサンプルホー
ルド回路、25はマルチプレクサ回路、26はA/D変
換器、27はCPU、28はメモリ、29はリレードラ
イバー、30はリレー、OSCは既知基準交流発振器で
ある。
In FIG. 4, 21a and 21b isolation converters, 22a and 22b are analog filters, 23 is a sampling pulse generating circuit, 24a and 24b are sample and hold circuits, 25 is a multiplexer circuit, 26 is an A / D converter, 27. Is a CPU, 28 is a memory, 29 is a relay driver, 30 is a relay, and OSC is a known reference AC oscillator.

【0034】次表は上記ディジタルリレーを周波数差検
出リレーとして使用したときの実測結果を示すものであ
る。
The following table shows the actual measurement results when the above digital relay is used as a frequency difference detection relay.

【0035】[0035]

【表1】 [Table 1]

【0036】表1は基準周波数を±10%の範囲で変動
させ、周波数差検出特性を測定したもので、±1HZ
定に対し、最大でも0.026HZの誤差であり、良好な
特性であることが検証できた。
[0036] Table 1 varies the reference frequency in a range of ± 10%, obtained by measuring the frequency difference detection characteristics, with respect to ± IH Z settling, is the error of 0.026H Z at most, with good properties I was able to verify that there is.

【0037】[0037]

【発明の効果】以上述べたように、この発明によれば、
精度良く位相角差を判定することができるとともに、サ
ンプリング点に依存されずに、任意時刻に連続して正確
な周波数差および周波数が判定できる利点がある。
As described above, according to the present invention,
There is an advantage that the phase angle difference can be accurately determined, and the accurate frequency difference and frequency can be continuously determined at any time without depending on the sampling point.

【図面の簡単な説明】[Brief description of drawings]

【図1】2つの電気量とサンプリングデータの関係を示
す説明図。
FIG. 1 is an explanatory diagram showing a relationship between two electric quantities and sampling data.

【図2】この発明の実施例を示す演算原理のブロック
図。
FIG. 2 is a block diagram of a calculation principle showing an embodiment of the present invention.

【図3】誤差抑圧用ディジタルフィルタの周波数特性
図。
FIG. 3 is a frequency characteristic diagram of a digital filter for error suppression.

【図4】この発明の他の実施例を示すブロック図。FIG. 4 is a block diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…サンプリングデータ2量の積演算工程。 2、3、4…ディジタルフィルタ 21a,21b…絶縁変換器 22a,22b…アナログフィルタ 23…サンプリングパルス発生回路 24a,24b…サンプルホールド回路 27…CPU 28…メモリ OSC…既知基準交流発振器 1 ... Product calculation step of sampling data 2 quantity. 2, 3 and 4 ... Digital filter 21a, 21b ... Isolation converter 22a, 22b ... Analog filter 23 ... Sampling pulse generation circuit 24a, 24b ... Sample hold circuit 27 ... CPU 28 ... Memory OSC ... Known reference AC oscillator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 敏朗 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 山口 浩史 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiro Fujimoto 2-1-117 Osaki, Shinagawa-ku, Tokyo Stock company Inside the company Meidensha (72) Hiroshi Yamaguchi 2-1-117 Osaki, Shinagawa-ku, Tokyo Stock association Shameidensha

