JPH08148455A - Surface flattening method for thin film - Google Patents

Surface flattening method for thin film

Info

Publication number
JPH08148455A
JPH08148455A JP19417794A JP19417794A JPH08148455A JP H08148455 A JPH08148455 A JP H08148455A JP 19417794 A JP19417794 A JP 19417794A JP 19417794 A JP19417794 A JP 19417794A JP H08148455 A JPH08148455 A JP H08148455A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
abrasive grains
sio
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19417794A
Other languages
Japanese (ja)
Inventor
Shunichi Shibuki
俊一 渋木
Takashi Fujita
隆 藤田
Yasuo Namikawa
康夫 南川
Toshiyasu Beppu
敏保 別府
Junji Watanabe
純二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19417794A priority Critical patent/JPH08148455A/en
Publication of JPH08148455A publication Critical patent/JPH08148455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE: To obtain the surface flattening method for a thin film to be flattened by polishing using an abrasive grain liquid containing SiO2 abrasive grains and CeO2 abrasive grains. CONSTITUTION: Polishing speed can be increased by CeO2 abrasive grains, and on the other hand, the CeO2 abrasive grain component, which is going to be deposited on the surface of an insulating film 13 can be removed continuously by SiO2 abrasive grains when a polishing operation is conducted, and the CeO2 abrasive grain component does not remain on the insulating film surface 13c when the polishing operation is finished. On the other hand, the SiO2 abrasive grain component left on the insulating film 13c can be removed easily by the washing process to be conducted after the polishing operation. Accordingly, a clean insulating film surface 13c can be obtained by the compound action of the abrasive grains. As a result, the remaining of particles can be suppressed, and the speed of polishing can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜の表面平坦化方法に
関し、より詳細には、半導体装置を製造する過程におけ
る凹凸を有する薄膜の表面を、研磨により平坦化するた
めの薄膜の表面平坦化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for flattening the surface of a thin film, and more particularly, to flattening the surface of a thin film having unevenness in the process of manufacturing a semiconductor device by polishing. Regarding the method.

【0002】[0002]

【従来の技術】半導体集積回路の高集積化、高速化にと
もない配線の微細化、多層化が進んでいる。配線を微細
化するために、良好な寸法精度が得られる異方性エッチ
ングがパターン形成に多く用いられており、この場合、
基板上における第1層目の配線パターンに関する微細化
はある程度容易に図れるが、基板上における配線パター
ンの段差は急峻となる。次に該急峻な段差を有する第1
層目の配線パターン上に層間絶縁膜を形成した場合、こ
の層間絶縁膜の表面にも段差(凹凸)が生じ、さらに該
層間絶縁膜上に第2層目の配線パターンを形成して多層
化を図った場合、この第2層目の配線パターン自体も段
差を有するようになる。このように段差が生じたものに
フォトリソグラフィプロセスを施すと、焦点深度の限界
からパターン解像度が悪化し、第2層目以降の配線パタ
ーンにおける微細化・高精度化を図ることが難しいとい
う問題があった。また成膜プロセスの際、段部では膜厚
が薄くなり易いため、この部分で配線が断線するおそれ
があるという問題があった。また段差により実効的な配
線長が増加することとなり、その結果、配線抵抗や配線
容量が増大するという問題もあった。
2. Description of the Related Art As semiconductor integrated circuits become highly integrated and operate at high speed, wirings are becoming finer and multilayered. In order to miniaturize the wiring, anisotropic etching is often used for pattern formation, which gives good dimensional accuracy.
Although the miniaturization of the first layer wiring pattern on the substrate can be easily achieved to some extent, the step of the wiring pattern on the substrate becomes steep. Next, the first having the steep step
When an interlayer insulating film is formed on the wiring pattern of the first layer, a step (unevenness) is also generated on the surface of the interlayer insulating film, and a wiring pattern of the second layer is further formed on the interlayer insulating film to form a multilayer structure. In this case, the wiring pattern itself of the second layer also has a step. When the photolithography process is applied to a step having such a step, the pattern resolution deteriorates due to the limit of the depth of focus, and it is difficult to achieve miniaturization and high accuracy in the wiring patterns of the second and subsequent layers. there were. Further, during the film forming process, the film thickness is likely to be thin in the step portion, so that there is a problem that the wiring may be broken in this portion. Further, there is a problem that the effective wiring length increases due to the step, and as a result, the wiring resistance and wiring capacitance increase.

【0003】上記したように、半導体装置表面の段差、
とりわけ多層配線の層間絶縁膜における段差の平坦化は
非常に重要な技術であり、多くの方法が開発されてい
る。
As described above, a step on the surface of the semiconductor device,
In particular, flattening the steps in the interlayer insulating film of the multi-layer wiring is a very important technique, and many methods have been developed.

【0004】層間絶縁膜の平坦化方法として、自己平坦
性を有するTEOS(Tetra EthoxyOrtho Silicate)−
CVD(Chemical Vapor Deposition)によるSiO2
成膜方法が広く用いられているが、配線間隔が大きい等
の際には完全な平坦表面を得ることは困難であった。こ
のような場合、TEOSを用いた方法により形成された
層間絶縁膜上にフォトレジストや有機樹脂膜等を塗布
し、これらの膜と前記層間絶縁膜とを同一速度でエッチ
ングするいわゆるエッチバック方法を併用することが多
い。しかし、2つの異なる物質を同一速度でエッチング
することは難しく、完全な平坦化を図ることは困難であ
った。
TEOS (Tetra EthoxyOrtho Silicate) having self-flatness is used as a method of flattening an interlayer insulating film.
Although a SiO 2 film forming method by CVD (Chemical Vapor Deposition) is widely used, it is difficult to obtain a completely flat surface when the wiring interval is large. In such a case, there is a so-called etch-back method in which a photoresist, an organic resin film, or the like is applied on the interlayer insulating film formed by the method using TEOS, and these films and the interlayer insulating film are etched at the same rate. Often used together. However, it is difficult to etch two different substances at the same rate, and it is difficult to achieve complete planarization.

【0005】これらの問題を解決するため、研磨による
平坦化方法が提案され始めている。図2は従来のこの種
研磨による平坦化方法を説明するために示した製造過程
中における半導体装置の模式的断面図であり、図中31
は基板を示している。基板31上には酸化膜32が形成
され、酸化膜32上にはポリシリコン膜33が形成され
ており、基板31、酸化膜32、ポリシリコン膜33を
覆うように、第1層目の層間絶縁膜としてのSiO2
34が形成されている。SiO2 膜34にはポリシリコ
ン膜33と導通するコンタクトホール35が形成されて
いる。コンタクトホール35内及びその上方と、SiO
2 膜34上の所定箇所とには第1層目の配線としてのア
ルミニウム層36が形成されており、アルミニウム層3
6及びSiO2 膜34上には、これらを覆うようにして
第2層目の層間絶縁膜としてのSiO2 膜37が形成さ
れている。段差36a、36bを有するアルミニウム層
36の上方に位置するSiO2 膜37の表面には比較的
広い凸部37a、狭い凸部37bや比較的狭い凹部37
cが生じており、アルミニウム層36が形成されていな
いSiO2 膜34の上方に位置するSiO2 膜37の表
面には比較的広い凹部37dが発生している。これら基
板31、アルミニウム層36、SiO2 膜34、37等
により、製造過程中の半導体装置30が構成されてい
る。
In order to solve these problems, a flattening method by polishing has been proposed. FIG. 2 is a schematic cross-sectional view of the semiconductor device during the manufacturing process shown for explaining the conventional flattening method by this type of polishing.
Indicates the substrate. An oxide film 32 is formed on the substrate 31, and a polysilicon film 33 is formed on the oxide film 32. The first layer interlayer is formed so as to cover the substrate 31, the oxide film 32, and the polysilicon film 33. A SiO 2 film 34 as an insulating film is formed. A contact hole 35 is formed in the SiO 2 film 34 so as to be electrically connected to the polysilicon film 33. In and above the contact hole 35, SiO
An aluminum layer 36 as a first-layer wiring is formed at a predetermined position on the 2 film 34.
6 and the SiO 2 film 34, a SiO 2 film 37 is formed as a second interlayer insulating film so as to cover them. On the surface of the SiO 2 film 37 located above the aluminum layer 36 having the steps 36a and 36b, a relatively wide convex portion 37a, a narrow convex portion 37b and a relatively narrow concave portion 37 are formed.
c is generated, and a relatively wide recess 37d is formed on the surface of the SiO 2 film 37 located above the SiO 2 film 34 where the aluminum layer 36 is not formed. The substrate 31, the aluminum layer 36, the SiO 2 films 34, 37 and the like constitute the semiconductor device 30 in the manufacturing process.

【0006】このように構成された半導体装置30にお
いて、鎖線38で示した箇所を平坦化する場合、SiO
2 粒子と弱アルカリ溶液との混合物と、ポリウレタン系
の布とを用い、SiO2 膜37の凸部37a、37b、
凹部37cを研磨により除去する平坦化法が開示されて
いる(特開昭59−136934号公報)。
In the semiconductor device 30 having the above structure, when the portion shown by the chain line 38 is flattened, SiO 2 is used.
Using a mixture of 2 particles and a weak alkaline solution and a polyurethane cloth, the protrusions 37a, 37b of the SiO 2 film 37,
A flattening method is disclosed in which the recess 37c is removed by polishing (JP-A-59-136934).

【0007】また、図3は従来の別の研磨による平坦化
方法(特開昭62−102543号公報)を説明するた
めに示した製造過程中における半導体装置の模式的断面
図であり、図中41は基板を示している。基板41上の
所定箇所には配線としての導電性金属層42がパターン
化して形成され、基板41及び導電性金属層42上には
層間絶縁膜としてのSiO2 膜43が形成されている。
導電性金属層42は急峻な段差42a、42b、42c
を有しており、これら段差42a、42b、42cを有
する導電性金属層42の上方におけるSiO2 膜43の
表面には凸部43a、43bが生じている。これら基板
41、導電性金属層42、SiO2 膜43により、製造
過程中の半導体装置40が構成されている。
FIG. 3 is a schematic cross-sectional view of the semiconductor device during the manufacturing process shown for explaining another conventional flattening method by polishing (Japanese Patent Laid-Open No. 62-102543). Reference numeral 41 indicates a substrate. A conductive metal layer 42 as a wiring is patterned and formed at a predetermined position on the substrate 41, and a SiO 2 film 43 as an interlayer insulating film is formed on the substrate 41 and the conductive metal layer 42.
The conductive metal layer 42 has steep steps 42a, 42b, 42c.
And the convex portions 43a and 43b are formed on the surface of the SiO 2 film 43 above the conductive metal layer 42 having the steps 42a, 42b and 42c. The substrate 41, the conductive metal layer 42, and the SiO 2 film 43 form a semiconductor device 40 during the manufacturing process.

【0008】このように構成された半導体装置40にお
いて、鎖線44で示した箇所を平坦化する場合、研磨材
料とポリエステル製の研磨パッドとを用い、SiO2
43の凸部43a、43b及び導電性金属層42上部を
研磨により除去する。研磨材料にpHが約11〜11.
5の水酸化カリウム(以下、KOHと記す)溶液とSi
2 粒子との混合物を用いると、導電性金属層42が保
護膜になるとともにSiO2 膜43が選択的に研磨され
る。
In the semiconductor device 40 having such a structure, when flattening the portion indicated by the chain line 44, a polishing material and a polishing pad made of polyester are used, and the projections 43a and 43b of the SiO 2 film 43 and the conductive material are formed. The upper part of the conductive metal layer 42 is removed by polishing. The polishing material has a pH of about 11-11.
5 potassium hydroxide (hereinafter referred to as KOH) solution and Si
When a mixture with O 2 particles is used, the conductive metal layer 42 serves as a protective film and the SiO 2 film 43 is selectively polished.

【0009】また、図4は従来のさらに別の研磨による
平坦化方法(Y. Hayashi et al, Extended Abstracts o
f the 1992 International Conference on Solid State
Devices and Materials, pp.533-535) を説明するため
に示した製造過程中における半導体装置の模式的断面図
であり、図中51は基板を示している。基板51上の所
定箇所にはキャパシタ52が形成され、基板51及びキ
ャパシタ52の上には層間絶縁膜としてのBPSG(Bo
ro Phospho Silicate Glass)膜53が形成されている。
急峻な段差52aを有するキャパシタ52の上方に位置
するBPSG膜53の表面には凸部53aが生じてお
り、キャパシタ52が形成されていない基板51の上方
に位置するBPSG膜53の表面には凹部53bが発生
している。さらにBPSG膜53の表面にはSi34
膜(凹部53b内のSi34 膜54のみを図示し、凸
部53a上のSi34 膜は図示せず)が形成されてい
る。これら基板51、キャパシタ52、BPSG膜5
3、前記Si34 膜により、半導体装置50が構成さ
れている。
Further, FIG. 4 shows another conventional flattening method by polishing (Y. Hayashi et al, Extended Abstracts o.
f the 1992 International Conference on Solid State
(Devices and Materials, pp.533-535), which is a schematic cross-sectional view of the semiconductor device during the manufacturing process shown for the purpose of explaining (Devices and Materials, pp.533-535). A capacitor 52 is formed at a predetermined position on the substrate 51, and BPSG (Bo as an interlayer insulating film is formed on the substrate 51 and the capacitor 52.
A ro Phospho Silicate Glass) film 53 is formed.
A convex portion 53a is formed on the surface of the BPSG film 53 located above the capacitor 52 having the steep step 52a, and a concave portion is formed on the surface of the BPSG film 53 located above the substrate 51 where the capacitor 52 is not formed. 53b has occurred. Furthermore, Si 3 N 4 is formed on the surface of the BPSG film 53.
A film (only the Si 3 N 4 film 54 in the concave portion 53b is shown, and the Si 3 N 4 film on the convex portion 53a is not shown) is formed. These substrate 51, capacitor 52, BPSG film 5
3. The semiconductor device 50 is composed of the Si 3 N 4 film.

【0010】このように構成された半導体装置50にお
いて、鎖線55で示した箇所を平坦化する場合、まずフ
ォトリソグラフィーとエッチングにより、凸部53a上
のSi34 膜を除去し、図4に示した状態にする。そ
の後、凹部53b内に残存しているSi34 膜54を
保護膜として利用し、コロイダルシリカスラリを用いて
BPSG膜53の凸部53aを研磨により除去する。
In the semiconductor device 50 having such a structure, when the portion indicated by the chain line 55 is to be flattened, first, the Si 3 N 4 film on the convex portion 53a is removed by photolithography and etching. Put in the state shown. After that, the Si 3 N 4 film 54 remaining in the recesses 53b is used as a protective film, and the protrusions 53a of the BPSG film 53 are removed by polishing using colloidal silica slurry.

【0011】また、ガラス材料を研磨する際、酸化セリ
ウム(以下、CeO2 と記す)粒子を水等の溶液に分散
させた砥粒液を用いると、SiO2 砥粒液に比べて研磨
速度が速くなることが従来から知られている(特開平3
−146585号公報)。
Further, when polishing a glass material, if an abrasive grain liquid in which cerium oxide (hereinafter referred to as CeO 2 ) particles are dispersed in a solution such as water is used, the polishing rate is higher than that of the SiO 2 abrasive grain liquid. It has been conventionally known that the speed becomes faster (Japanese Patent Laid-Open No. Hei 3)
No. 146585).

【0012】[0012]

【発明が解決しようとする課題】半導体装置の平坦化工
程に研磨を用いる場合、生産効率上スループットが大き
いことが必要であり、約1μmの段差を有する薄膜を平
坦化するには約3分程度の時間内で研磨できることが望
ましく、すなわち3000Å/min以上の研磨速度が
要求されている。
When polishing is used in the planarization process of a semiconductor device, it is necessary to have a high throughput in terms of production efficiency, and it takes about 3 minutes to planarize a thin film having a step of about 1 μm. It is desirable that polishing can be performed within the above time, that is, a polishing rate of 3000 Å / min or more is required.

【0013】しかし、上記の図2に示した薄膜の表面平
坦化方法においては、直径が約0.01μmのSiO2
粒子を弱アルカリ溶液に懸濁させた砥粒液を用いると、
研磨速度は約100Å/minであり、生産効率が極め
て悪いという課題があった。
However, in the method of flattening the surface of the thin film shown in FIG. 2, the SiO 2 having a diameter of about 0.01 μm is used.
With an abrasive solution in which particles are suspended in a weak alkaline solution,
The polishing rate was about 100Å / min, and there was a problem that the production efficiency was extremely poor.

【0014】また上記の図3に示した薄膜の表面平坦化
方法においては、直径が約0.06μmのアルミナを弱
酸に懸濁させた砥粒液を用いると、研磨速度は80〜4
25Å/minであり、やはり生産効率が悪いという課
題があった。
Further, in the method of flattening the surface of the thin film shown in FIG. 3 described above, the polishing rate is 80 to 4 when the abrasive grain liquid in which alumina having a diameter of about 0.06 μm is suspended in a weak acid is used.
It was 25 Å / min, and there was a problem that the production efficiency was still poor.

【0015】また上記の図4に示した薄膜の表面平坦化
方法においては、研磨速度が約1500Å/minに達
するものの3000Å/minには程遠く、やはり生産
効率がまだ悪いという課題があった。
Further, in the method of flattening the surface of the thin film shown in FIG. 4, although the polishing rate reaches about 1500 Å / min, it is far from 3000 Å / min, and the production efficiency is still poor.

【0016】また上記したCeO2 粒子を分散させた砥
粒液を用いる研磨方法においては、研磨終了面にCeO
2 が凝着して洗浄することが難しく、パーティクルが残
存し易くなり、ガラス研磨技術をそのまま半導体装置の
製造工程に導入することは困難であるという課題があっ
た。
Further, in the polishing method using the abrasive liquid in which CeO 2 particles are dispersed, in the polishing end surface, CeO
However, there is a problem that it is difficult to introduce the glass polishing technique as it is into the manufacturing process of the semiconductor device, because the particles of No. 2 adhere to each other and are difficult to wash.

【0017】本発明はこのような課題に鑑みなされたも
のであり、研磨速度を速めることができるとともに、パ
ーティクルの残存を抑制することができる薄膜の表面平
坦化方法を提供することを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for flattening the surface of a thin film, which can increase the polishing rate and can suppress the particles from remaining. .

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る薄膜の表面平坦化方法は、SiO2 、A
23 もしくはコロイダルシリカ砥粒の少なくとも1
種以上の砥粒とCeO2 砥粒とを含む砥粒液を用い、研
磨により平坦化することを特徴としている。
In order to achieve the above-mentioned object, a method of flattening the surface of a thin film according to the present invention comprises SiO 2 , A
l 2 O 3 or at least one of colloidal silica abrasive grains
It is characterized by using an abrasive liquid containing at least one kind of abrasive grains and CeO 2 abrasive grains and flattening by polishing.

【0019】また、前記したSiO2 、Al23 もし
くはコロイダルシリカ砥粒の少なくとも1種以上の砥粒
の濃度は0.5%以上であり、かつ前記したSiO2
Al23 もしくはコロイダルシリカ砥粒の少なくとも
1種以上の砥粒と前記CeO2 砥粒との濃度は50%以
下であることが好ましい。
The concentration of at least one of the above-mentioned SiO 2 , Al 2 O 3 or colloidal silica abrasive grains is 0.5% or more, and the above-mentioned SiO 2 ,
The concentration of at least one kind of Al 2 O 3 or colloidal silica abrasive grains and the CeO 2 abrasive grains is preferably 50% or less.

【0020】さらには、前記したSiO2 、Al23
もしくはコロイダルシリカ砥粒の少なくとも1種以上の
砥粒の濃度及び前記CeO2 砥粒の濃度は、下記の表6
〜表10におけるパーティクル数が数十個以下となる範
囲が望ましい。
Further, the above-mentioned SiO 2 , Al 2 O 3
Alternatively, the concentration of at least one kind of colloidal silica abrasive grains and the concentration of the CeO 2 abrasive grains are shown in Table 6 below.
~ The range in which the number of particles in Table 10 is several tens or less is desirable.

【0021】なお、前記濃度は(前記砥粒の重量/砥粒
液重量)×100、また該砥粒液重量は前記各砥粒の合
計重量に純水重量(化学成分を含有する場合は該化学成
分を含む液重量)を加えた重量として定義した。
The above concentration is (weight of the abrasive grains / weight of the abrasive liquid) × 100, and the weight of the abrasive liquid is the weight of pure water in the total weight of each of the abrasive grains (if a chemical component is contained, It was defined as the weight including the liquid weight containing the chemical components).

【0022】[0022]

【作用】本発明に係る薄膜の表面平坦化方法によれば、
CeO2 砥粒を含む砥粒液を用い、研磨により平坦化す
るので、砥粒液中に存在する前記CeO2 砥粒により研
磨速度を速め得ることとなる。一方、前記砥粒液中に存
在する前記SiO2 、Al23 もしくはコロイダルシ
リカ砥粒の少なくとも1種以上の砥粒により、研磨の際
に研磨面に凝着しようとする前記CeO2 砥粒分を連続
的に除去し得ることとなり、研磨終了後における前記研
磨面には前記CeO2 砥粒分がほとんど残存しないこと
となる。他方、研磨終了後の前記研磨面に残存する前記
SiO2 、Al23 もしくはコロイダルシリカ砥粒分
は、研磨終了後に行う洗浄工程によりそれぞれ容易に除
去される。したがってこれら砥粒の複合作用により清浄
な研磨面が得られ、この結果パーティクルの残存を抑制
し得るとともに、研磨速度を速め得ることとなる。
According to the thin film surface flattening method of the present invention,
Since an abrasive liquid containing CeO 2 abrasive grains is used to flatten the surface by polishing, the polishing rate can be increased by the CeO 2 abrasive grains present in the abrasive liquid. On the other hand, the CeO 2 abrasive grains which are to be adhered to the polishing surface at the time of polishing by at least one kind of the abrasive grains of SiO 2 , Al 2 O 3 or colloidal silica abrasive grains present in the abrasive grain liquid. As a result, the CeO 2 abrasive grains are scarcely left on the polished surface after the polishing is completed. On the other hand, the SiO 2 , Al 2 O 3 or colloidal silica abrasive grains remaining on the polished surface after polishing is easily removed by a cleaning step performed after polishing. Therefore, a clean polishing surface can be obtained by the combined action of these abrasive grains, and as a result, the particles can be suppressed from remaining and the polishing rate can be increased.

【0023】また、前記SiO2 、Al23 もしくは
コロイダルシリカ砥粒の少なくとも1種以上の砥粒の濃
度が0.5%以上であり、かつ前記SiO2 、Al2
3 もしくはコロイダルシリカ砥粒の少なくとも1種以上
の砥粒と前記CeO2 砥粒との濃度が50%以下である
場合には、前記CeO2 砥粒等が凝集して固まるのを阻
止して前記砥粒液の取り扱いを容易にし得ることとな
り、また砥粒材料費を削減し得ることとなる。
Further, the concentration of at least one kind of the above-mentioned SiO 2 , Al 2 O 3 or colloidal silica abrasive grains is 0.5% or more, and the above-mentioned SiO 2 , Al 2 O grains are contained.
When the concentration of at least one kind of 3 or colloidal silica abrasive grains and the CeO 2 abrasive grains is 50% or less, the CeO 2 abrasive grains are prevented from coagulating and solidifying. The abrasive grain liquid can be easily handled, and the abrasive grain material cost can be reduced.

【0024】また、前記SiO2 、Al23 もしくは
コロイダルシリカ砥粒の少なくとも1種以上の砥粒の濃
度及び前記CeO2 砥粒の濃度が、下記の表6〜表10
におけるパーティクル数が数十個以下となる範囲である
場合には、研磨速度を十分に高め得るとともに、研磨の
際に前記CeO2 砥粒分が研磨面に凝着するのをより一
層防止し得ることとなり、研磨終了後における前記研磨
面をより一層清浄なものにしてパーティクルの発生をよ
り一層抑制し得ることとなる。
The concentration of at least one of the above-mentioned SiO 2 , Al 2 O 3 or colloidal silica abrasive grains and the concentration of the above CeO 2 abrasive grains are shown in Tables 6 to 10 below.
When the number of particles in the above is in the range of several tens or less, it is possible to sufficiently increase the polishing rate, and it is possible to further prevent the CeO 2 abrasive grains from adhering to the polishing surface during polishing. As a result, it is possible to further clean the polished surface after completion of polishing and further suppress the generation of particles.

【0025】[0025]

【実施例及び比較例】以下、本発明に係る薄膜の表面平
坦化方法の実施例を図面に基づいて説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the method for flattening the surface of a thin film according to the present invention will be described below with reference to the drawings.

【0026】図1は本実施例に係る薄膜の表面平坦化方
法を施す前後の試料の状態を示した模式的断面図であ
り、(a)はシリコンウエハ上に配線パターンを形成
し、この配線の上面に絶縁膜を形成した状態、(b)は
研磨により絶縁膜表面の段差を除去し、表面を平坦化し
た状態を示している。薄膜の平坦化方法により半導体装
置表面の凹凸を平坦化するには、まず例えばスパッタ法
等によりシリコンウエハ11上にAl配線材料としての
金属膜(図示せず)を形成し、次にフォトリソグラフィ
技術によりパターニング処理を施して配線12を形成す
る。この後ECR−CVD法等により配線12上にSi
2 膜等の絶縁膜13を形成する(a)。この状態にお
ける絶縁膜13上部には、配線12パターンに対応して
凹部12aと凸部12bとが生じている。次に絶縁膜1
3の凸部13bを研磨により除去し、全体的に平坦13
cにする。この研磨の際、SiO2 、Al23 もしく
はコロイダルシリカ砥粒の少なくとも1種以上の砥粒と
CeO2 砥粒とを含む砥粒液を使用する(b)。
FIG. 1 is a schematic cross-sectional view showing the state of a sample before and after the method of flattening the surface of a thin film according to this embodiment. FIG. 1A shows a wiring pattern formed on a silicon wafer. 2B shows a state in which an insulating film is formed on the upper surface of FIG. 2B, and FIG. 6B shows a state in which the steps on the surface of the insulating film are removed by polishing to flatten the surface. In order to flatten the unevenness on the surface of the semiconductor device by the thin film flattening method, first, a metal film (not shown) as an Al wiring material is formed on the silicon wafer 11 by, for example, the sputtering method, and then the photolithography technique is used. A patterning process is performed to form the wiring 12. After that, Si is formed on the wiring 12 by ECR-CVD method or the like.
An insulating film 13 such as an O 2 film is formed (a). In this state, a concave portion 12a and a convex portion 12b are formed on the insulating film 13 corresponding to the wiring 12 pattern. Next, the insulating film 1
The convex portion 13b of No. 3 was removed by polishing, and the entire surface was flat.
Set to c. In this polishing, an abrasive liquid containing at least one kind of SiO 2 , Al 2 O 3 or colloidal silica abrasive and CeO 2 abrasive is used (b).

【0027】以下に、通常用いられる研磨装置を使用
し、下記の表1に示した砥粒を純水中に所定量混合した
砥粒液を用いて研磨を行った場合における研磨速度と、
洗浄後のパーティクル数を測定した結果について説明す
る。CeO2 、SiO2 、Al23 の各砥粒は平均粒
径がそれぞれ約0.2μmのものを用いた。またサンプ
ルとしてはECR−CVD法により厚さが約1μmのS
iO2 膜を形成した直径が約6インチのシリコンウエハ
11を用いた。そして圧力が100g/cm2 、研磨定
盤の周速をシリコンウエハ11に対する相対速度が60
cm/secとなる周速にして約3分間研磨を行い、研
磨速度を計測した。この後、約1分間のスクラブ洗浄及
び約1分間のメガソニック洗浄処理を施し、6インチの
前記ウエハ上における約0.2μm以上のパーティクル
数をパーティクルカウンターにて測定した。なお比較例
1としてCeO2 砥粒のみを純水中に所定量混合した砥
粒液、比較例2としてSiO2 砥粒のみを純水中に混合
したもの、比較例3としてAl23 砥粒のみを純水中
に混合したもの、比較例4としてコロイダルシリカ砥粒
のみを純水中に混合したものを用い、それぞれ研磨した
場合について併せ説明する。
The polishing rate in the case where polishing is carried out by using a polishing apparatus which is usually used, and polishing is carried out by using an abrasive liquid obtained by mixing a predetermined amount of the abrasive particles shown in Table 1 below in pure water,
The result of measuring the number of particles after cleaning will be described. The CeO 2 , SiO 2 , and Al 2 O 3 abrasive grains each had an average grain size of about 0.2 μm. As a sample, an SCR having a thickness of about 1 μm was formed by the ECR-CVD method.
A silicon wafer 11 having a diameter of about 6 inches on which an iO 2 film was formed was used. The pressure is 100 g / cm 2 , and the peripheral speed of the polishing platen is 60 relative to the silicon wafer 11.
Polishing was performed for about 3 minutes at a peripheral speed of cm / sec, and the polishing rate was measured. After that, scrub cleaning for about 1 minute and megasonic cleaning processing for about 1 minute were performed, and the number of particles of about 0.2 μm or more on the 6-inch wafer was measured with a particle counter. As Comparative Example 1, a CeO 2 abrasive grain mixed with a predetermined amount in pure water, as Comparative Example 2, only SiO 2 abrasive grain mixed in pure water, and as Comparative Example 3 Al 2 O 3 abrasive. A case in which only particles are mixed in pure water and a case in which only colloidal silica abrasive particles are mixed in pure water as Comparative Example 4 are used and polished respectively will be described together.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1のCeO2 砥粒のみを混合した砥
粒液を用いた場合、下記の表2に示したように研磨速度
は速いが、洗浄後のパーティクルの残存数が極めて多
く、薄膜の表面平坦化には不適当である。
When the abrasive liquid containing only the CeO 2 abrasive grains of Comparative Example 1 was used, the polishing rate was high as shown in Table 2 below, but the number of remaining particles after cleaning was extremely large and the thin film was thin. Is not suitable for surface flattening.

【0030】[0030]

【表2】 [Table 2]

【0031】また比較例2のSiO2 砥粒のみを混合し
た砥粒液を用いた場合、下記の表3に示したようにパー
ティクル数は比較的少ないが、研磨速度が遅く、薄膜の
表面平坦化には不適当である。
When the abrasive liquid containing only the SiO 2 abrasive grains of Comparative Example 2 was used, the number of particles was relatively small as shown in Table 3 below, but the polishing rate was slow and the surface of the thin film was flat. Is not suitable for conversion.

【0032】[0032]

【表3】 [Table 3]

【0033】また比較例3のAl23 砥粒のみを混合
した砥粒液を用いた場合、下記の表4に示したようにパ
ーティクル数は比較的少ないが、研磨速度が極めて遅
く、薄膜の表面平坦化には不適当である。
When the abrasive liquid containing only the Al 2 O 3 abrasive grains of Comparative Example 3 was used, the number of particles was relatively small as shown in Table 4 below, but the polishing rate was extremely slow and the thin film was thin. Is not suitable for surface flattening.

【0034】[0034]

【表4】 [Table 4]

【0035】また比較例4のコロイダルシリカ砥粒のみ
を混合した砥粒液を用いた場合、下記の表5に示したよ
うにパーティクル数は比較的少ないが、研磨速度が比較
例2及び比較例3の場合の中間程度と遅く、薄膜の表面
平坦化には不適当である。
Further, when the abrasive liquid containing only the colloidal silica abrasive grains of Comparative Example 4 was used, the number of particles was relatively small as shown in Table 5 below, but the polishing rate was Comparative Example 2 and Comparative Example. It is as slow as the middle of the case of 3, and is not suitable for flattening the surface of a thin film.

【0036】[0036]

【表5】 [Table 5]

【0037】一方、実施例1のSiO2 及びCeO2
粒を純水中にそれぞれ0.5〜30%及び5〜30%濃
度に混合した砥粒液を用いた場合、下記の表6に示した
ように研磨速度が2500Å/min以上に速くなり、
パーティクル数は500個以下に減少した。またSiO
2 砥粒濃度が約0.5%以上であり、かつSiO2 及び
CeO2 砥粒のトータル濃度が約50%以下の砥粒液で
は、上記の場合と同様に研磨速度が速く、パーティクル
数が少なくなるとともに、表示はしないが砥粒の凝集が
少なくなった。さらにSiO2 砥粒濃度が5〜30%及
びCeO2 砥粒濃度が5〜30%の砥粒液では、パーテ
ィクル数が約20以下となった。
On the other hand, in the case of using the abrasive liquid in which the SiO 2 and CeO 2 abrasive grains of Example 1 were mixed in pure water at the concentrations of 0.5 to 30% and 5 to 30%, respectively, the results are shown in Table 6 below. As shown, the polishing rate has increased to 2500 Å / min or more,
The number of particles was reduced to 500 or less. Also SiO
2 With an abrasive solution having a concentration of abrasives of about 0.5% or more and a total concentration of SiO 2 and CeO 2 abrasives of about 50% or less, the polishing rate is high and the number of particles is the same as in the above case. The number of particles decreased, but the aggregation of the abrasive grains decreased although not displayed. Further, the number of particles was about 20 or less in the abrasive liquid having the SiO 2 abrasive grain concentration of 5 to 30% and the CeO 2 abrasive grain concentration of 5 to 30%.

【0038】[0038]

【表6】 [Table 6]

【0039】上記結果から明らかなように、実施例1に
係る薄膜の表面平坦化方法では、砥粒液中に存在するC
eO2 砥粒により研磨速度を速めることができ、砥粒液
中に存在するSiO2 砥粒により、研磨の際に研磨面に
凝着しようとするCeO2 砥粒分を連続的に除去するこ
とができ、研磨終了後における研磨面13cにはCeO
2 砥粒分の凝着はほとんどみられない。他方、研磨終了
後の研磨面13cに残存するSiO2 砥粒分は、研磨終
了後に行う洗浄工程により容易に除去することができ
る。したがってこれら砥粒の複合作用により清浄な研磨
面13cを得ることができ、この結果パーティクルの残
存を抑制することができるとともに、研磨速度を速める
ことができる。
As is clear from the above results, in the method of flattening the surface of the thin film according to Example 1, C existing in the abrasive liquid was used.
eO 2 abrasive grains makes it possible to increase the polishing rate, the SiO 2 abrasive grains present in the abrasive fluid, the CeO 2 abrasive component to be adhesion to the polishing surface can be continuously removed during polishing Is formed, and CeO is formed on the polishing surface 13c after the polishing is completed.
Almost no adhesion of two abrasive grains was observed. On the other hand, the SiO 2 abrasive grains remaining on the polished surface 13c after the polishing can be easily removed by the cleaning step performed after the polishing. Therefore, a clean polishing surface 13c can be obtained by the combined action of these abrasive grains, and as a result, the remaining particles can be suppressed and the polishing rate can be increased.

【0040】またSiO2 砥粒濃度が0.5%以上であ
り、かつSiO2 及びCeO2 砥粒濃度が50%以下で
ある場合には、CeO2 砥粒等が凝集して固まるのを阻
止して取り扱いを容易にすることができ、また砥粒材料
費を削減することができる。
When the SiO 2 abrasive grain concentration is 0.5% or more and the SiO 2 and CeO 2 abrasive grain concentrations are 50% or less, it is possible to prevent the CeO 2 abrasive grains and the like from agglomerating and solidifying. Therefore, the handling can be facilitated and the abrasive grain material cost can be reduced.

【0041】また、SiO2 砥粒濃度が5〜30%及
び、CeO2 砥粒濃度が5〜30%である場合には、研
磨速度を十分に高めることができるとともに、研磨の際
にCeO2 砥粒分が研磨面に凝着するのをより一層防止
することができ、研磨終了後における研磨面13cをよ
り一層清浄なものにすることができ、この結果パーティ
クルの残存をより一層抑制することができる。
When the SiO 2 abrasive grain concentration is 5 to 30% and the CeO 2 abrasive grain concentration is 5 to 30%, the polishing rate can be sufficiently increased and at the time of polishing, CeO 2 is used. It is possible to further prevent the abrasive grains from adhering to the polishing surface, and it is possible to further clean the polishing surface 13c after the polishing is completed, and as a result, it is possible to further suppress the residual particles. You can

【0042】また実施例2のAl23 及びCeO2
粒を純水中にそれぞれ0.5〜30%及び5〜30%濃
度に混合した砥粒液を用いた場合、下記の表7に示した
ように研磨速度が2500Å/min以上に速くなり、
パーティクル数は1000個以下に減少した。またAl
23 砥粒濃度が約0.5%以上であり、かつAl23
及びCeO2 砥粒のトータル濃度が約50%以下の砥
粒液では、上記の場合と同様に研磨速度が速く、パーテ
ィクル数が少なくなるとともに、砥粒の凝集が少なくな
った。さらにAl23 砥粒濃度が5〜30%及びCe
2 砥粒濃度が5〜30%の砥粒液では、パーティクル
数が約20以下となった。
Further, in the case of using the abrasive liquid in which the Al 2 O 3 and CeO 2 abrasive grains of Example 2 were mixed in pure water at the concentrations of 0.5 to 30% and 5 to 30% respectively, the following Table 7 was used. As shown in, the polishing rate becomes more than 2500Å / min,
The number of particles was reduced to 1000 or less. Also Al
2 O 3 abrasive grain concentration is about 0.5% or more, and Al 2 O 3
With an abrasive liquid having a total concentration of CeO 2 abrasive particles of about 50% or less, the polishing rate was high, the number of particles was small, and the agglomeration of the abrasive particles was small, as in the above case. Further, the Al 2 O 3 abrasive grain concentration is 5 to 30% and Ce
With the abrasive liquid having an O 2 abrasive concentration of 5 to 30%, the number of particles was about 20 or less.

【0043】[0043]

【表7】 [Table 7]

【0044】上記結果から明らかなように、実施例2に
係る薄膜の表面平坦化方法では、砥粒液中に存在するC
eO2 砥粒により研磨速度を速めることができ、砥粒液
中に存在するAl23 砥粒により、研磨の際に研磨面
に凝着しようとするCeO2砥粒分を連続的に除去する
ことができ、研磨終了後の前記研磨面に残存するAl2
3 砥粒分は洗浄工程により容易に除去することができ
るため、実施例1の場合と略同様の効果を得ることがで
きる。またAl23 砥粒濃度が0.5%以上であり、
かつAl23 及びCeO2 砥粒濃度が50%以下であ
る場合には、実施例1の場合と略同様の効果を得ること
ができる。また、Al23 砥粒濃度が5〜30%及
び、CeO2 砥粒濃度が5〜30%である場合には、研
磨の際にCeO2 砥粒分が研磨面に凝着するのをより一
層防止することができるため、実施例1の場合と略同様
の効果を得ることができる。
As is clear from the above results, in the method of flattening the surface of the thin film according to Example 2, C existing in the abrasive liquid was
eO 2 can increase the polishing rate by abrasive, by Al 2 O 3 abrasive grains present in the abrasive fluid, continuous removal of CeO 2 abrasive component to be adhesion to the polishing surface during polishing Al 2 remaining on the polished surface after completion of polishing
Since the O 3 abrasive grains can be easily removed by the cleaning process, it is possible to obtain substantially the same effect as that of the first embodiment. Further, the Al 2 O 3 abrasive grain concentration is 0.5% or more,
In addition, when the Al 2 O 3 and CeO 2 abrasive grain concentration is 50% or less, substantially the same effect as in the case of Example 1 can be obtained. Further, when the Al 2 O 3 abrasive grain concentration is 5 to 30% and the CeO 2 abrasive grain concentration is 5 to 30%, the CeO 2 abrasive grain component is prevented from adhering to the polished surface during polishing. Since it can be further prevented, it is possible to obtain substantially the same effect as that of the first embodiment.

【0045】また実施例3のコロイダルシリカ及びCe
2 砥粒を純水中にそれぞれ0.5〜30%及び5〜3
0%濃度に混合した砥粒液を用いた場合、下記の表8に
示したように研磨速度が2500Å/min以上に速く
なり、パーティクル数は800個以下に減少した。また
コロイダルシリカ砥粒濃度が約0.5%以上であり、か
つコロイダルシリカ及びCeO2 砥粒のトータル濃度が
約50%以下の砥粒液では、上記の場合と略同様に研磨
速度が速く、パーティクル数が少なくなるとともに、砥
粒の凝集が少なくなった。さらにコロイダルシリカ砥粒
濃度が5〜30%及びCeO2 砥粒濃度が5〜30%の
砥粒液では、パーティクル数が約20以下となった。
The colloidal silica and Ce of Example 3 are also used.
O 2 abrasive grains in pure water are 0.5 to 30% and 5 to 3 respectively.
When using the abrasive liquid mixed to a concentration of 0%, the polishing rate increased to 2500 Å / min or more and the number of particles decreased to 800 or less, as shown in Table 8 below. Further, with an abrasive liquid having a colloidal silica abrasive grain concentration of about 0.5% or more, and a total concentration of colloidal silica and CeO 2 abrasive grains of about 50% or less, the polishing rate is almost the same as in the above case, As the number of particles decreased, the agglomeration of abrasive particles decreased. Further, in the abrasive liquid having colloidal silica abrasive grain concentration of 5 to 30% and CeO 2 abrasive grain concentration of 5 to 30%, the number of particles was about 20 or less.

【0046】[0046]

【表8】 [Table 8]

【0047】上記結果から明らかなように、実施例3に
係る薄膜の表面平坦化方法では、砥粒液中に存在するC
eO2 砥粒により研磨速度を速めることができ、砥粒液
中に存在するコロイダルシリカ砥粒により、研磨の際に
研磨面に凝着しようとするCeO2 砥粒分を連続的に除
去することができ、研磨終了後の前記研磨面に残存する
コロイダルシリカ砥粒分は洗浄工程により容易に除去す
ることができるため、実施例1の場合と略同様の効果を
得ることができる。またコロイダルシリカ砥粒濃度が
0.5%以上であり、かつコロイダルシリカ及びCeO
2 砥粒濃度が50%以下である場合には、実施例1の場
合と略同様の効果を得ることができる。また、コロイダ
ルシリカ砥粒濃度が5〜30%及び、CeO2 砥粒濃度
が5〜30%である場合には、研磨の際にCeO2 砥粒
分が研磨面に凝着するのをより一層防止することができ
るため、実施例1の場合と略同様の効果を得ることがで
きる。
As is clear from the above results, in the method of flattening the surface of the thin film according to Example 3, C existing in the abrasive grain liquid was used.
eO 2 abrasive grains makes it possible to increase the polishing rate, the colloidal silica abrasive present in the abrasive fluid, the CeO 2 abrasive component to be adhesion to the polishing surface can be continuously removed during polishing Since the colloidal silica abrasive grains remaining on the polished surface after polishing can be easily removed by the cleaning step, substantially the same effect as in the case of Example 1 can be obtained. Further, the colloidal silica abrasive grain concentration is 0.5% or more, and the colloidal silica and CeO
2 When the abrasive grain concentration is 50% or less, substantially the same effect as in the case of Example 1 can be obtained. Further, when the colloidal silica abrasive grain concentration is 5 to 30% and the CeO 2 abrasive grain concentration is 5 to 30%, the CeO 2 abrasive grain content is further prevented from adhering to the polishing surface during polishing. Since it can be prevented, it is possible to obtain substantially the same effect as in the case of the first embodiment.

【0048】また実施例4のSiO2 とAl23 とを
1:1の重量比で混ぜ合わせた砥粒及びCeO2 砥粒を
純水中にそれぞれ0.5〜30%及び5〜30%濃度に
混合した砥粒液を用いた場合、下記の表9に示したよう
に研磨速度が2500Å/min以上に速くなり、パー
ティクル数は1000個以下に減少した。またSiO2
とAl23 砥粒濃度が約0.5%以上であり、かつS
iO2 、Al23 及びCeO2 砥粒のトータル濃度が
約50%以下の砥粒液では、上記の場合と略同様に研磨
速度が速く、パーティクル数が少なくなるとともに、砥
粒の凝集が少なくなった。さらにSiO2 とAl23
砥粒濃度が5〜30%及びCeO2 砥粒濃度が5〜30
%の砥粒液では、パーティクル数が約20以下となっ
た。
Further, the abrasive grains obtained by mixing SiO 2 and Al 2 O 3 of Example 4 in a weight ratio of 1: 1 and CeO 2 abrasive grains in pure water are 0.5 to 30% and 5 to 30%, respectively. When using the abrasive liquid mixed at a concentration of 0.1%, the polishing rate was increased to 2500 Å / min or more and the number of particles was reduced to 1000 or less, as shown in Table 9 below. Also SiO 2
And Al 2 O 3 abrasive grain concentration is about 0.5% or more, and S
With an abrasive liquid having a total concentration of iO 2 , Al 2 O 3 and CeO 2 abrasives of about 50% or less, the polishing rate is high, the number of particles is small, and the agglomeration of the abrasive grains is almost the same as in the above case. I've run out. Furthermore, SiO 2 and Al 2 O 3
Abrasive grain concentration is 5-30% and CeO 2 abrasive grain concentration is 5-30
%, The number of particles was about 20 or less.

【0049】[0049]

【表9】 [Table 9]

【0050】上記結果から明らかなように、実施例4に
係る薄膜の表面平坦化方法では、砥粒液中に存在するC
eO2 砥粒により研磨速度を速めることができ、砥粒液
中に存在するSiO2 とAl23 砥粒により、研磨の
際に研磨面に凝着しようとするCeO2 砥粒分を連続的
に除去することができ、研磨終了後の前記研磨面に残存
するSiO2 とAl23 砥粒分は洗浄工程により容易
に除去することができるため、実施例1の場合と略同様
の効果を得ることができる。またSiO2 とAl23
砥粒濃度が0.5%以上であり、かつSiO2 、Al2
3 及びCeO2 砥粒の濃度が50%以下である場合に
は、実施例1の場合と略同様の効果を得ることができ
る。また、SiO2 とAl23 砥粒濃度が5〜30%
及び、CeO2 砥粒濃度が5〜30%である場合には、
研磨の際にCeO2 砥粒分が研磨面に凝着するのをより
一層防止することができるため、実施例1の場合と略同
様の効果を得ることができる。
As is clear from the above results, in the method of flattening the surface of the thin film according to Example 4, C existing in the abrasive grain liquid was used.
eO 2 can increase the polishing rate by abrasive grains by SiO 2 and Al 2 O 3 abrasive grains present in the abrasive fluid, continuous CeO 2 abrasive component to be adhesion to the polishing surface during polishing The SiO 2 and Al 2 O 3 abrasive grains remaining on the polished surface after the polishing can be easily removed by the cleaning step. The effect can be obtained. In addition, SiO 2 and Al 2 O 3
Abrasive grain concentration is 0.5% or more, and SiO 2 , Al 2
When the concentration of the O 3 and CeO 2 abrasive grains is 50% or less, substantially the same effect as in the case of Example 1 can be obtained. Also, the SiO 2 and Al 2 O 3 abrasive grain concentration is 5 to 30%.
And, when the CeO 2 abrasive grain concentration is 5 to 30%,
Since it is possible to further prevent the CeO 2 abrasive grains from adhering to the polishing surface during polishing, it is possible to obtain substantially the same effect as in the case of Example 1.

【0051】なお、実施例4ではCeO2 砥粒の外にS
iO2 とAl23 砥粒を用いた場合について説明した
が、別の実施例ではCeO2 砥粒の外に、SiO2 とコ
ロイダルシリカ砥粒、Al23 とコロイダルシリカ砥
粒をそれぞれ用いてもよい。
Incidentally, in Example 4, S was added to the outside of the CeO 2 abrasive grains.
The case of using iO 2 and Al 2 O 3 abrasive grains has been described, but in another embodiment, in addition to CeO 2 abrasive grains, SiO 2 and colloidal silica abrasive grains, and Al 2 O 3 and colloidal silica abrasive grains, respectively. You may use.

【0052】また実施例5のSiO2 とAl23 とコ
ロイダルシリカとを1:1:1の重量比で混ぜ合せた砥
粒及びCeO2 砥粒を純水中にそれぞれ0.5〜30%
及び5〜30%濃度に混合した砥粒液を用いた場合、下
記の表10に示したように研磨速度が2500Å/mi
n以上に速くなり、パーティクル数は1000個以下に
減少した。またSiO2 とAl23 とコロイダルシリ
カ砥粒濃度が約0.5%以上であり、かつSiO2 、A
23 、コロイダルシリカ及びCeO2 砥粒のトータ
ル濃度が約50%以下の砥粒液では、上記の場合と略同
様に研磨速度が速く、パーティクル数が少なくなるとと
もに、砥粒の凝集が少なくなった。さらにSiO2 とA
23 とコロイダルシリカ砥粒濃度が5〜30%及び
CeO2砥粒濃度が5〜30%の砥粒液では、パーティ
クル数が約20以下となった。
Further, the abrasive grains and the CeO 2 abrasive grains obtained by mixing SiO 2 , Al 2 O 3 and colloidal silica in Example 5 in a weight ratio of 1: 1: 1 were added to pure water in an amount of 0.5 to 30 respectively. %
And when using an abrasive solution mixed to a concentration of 5 to 30%, the polishing rate was 2500 Å / mi as shown in Table 10 below.
It became faster than n and the number of particles decreased to 1000 or less. Further, the concentration of SiO 2 , Al 2 O 3 and colloidal silica abrasive grains is about 0.5% or more, and SiO 2 , A
With an abrasive liquid having a total concentration of l 2 O 3 , colloidal silica, and CeO 2 abrasive particles of about 50% or less, the polishing rate is high, the number of particles is small, and the agglomeration of the abrasive particles is almost the same as in the above case. I've run out. Furthermore, SiO 2 and A
The number of particles was about 20 or less in the abrasive grain liquid containing 12 O 3 and the colloidal silica abrasive grain concentration of 5 to 30% and the CeO 2 abrasive grain concentration of 5 to 30%.

【0053】[0053]

【表10】 [Table 10]

【0054】上記結果から明らかなように、実施例5に
係る薄膜の表面平坦化方法では、砥粒液中に存在するC
eO2 砥粒により研磨速度を速めることができ、砥粒液
中に存在するSiO2 とAl23 とコロイダルシリカ
砥粒により、研磨の際に研磨面に凝着しようとするCe
2 砥粒分を連続的に除去することができ、研磨終了後
の前記研磨面に残存するSiO2 とAl23 とコロイ
ダルシリカ砥粒分は洗浄工程により容易に除去すること
ができるため、実施例1の場合と略同様の効果を得るこ
とができる。またSiO2 とAl23 とコロイダルシ
リカ砥粒濃度が0.5%以上であり、かつSiO2 、A
23 、コロイダルシリカ及びCeO2 砥粒の濃度が
50%以下である場合には、実施例1の場合と略同様の
効果を得ることができる。また、SiO2 とAl23
とコロイダルシリカ砥粒濃度が5〜30%及び、CeO
2 砥粒濃度が5〜30%である場合には、研磨の際にC
eO2 砥粒分が研磨面に凝着するのをより一層防止する
ことができるため、実施例1の場合と略同様の効果を得
ることができる。
As is clear from the above results, in the method of flattening the surface of the thin film according to Example 5, C existing in the abrasive grain liquid was used.
The polishing rate can be increased by the eO 2 abrasive grains, and the SiO 2 and Al 2 O 3 and colloidal silica abrasive grains present in the abrasive grain liquid tend to adhere to the polishing surface during polishing.
O 2 abrasive grains can be continuously removed, and SiO 2 , Al 2 O 3, and colloidal silica abrasive grains remaining on the polished surface after polishing can be easily removed by a cleaning process. It is possible to obtain substantially the same effect as that of the first embodiment. Further, the concentration of SiO 2 , Al 2 O 3 and colloidal silica abrasive grains is 0.5% or more, and SiO 2 , A
When the concentrations of l 2 O 3 , colloidal silica and CeO 2 abrasive grains are 50% or less, substantially the same effect as in the case of Example 1 can be obtained. In addition, SiO 2 and Al 2 O 3
And colloidal silica abrasive grain concentration of 5-30% and CeO
2 When the abrasive grain concentration is 5 to 30%, C
Since it is possible to further prevent the eO 2 abrasive grains from adhering to the polishing surface, it is possible to obtain substantially the same effect as in the case of Example 1.

【0055】なお上記した実施例では、いずれもSiO
2 膜等の絶縁膜13はECR−CVD法により形成した
場合について説明したが、TEOS−CVD、p−CV
D、熱CVD、熱酸化等他の方法により形成してもよ
い。
In each of the above embodiments, SiO is used.
The case where the insulating film 13 such as the two films is formed by the ECR-CVD method has been described, but the TEOS-CVD, p-CV
It may be formed by another method such as D, thermal CVD, or thermal oxidation.

【0056】また、SiO2 膜以外にSiN、SiO
N、SiOF、PSG、BPSG、SOG膜等に適用し
てもよい。
In addition to the SiO 2 film, SiN, SiO
It may be applied to N, SiOF, PSG, BPSG, SOG films and the like.

【0057】また、砥粒は何ら平均粒径が約0.2μm
に限定されるものではなく、これ以外の平均粒径を有す
る砥粒を用いてもよい。
The average grain size of the abrasive grains is about 0.2 μm.
However, the abrasive grains having an average particle diameter other than this may be used.

【0058】また、砥粒液に化学成分を混合してもよ
い。
Further, chemical components may be mixed with the abrasive liquid.

【0059】[0059]

【発明の効果】以上詳述したように本発明に係る薄膜の
表面平坦化方法にあっては、SiO2、Al23 もし
くはコロイダルシリカ砥粒の少なくとも1種以上の砥粒
とCeO2 砥粒とを含む砥粒液を用い、研磨により平坦
化するので、前記砥粒液中に存在する前記CeO2 砥粒
により研磨速度を速めることができる。一方、前記砥粒
液中に存在する前記したSiO2 、Al23 もしくは
コロイダルシリカ砥粒の少なくとも1種以上の砥粒によ
り、研磨の際に研磨面に凝着しようとする前記CeO2
砥粒分を連続的に除去することができ、研磨終了後にお
ける前記研磨面に前記CeO2 砥粒分はほとんど残存し
ない。他方、研磨終了後の前記研磨面に残存する前記S
iO2 、Al23 もしくはコロイダルシリカ砥粒分は
研磨終了後に行う洗浄工程によりそれぞれ容易に除去す
ることができる。したがってこれら砥粒の複合作用によ
り清浄な研磨面を得ることができ、この結果パーティク
ルの残存を抑制することができるとともに、研磨速度を
速めることができる。
As described above in detail, in the method of flattening the surface of a thin film according to the present invention, at least one kind of SiO 2 , Al 2 O 3 or colloidal silica abrasive grains and CeO 2 abrasive grains are used. Since the abrasive grain liquid containing the grains is used to flatten the surface by polishing, the polishing rate can be increased by the CeO 2 abrasive grains present in the abrasive grain liquid. On the other hand, the CeO 2 that tends to adhere to the polishing surface during polishing by at least one kind of the above-mentioned SiO 2 , Al 2 O 3 or colloidal silica abrasive grains present in the above-mentioned abrasive grain liquid.
The abrasive grains can be continuously removed, and the CeO 2 abrasive grains hardly remain on the polished surface after the polishing is completed. On the other hand, the S remaining on the polished surface after polishing is completed.
The iO 2 , Al 2 O 3 or colloidal silica abrasive grains can be easily removed by a cleaning step performed after the polishing is completed. Therefore, a clean polishing surface can be obtained by the combined action of these abrasive grains, and as a result, it is possible to suppress the particles from remaining and to increase the polishing rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る薄膜の表面平坦化方法の実施例を
説明するために示した摸式的断面図であり、(a)はシ
リコンウエハ上に配線パターンを形成し、この配線の上
面に絶縁膜を形成した研磨前の状態、(b)は研磨によ
り絶縁膜表面の段差を除去し、表面を平坦化した状態を
示している。
FIG. 1 is a schematic cross-sectional view shown for explaining an embodiment of a surface flattening method for a thin film according to the present invention, in which (a) is a wiring pattern formed on a silicon wafer and the upper surface of this wiring is shown. The state before polishing, in which the insulating film is formed, is shown, and (b) shows the state in which the steps on the surface of the insulating film are removed by polishing and the surface is flattened.

【図2】従来の研磨による平坦化方法を説明するために
示した製造過程中における半導体装置の模式的断面図で
ある。
FIG. 2 is a schematic cross-sectional view of a semiconductor device during a manufacturing process shown for explaining a conventional flattening method by polishing.

【図3】従来の別の研磨による平坦化方法を説明するた
めに示した製造過程中における半導体装置の模式的断面
図である。
FIG. 3 is a schematic cross-sectional view of a semiconductor device during a manufacturing process shown for explaining another conventional planarization method by polishing.

【図4】従来のさらに別の研磨による平坦化方法を説明
するために示した製造過程中における半導体装置の模式
的断面図である。
FIG. 4 is a schematic cross-sectional view of a semiconductor device during a manufacturing process shown for explaining another conventional planarization method by polishing.

【符号の説明】[Explanation of symbols]

11 シリコンウエハ 12 配線 13 絶縁膜 13a 凹部 13b 凸部 13c 研磨後の表面 11 Silicon Wafer 12 Wiring 13 Insulating Film 13a Recess 13b Convex 13c Surface After Polishing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/3205 (72)発明者 別府 敏保 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 渡辺 純二 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01L 21/3205 (72) Inventor Toshibo Beppu 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (72) Inventor Junji Watanabe 4-53, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SiO2 、Al23 もしくはコロイダ
ルシリカ砥粒の少なくとも1種以上の砥粒とCeO2
粒とを含む砥粒液を用い、研磨により平坦化することを
特徴とする薄膜の表面平坦化方法。
1. A thin film characterized by being planarized by polishing using an abrasive liquid containing at least one kind of abrasive grains of SiO 2 , Al 2 O 3 or colloidal silica abrasive grains and CeO 2 abrasive grains. Surface flattening method.
JP19417794A 1994-08-18 1994-08-18 Surface flattening method for thin film Pending JPH08148455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19417794A JPH08148455A (en) 1994-08-18 1994-08-18 Surface flattening method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19417794A JPH08148455A (en) 1994-08-18 1994-08-18 Surface flattening method for thin film

Publications (1)

Publication Number Publication Date
JPH08148455A true JPH08148455A (en) 1996-06-07

Family

ID=16320218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19417794A Pending JPH08148455A (en) 1994-08-18 1994-08-18 Surface flattening method for thin film

Country Status (1)

Country Link
JP (1) JPH08148455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826756A1 (en) * 1996-09-03 1998-03-04 Sumitomo Chemical Company, Limited Abrasive composition for polishing a metal layer on a semiconductor substrate, and use of the same
EP0874036A1 (en) * 1997-04-25 1998-10-28 Mitsui Mining & Smelting Co., Ltd. Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices.
WO2005022621A1 (en) * 2003-08-27 2005-03-10 Fujimi Incorporated Polishing composition and polishing method using same
KR100578231B1 (en) * 2000-06-30 2006-05-12 주식회사 하이닉스반도체 Method for manufacturing semiconductor for planarization in damascene gate process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826756A1 (en) * 1996-09-03 1998-03-04 Sumitomo Chemical Company, Limited Abrasive composition for polishing a metal layer on a semiconductor substrate, and use of the same
EP0874036A1 (en) * 1997-04-25 1998-10-28 Mitsui Mining & Smelting Co., Ltd. Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices.
US5951724A (en) * 1997-04-25 1999-09-14 Mitsui Mining And Smelting Co., Ltd. Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices
KR100578231B1 (en) * 2000-06-30 2006-05-12 주식회사 하이닉스반도체 Method for manufacturing semiconductor for planarization in damascene gate process
WO2005022621A1 (en) * 2003-08-27 2005-03-10 Fujimi Incorporated Polishing composition and polishing method using same

Similar Documents

Publication Publication Date Title
JP3278532B2 (en) Method for manufacturing semiconductor device
US6723144B2 (en) Semiconductor device fabricating method
JP4278020B2 (en) Abrasive particles and method for producing abrasives
JPH0955362A (en) Manufacture of integrated circuit for reduction of scratch
US20020061635A1 (en) Solution for chemical mechanical polishing and method of manufacturing copper metal interconnection layer using the same
JP2874486B2 (en) Method for forming trench isolation with polishing step and method for manufacturing semiconductor device
KR20030003061A (en) Method of manufacturing semiconductor apparatus and solution for polishing the same
JP3172008B2 (en) Method for manufacturing semiconductor device
JP3556978B2 (en) Polishing method for copper-based metal
US20060094242A1 (en) Chemical mechanical polishing method, and washing/rinsing method associated therewith
JP2003051469A (en) Slurry composition for cmp, patterning method, and semiconductor device
Yano et al. High-performance CMP slurry with inorganic/resin abrasive for Al/low k damascene
JPH08148455A (en) Surface flattening method for thin film
KR20000062541A (en) Process For Manufacturing A Semiconductor Structure
JPH10321570A (en) Abrasive for polishing semiconductor wafer, its manufacture, and polishing method
US20040074518A1 (en) Surfactants for post-chemical mechanical polishing storage and cleaning
EP1385197A1 (en) Planarizing a surface of a semiconductor wafer
JP2004031442A (en) Polishing solution and polishing method
JP2000012543A (en) Manufacture of semiconductor integrated circuit device
US20040074517A1 (en) Surfactants for chemical mechanical polishing
US6319095B1 (en) Colloidal suspension of abrasive particles containing magnesium as CMP slurry
GB2275130A (en) Polishing apparatus and method for planarizing layer on a semiconductor wafer
JPH07221179A (en) Manufacturing method of semiconductor device
US6935926B2 (en) System and method for reducing surface defects in integrated circuits
JP3557700B2 (en) Wiring formation method