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一定間隔でサンプリングされた交流電気
量の瞬時値データを用いて交流量の大きさや交流量間の
位相角差をプロセッサで判定するディジタル形保護継電
器において、 2つの電気量の積演算を行う工程と、この演算値をディ
ジタルフィルタで処理する工程とからなる位相角差判定
処理工程を前記プロセッサにて行うようにしたことを特
徴とするディジタル形保護継電器における位相角差演算
方法。
1. A digital protective relay in which the processor determines the magnitude of an alternating current amount and the phase angle difference between alternating current amounts by using instantaneous value data of alternating current electrical amounts sampled at regular intervals, and the product of two electrical amounts. A phase angle difference calculation method in a digital protective relay, characterized in that the processor performs a phase angle difference determination processing step including a step of performing an operation and a step of processing the calculated value with a digital filter.
【請求項2】 単位時間当たりの位相角差の変化量を検
出して2つの電気量間の周波数差を判定することを特徴
とする請求項1記載のディジタル形保護継電器における
周波数差演算方法。
2. The frequency difference calculation method in a digital protective relay according to claim 1, wherein the amount of change in the phase angle difference per unit time is detected to determine the frequency difference between the two electric quantities.
【請求項3】 請求項2記載のディジタル形保護継電器
の一方の入力に系統の電圧を与え、他方の入力に既知の
基準交流発振器の電圧を与えて、系統の周波数をプロセ
ッサで判定するようにしたことを特徴とするディジタル
形保護継電器における周波数演算方法。
3. The digital protective relay according to claim 2, wherein a system voltage is applied to one input and a known reference AC oscillator voltage is applied to the other input so that the frequency of the system is determined by a processor. A method for calculating frequency in a digital protective relay characterized by the above.
【請求項4】 前記既知の基準交流発振器の電圧に代え
て、その電圧に相当するデータを前記プロセッサに持つ
ようにしたことを特徴とする請求項3記載のディジタル
保護継電器における周波数演算方法。
4. The frequency calculation method in a digital protection relay according to claim 3, wherein the processor has data corresponding to the voltage of the known reference AC oscillator instead of the voltage of the known reference AC oscillator.
JP29308094A 1994-11-28 1994-11-28 Phase angle difference, frequency difference and frequency calculation method in digital type protective relay Expired - Fee Related JP3612354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29308094A JP3612354B2 (en) 1994-11-28 1994-11-28 Phase angle difference, frequency difference and frequency calculation method in digital type protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29308094A JP3612354B2 (en) 1994-11-28 1994-11-28 Phase angle difference, frequency difference and frequency calculation method in digital type protective relay

Publications (2)

Publication Number Publication Date
JPH08154335A true JPH08154335A (en) 1996-06-11
JP3612354B2 JP3612354B2 (en) 2005-01-19

Family

ID=17790193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29308094A Expired - Fee Related JP3612354B2 (en) 1994-11-28 1994-11-28 Phase angle difference, frequency difference and frequency calculation method in digital type protective relay

Country Status (1)

Country Link
JP (1) JP3612354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679155A (en) * 2020-06-17 2020-09-18 北京信息科技大学 Digital analog simulation device and method for distribution line
CN111999583A (en) * 2020-08-24 2020-11-27 南京工程学院 Fault trip judging method of safety and stability control device suitable for alternating current power grid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679155A (en) * 2020-06-17 2020-09-18 北京信息科技大学 Digital analog simulation device and method for distribution line
CN111679155B (en) * 2020-06-17 2022-10-11 北京信息科技大学 Digital analog simulation device and method for distribution line
CN111999583A (en) * 2020-08-24 2020-11-27 南京工程学院 Fault trip judging method of safety and stability control device suitable for alternating current power grid
CN111999583B (en) * 2020-08-24 2023-03-28 南京工程学院 Fault trip judging method of safety and stability control device suitable for alternating current power grid

Also Published As

Publication number Publication date
JP3612354B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US6934654B2 (en) System and method for exact compensation of fundamental phasors
US5243537A (en) Method and apparatus for rapid measurement of AC waveform parameters
CN110865238B (en) Alternating current resistance measurement method and device based on quasi-harmonic model sampling algorithm
US20070226602A1 (en) Measuring device and method for measuring relative phase shifts of digital signals
JP2006234402A (en) Power source line measuring instrument
JP4707161B2 (en) AC power measuring apparatus and program
JPH08154335A (en) Phase angle difference, frequency difference and frequency calculation method in digital protection relay
JP2505707B2 (en) Frequency measurement method by Fourier analysis
JP4247127B2 (en) RMS voltage calculator
Serov et al. A research on the influence of non-ideal analog-to-digital converter on the measurement error of frequency
US6559630B2 (en) Method of measuring frequency of AC power
AU607356B2 (en) Detector of quantity of electricity
Ahlers et al. Programmable digital two-channel function generator for testing power meters
JP2000055953A (en) Apparatus for measuring circuit element
JPH09325164A (en) Lost current measuring method of insulating material
JPS6222075A (en) Ac measuring instrument
JPH11287830A (en) Detection method and device of phase component of sign wave signal
JPH07325115A (en) Correction method for pq operation
JPH06245600A (en) Frequency detecting device
JP3206273B2 (en) Digital calculation method of AC electricity quantity
JPH07110349A (en) Measuring device for phase angle
RU2133040C1 (en) Reference meter of heavy direct currents
CN114779153A (en) Electric energy meter dynamic error measuring device, system and dynamic error calibration method
JP2637012B2 (en) Measurement data analysis method
SU798631A1 (en) Method of measuring complex-impedance components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees