JPH08148142A - Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate - Google Patents

Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate

Info

Publication number
JPH08148142A
JPH08148142A JP6291464A JP29146494A JPH08148142A JP H08148142 A JPH08148142 A JP H08148142A JP 6291464 A JP6291464 A JP 6291464A JP 29146494 A JP29146494 A JP 29146494A JP H08148142 A JPH08148142 A JP H08148142A
Authority
JP
Japan
Prior art keywords
metal
electrodeposition coating
porous
metal powder
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6291464A
Other languages
Japanese (ja)
Inventor
Hirofumi Sugikawa
裕文 杉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Special Industries Ltd
Original Assignee
Katayama Special Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Special Industries Ltd filed Critical Katayama Special Industries Ltd
Priority to JP6291464A priority Critical patent/JPH08148142A/en
Publication of JPH08148142A publication Critical patent/JPH08148142A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE: To manufacture a metal porous body for a battery electrode plate in a short time with lessened electric consumption. CONSTITUTION: Conductive process is applied to a porous base material. electrodeposition coating is applied to the conductively processed porous base material with an electrodeposition paint mixed with metal powder, an electrodeposition paint resin, and a dispersing agent in water in an electrodeposition tank to form a skeleton surrounding holes with a metal layer. It is heated, desorbed with a solvent, and sintered to manufacture a metal porous body for a battery electrode plate. A metal may be stuck by electric plating after the conductive process, then electrodeposition coating may be applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池電極基板用金属多
孔体の製造方法および該方法により製造した電池電極基
板用金属多孔体に関し、詳しくは、多孔繊維状構造体あ
るいは三次元網状構造体の単体あるいは積層体からな
り、これら構造体の空孔を囲む骨格が金属層により構成
され、空孔に活物質、触媒等が充填され、ニッケル水素
電池用、ニッケルカドミウム電池用、燃料電池用等の各
種電池用、自動車用バッテリー等の電極板として好適に
用いられるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous metal body for a battery electrode substrate and a porous metal body for a battery electrode substrate produced by the method, and more particularly to a porous fibrous structure or a three-dimensional network structure. Of a single body or a laminated body, the skeleton surrounding the pores of these structures is constituted by a metal layer, and the pores are filled with an active material, a catalyst, etc., for nickel-hydrogen batteries, nickel-cadmium batteries, fuel cells, etc. The present invention relates to those suitably used as electrode plates for various batteries, automobile batteries, and the like.

【0002】[0002]

【従来の技術】従来、有機樹脂等かなる発泡体、不織
布、メッシュ等の多孔性基材より金属多孔体を形成する
場合、上記多孔性基材に化学メッキ等を施して導電処理
した後、電気メッキを施し、ついで、所要温度で所要時
間加熱して脱煤、焼結を行って製造している。
2. Description of the Related Art Conventionally, when a metal porous body is formed from a porous base material such as a foam made of an organic resin, a non-woven fabric, a mesh, etc., after the porous base material is subjected to a conductive treatment by chemical plating or the like, It is manufactured by electroplating and then heating at the required temperature for the required time to remove soot and sinter.

【0003】[0003]

【発明が解決しようとする課題】従来の方法では、目標
とする重量の金属を電気メッキにより多孔性基材に付着
して与えているが、目標とする重量、例えば、400〜
500g/m2を与えるためには、使用する電気量にも
よるが、30分〜1時間必要であり、時間がかかると共
に、電気量も大量に消費するため、コスト高になり、か
つ、大量生産を行うためには設備が大型になる問題があ
った。
In the conventional method, a target weight of metal is attached to a porous substrate by electroplating, and the target weight is, for example, 400 to
It takes 30 minutes to 1 hour to give 500 g / m 2 depending on the amount of electricity used, but it takes time and consumes a large amount of electricity, resulting in high cost and large amount. There was a problem that the equipment became large in size for production.

【0004】また、電気メッキによる場合、多孔性基材
の板厚の表面および裏面にはメッキが厚く析出するが、
板厚中心部にはメッキが薄くしか析出せず、金属付着量
は表面および裏面側が多いが、板厚中央部には金属付着
量が少なく且つ金属が付着していない部分も発生する
等、板厚全体にわたって均一厚さで金属の付着が行えな
い問題があった。
Further, in the case of electroplating, the plating is thickly deposited on the front surface and the back surface of the porous substrate,
The plating deposits only thinly in the center of the plate thickness, and the amount of metal adhered is large on the front and back sides, but in the center of the plate thickness there is a small amount of metal adhered and there are parts where no metal adheres. There was a problem that metal could not be deposited with a uniform thickness over the entire thickness.

【0005】また、電池電極用基板として用いる金属多
孔体は、その空孔率が大きいほど活物質、触媒等の充填
量が増加し、電極板として特性を向上させることが出来
るが、活物質自体は導電性がないため、各空孔の面積は
小さい程、金属と活物質との接触面積を増大させること
が出来るために好ましい。即ち、基板全体の空孔率は高
く、しかも、各空孔面積は小さい程、好ましいこととな
る。しかしながら、電気メッキによる場合、金属イオン
が多孔基材の表面に緻密に付着するため、焼結後におい
て、その収縮率が小さく、1%未満となり、焼結により
空孔を小さくできる可能性はほとんどなかった。
Further, the larger the porosity of the metal porous body used as the battery electrode substrate, the more the amount of the active material, the catalyst, etc., filled in, and the characteristics of the electrode plate can be improved. Since it has no conductivity, the smaller the area of each hole is, the more preferable the contact area between the metal and the active material can be increased. That is, the higher the porosity of the entire substrate and the smaller the area of each hole, the more preferable. However, in the case of electroplating, since the metal ions adhere to the surface of the porous substrate densely, the shrinkage rate is small after sintering, which is less than 1%, and it is almost possible that the pores can be reduced by sintering. There wasn't.

【0006】さらに、電気メッキによる場合、電気メッ
キで用いることができない金属があると共に、一種の金
属メッキ層に他種の金属メッキ層を積層して付着するこ
とは可能であるが、異種金属を混合して同一層に付着す
ることは困難であった。
Further, in the case of electroplating, there are some metals that cannot be used in electroplating, and it is possible to stack one kind of metal plating layer on another kind of metal plating layer, but to attach different kinds of metals. It was difficult to mix and adhere to the same layer.

【0007】本発明は上記した従来の問題に鑑みなされ
たもので、短時間で効率よく金属多孔体を大量生産する
ことができ、しかも、電気使用量が従来と比較して大幅
に低減することが出来、かつ、電池電極基板用多孔体と
して優れた特性を有する金属多孔体の製造方法および該
方法により製造された電池電極基板用金属多孔体を提供
することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and it is possible to efficiently mass-produce a porous metal body in a short time, and further, the amount of electricity used is significantly reduced as compared with the conventional one. It is an object of the present invention to provide a method for producing a porous metal body having excellent properties as a porous body for a battery electrode substrate and a porous metal body for a battery electrode substrate produced by the method.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1で、多孔性基材に導電処理を施した
後、金属粉末を含む電着塗料により電着塗装を施すこと
を特徴とする電池電極基板用金属多孔体の製造方法を提
供している。
In order to achieve the above-mentioned object, the present invention is characterized in that, in claim 1, after the porous substrate is subjected to a conductive treatment, it is electrodeposited with an electrodeposition paint containing a metal powder. And a method for producing a porous metal body for a battery electrode substrate.

【0009】また、請求項2で、多孔性基材に導電処理
を施した後、電気メッキを施し、ついで、金属粉末を含
む電着塗料により電着塗装を施すことを特徴とする電池
電極基板用金属多孔体の製造方法を提供している。上記
電気メッキによる金属の付着は、電着による金属粉末の
付着が確実にできる程度の薄膜程度でも良いし、目標付
着量の50%以上としてもよい。即ち、電気メッキによ
る金属付着量を増加すると、後工程の電着による金属付
着量を減少し、逆に、電着による金属付着量を増加する
と電気メッキによる金属付着を減少できる。
The battery electrode substrate according to claim 2, wherein the porous substrate is subjected to a conductive treatment, then electroplated, and then an electrodeposition coating containing a metal powder. Provided is a method for producing a metal porous body for use. The metal deposition by the electroplating may be a thin film to the extent that the metal powder can be reliably deposited by electrodeposition, or may be 50% or more of the target deposition amount. That is, when the metal deposition amount by electroplating is increased, the metal deposition amount by electrodeposition in the subsequent process is decreased, and conversely, when the metal deposition amount by electrodeposition is increased, the metal deposition by electroplating can be reduced.

【0010】上記請求項1および請求項2のいずれの方
法においても電着塗装を施した後、所要温度で所要時間
加熱して、脱煤、焼結を行うことが好ましい(請求項
3)。上記脱媒は800℃〜1200℃で1分〜10分
加熱し、上記焼結は還元ガス雰囲気中において、100
0℃〜1300℃で1分〜10分加熱して行うことが好
ましい。
In any of the above-mentioned methods of claim 1 and claim 2, after electrodeposition coating is applied, it is preferable to heat at a required temperature for a required time to remove soot and sinter (claim 3). The desolvation is performed by heating at 800 ° C. to 1200 ° C. for 1 minute to 10 minutes, and the sintering is performed at 100 ° C. in a reducing gas atmosphere.
It is preferable to perform heating at 0 ° C to 1300 ° C for 1 minute to 10 minutes.

【0011】上記したように、電着塗料は、例えば、水
に金属粉末と電着塗料用樹脂と分散剤とを混合したもの
からなる(請求項4)。使用出来る金属は特に限定され
ないが、Ni,Cu,Al,Ag,Fe,Zn,In,
Ti,Pb,V,Cr,Co,Sn,Au、これらの合
金、これら金属単体および合金の酸化粉末が好適に用い
られる。即ち、電気メッキでは用いることが出来ないA
l,Ti,V等も用いることが出来る。かつ、一種類の
金属粉末、あるいは複数種類の金属粉末を混合して用い
ることが出来る。これら金属粉末は、0.1μm〜5μ
mの微粒粉、好ましくは、0.3μm〜1.0μmのも
のが好適に用いられる。また、これら金属粉末は相互に
絡み付かず分散性が良いことが望ましいため、外面に相
互に絡み合う凹部と凸部とを有しない形状、例えば、球
状、サイコロ状、四角柱状、円柱状等が好ましい。
As described above, the electrodeposition coating is made of, for example, water mixed with metal powder, a resin for electrodeposition coating, and a dispersant (claim 4). The metal that can be used is not particularly limited, but Ni, Cu, Al, Ag, Fe, Zn, In,
Ti, Pb, V, Cr, Co, Sn, Au, alloys of these, simple metals of these and oxide powders of the alloys are preferably used. That is, it cannot be used in electroplating A
1, Ti, V, etc. can also be used. In addition, one kind of metal powder or a plurality of kinds of metal powders can be mixed and used. These metal powders have a thickness of 0.1 μm to 5 μm.
m fine powder, preferably 0.3 μm to 1.0 μm, is preferably used. Further, since it is desirable that these metal powders are not entangled with each other and have good dispersibility, a shape having no concave and convex portions intertwined with each other on the outer surface, for example, a spherical shape, a dice shape, a quadrangular prism shape, a columnar shape or the like is preferable. .

【0012】上記電着塗装は、電着槽内に連続した多孔
性基材を搬送しながら、連続的に行うことが好ましい
(請求項6)。尚、電着槽中にバッチ式で多孔性基材に
電着塗装を行ってもよい。また、下地処理の導電処理の
後、水洗処理し、次いで、電着槽で電着塗装を行い、そ
の後、水洗、乾燥した後、脱媒、焼結を一連に連続させ
て行い、最終的に、製造された金属多孔体をコイルに巻
き取ることが好ましい。尚、導電処理と電着塗装との間
に電気メッキ処理が入る場合は、電気メッキ槽にも連続
的に搬送して、一連に連続させることが好ましい。
[0012] It is preferable that the electrodeposition coating is continuously carried out while the continuous porous substrate is being conveyed into the electrodeposition tank (claim 6). In addition, you may perform electrodeposition coating on the porous base material by a batch method in an electrodeposition tank. In addition, after the conductive treatment of the base treatment, washing treatment with water, then electrodeposition coating in the electrodeposition tank, then washing with water and drying, desolvation and sintering are performed in series, and finally It is preferable to wind the manufactured porous metal body into a coil. When the electroplating treatment is performed between the electroconductive treatment and the electrodeposition coating, it is preferable that the electroplating treatment is continuously carried to the electroplating bath so that the electroplating treatment is continued.

【0013】上記多孔性基材は、合成樹脂、天然繊維、
セルロースおよび紙等の有機質からなる発泡状、不織布
状、メッシュ状、織物状、フエルト状、スクリーン状、
エキスパンデッド状等の多孔体からなり、これらを単体
あるいは積層して用いることが好ましい(請求項7)。
上記発泡状多孔体としてはポリウレタンスポンジ等が好
適に用いられ、各孔径が50〜600μm、空孔率が8
0〜99%、厚さが0.5〜50mmが好ましく、特
に、孔径が200〜350μm、空孔率が94〜98
%、厚さが0.8〜2.0mmが好ましい。上記不織布
状多孔体としては、線径が0.01〜1.0mm、空孔
率が40〜99%、厚さが0.5〜5.0mmが好まし
く、特に、線径が0.02〜1.0mm、空孔率が80
〜99%、厚さが0.8〜2.0mmの不織布が好適に
用いられる。また、上記メッシュ状多孔体としては、線
径が0.01〜1.0mm、2〜200メッシュ、空孔
率40〜99%が好ましく、特に、線径が0.02〜
0.1mm、40〜120メッシュが好ましい。また、
これら多孔性基材は、単体で用いても良いし、異種の基
材、例えば、不織布とメッシュとを積層して用いても良
い。
The above-mentioned porous substrate is made of synthetic resin, natural fiber,
Foam, non-woven fabric, mesh, woven fabric, felt, screen made of organic materials such as cellulose and paper,
It is preferably made of an expanded porous material or the like, and these are preferably used alone or in a laminated form (claim 7).
A polyurethane sponge or the like is preferably used as the foamed porous material, and each pore diameter is 50 to 600 μm and the porosity is 8
0 to 99% and a thickness of 0.5 to 50 mm are preferable, and in particular, the pore diameter is 200 to 350 μm and the porosity is 94 to 98.
%, And the thickness is preferably 0.8 to 2.0 mm. The nonwoven fabric-like porous body preferably has a wire diameter of 0.01 to 1.0 mm, a porosity of 40 to 99%, and a thickness of 0.5 to 5.0 mm, and particularly has a wire diameter of 0.02 to 0.02 mm. 1.0 mm, porosity 80
A non-woven fabric having a thickness of .about.99% and a thickness of 0.8 to 2.0 mm is preferably used. The mesh-like porous body preferably has a wire diameter of 0.01 to 1.0 mm, 2 to 200 mesh, and a porosity of 40 to 99%, and particularly has a wire diameter of 0.02 to 0.02.
0.1 mm, 40-120 mesh is preferable. Also,
These porous substrates may be used alone or may be used by laminating different types of substrates, for example, a nonwoven fabric and a mesh.

【0014】上記導電処理として、化学メッキ、カーボ
ン塗布、金属粉末の蒸着、化学蒸着(CVD)、スパッ
タリング、パラジウム処理等を用い、電着塗装ができる
程度に多孔性基材に対して下地導電処理を行うことが好
ましい(請求項8)。
As the above-mentioned conductive treatment, chemical plating, carbon coating, vapor deposition of metal powder, chemical vapor deposition (CVD), sputtering, palladium treatment, etc. are used, and conductive treatment is performed on the porous base material to the extent that electrodeposition coating is possible. It is preferable to perform (Claim 8).

【0015】上記電着塗料中の金属粉末と電着塗料用樹
脂の比率は、金属粉末70〜98%で、樹脂が2〜30
%が好ましい(請求項9)。ただし、金属粉末が5%〜
95%、樹脂が95%〜5%の範囲でも用いることが出
来る。上記電着塗料用樹脂としては、エポキシ系、アク
リル系、ポリブタジェン系、アルキッド系、ポリエステ
ル系樹脂、天然油脂および合成油脂等が好適に用いられ
る。電着塗装には、カチオン型(陰極)電着塗装とアニ
オン型(陽極)電着塗装とがあり、上記樹脂の種類、中
和剤(分散剤)等により、いずれかに分けられる。即
ち、カチオン型電着塗装は、アクリルビニール共重合
系、エポキシ樹脂系、ポリアミド系、ポリウレタン系、
ポリブタジェン系等を主骨格としてカチオン性基(アミ
ノ基や第4アンモニウム塩基)を導入した樹脂を、一方
アニオン型電着塗装は、乾性油、ポリエステル系、ポリ
ブタジェン系、エポキシエステル系、ポリアクリル酸エ
ステル系等を主骨格としてアニオン性基(通常カボキシ
ル基)を導入した樹脂をベースとした塗料を用い、イオ
ン性基の極性を強めると共に樹脂が安定な状態で水に分
散する様にするため、カチオン型電着塗料では有機カル
ボン酸を、アニオン型電着塗料では有機アミンあるいは
苛性カリ等の塩基を中和剤(分散剤)として用いて水溶
化あるいは水分散化させ、直流電流を通じて塗膜を析出
させている。
The ratio of the metal powder to the resin for electrodeposition coating in the above electrodeposition coating is 70 to 98% of metal powder and 2 to 30% of resin.
% Is preferred (claim 9). However, metal powder is 5%
It can also be used in the range of 95% and resin of 95% to 5%. As the above resin for electrodeposition coating, epoxy resin, acrylic resin, polybutadiene resin, alkyd resin, polyester resin, natural fats and oils, synthetic fats and oils are preferably used. The electrodeposition coating includes a cation type (cathode) electrodeposition coating and an anion type (anode) electrodeposition coating, which can be classified into either one depending on the type of the resin, the neutralizing agent (dispersing agent) and the like. That is, cationic electrodeposition coating, acrylic vinyl copolymer system, epoxy resin system, polyamide system, polyurethane system,
Resins with a cationic group (amino group or quaternary ammonium salt group) as the main skeleton, such as polybutadiene, are used. On the other hand, the anionic electrodeposition coating is drying oil, polyester, polybutadiene, epoxy ester, polyacrylic ester. A cation is used to strengthen the polarity of the ionic group and to ensure that the resin disperses in water in a stable state, using a paint based on a resin in which an anionic group (usually a caboxyl group) is introduced with the system as the main skeleton. For organic electrocoating, organic carboxylic acid is used, and for anionic electrocoating, organic amine or base such as caustic potash is used as a neutralizing agent (dispersant) for water-solubilization or water-dispersion, and direct current is applied to deposit the coating film. ing.

【0016】また、本発明は、請求項10に記載したよ
うに、上記請求項1乃至請求項9のいずれか1項に記載
の製造方法により製造された、多孔繊維状構造体あるい
は三次元網状構造体からなる電池電極基板用金属多孔体
を提供している。上記多孔繊維状構造体は、不織布状、
メッシュ状、織物状、編物状、フエルト状、スクリーン
状、エキスパンデッド状等の構造からなる(請求項1
1)。また、上記三次元網状構造体は、発泡状、スポン
ジ状、海綿状、ハニカム状等の構造からなる(請求項1
2)。さらに、上記多孔繊維状構造体あるいは三次元網
状構造体を構成する金属粉末の粒径は、0.1μm〜5
μmの微粒粉からなることが好ましい(請求項13)。
Further, according to the present invention, as described in claim 10, there is provided a porous fibrous structure or a three-dimensional network formed by the manufacturing method according to any one of claims 1 to 9. Provided is a metal porous body for a battery electrode substrate, which is composed of a structure. The porous fibrous structure is a non-woven fabric,
It has a structure of mesh, woven, knit, felt, screen, expanded, etc. (claim 1
1). The three-dimensional net-like structure has a foamed, sponge-like, sponge-like, or honeycomb-like structure (claim 1
2). Furthermore, the particle size of the metal powder forming the porous fibrous structure or the three-dimensional network structure is 0.1 μm to 5 μm.
It is preferably composed of fine powder of μm (claim 13).

【0017】[0017]

【作用】請求項1に記載の製造方法によれば、まず、有
機樹脂等からなる多孔性基材に導電処理を施して電着塗
装を可能としている。この導電処理した多孔性基材を、
電着槽中で電着塗料により電着塗装を施している。電着
塗装は、電気メッキの電気析出とは異なり、水の電気分
解が起こり、イオン樹脂との凝析反応で、上記多孔性基
材に付着する。
According to the manufacturing method of the first aspect, first, the porous substrate made of an organic resin or the like is subjected to a conductive treatment to enable electrodeposition coating. This electrically conductive porous substrate,
The electrodeposition coating is applied in the electrodeposition tank with the electrodeposition paint. Unlike the electrodeposition of electroplating, the electrodeposition coating causes electrolysis of water, and adheres to the porous substrate by a coagulation reaction with an ionic resin.

【0018】具体的には、カチオン型電着塗装では、析
出極は陰極となり、よって、多孔性基材を陰極とし、電
極を陽極としておく。 陰極反応 2H2O+2e- → H2 + 2OH- 塗膜析出 R3HN+ + OH- →R3N + H2O アニオン型電着塗装では、析出極は陽極となり、よっ
て、多孔性基材を陽極とし、電極を陰極とする。 陽極反応 H2O → 2H+ + 1/2O2 + 2e- 塗膜析出 RCOO- + H+ → RCOOH
Specifically, in the cationic electrodeposition coating, the deposition electrode serves as a cathode. Therefore, the porous base material serves as the cathode and the electrode serves as the anode. Cathodic reaction 2H 2 O + 2e - → H 2 + 2OH - coating deposited R 3 HN + + OH - → In R 3 N + H 2 O anionic electrodeposition coating, deposition electrode becomes an anode, thus, a porous substrate The anode is used and the electrode is used as the cathode. Anodic reaction H 2 O → 2H + + 1 / 2O 2 + 2e - coating deposited RCOO - + H + → RCOOH

【0019】上記金属粉末を電着塗装で多孔性基材に付
着すると、基材の板厚の表面側および裏面側の両面から
金属粉末が電着されていき、析出の形成と共に塗膜の電
気抵抗値が高くなり、膜厚の増加が止まり、未電着の部
位へと電着が移行する。つまり、導電部分には必ず電着
されることになり、板厚の表面側および裏面側の表層部
および板厚の内部および中心部にもバラツキなく金属粉
末が電着し、金属付着量が板厚方向に均一となる。
When the above-mentioned metal powder is deposited on the porous substrate by electrodeposition coating, the metal powder is electrodeposited from both the front surface side and the back surface side of the thickness of the substrate, and at the same time as the formation of deposits, the coating film becomes electrically conductive. The resistance value increases, the increase in film thickness stops, and the electrodeposition moves to the non-electrodeposited part. In other words, the conductive parts are always electrodeposited, and the metal powder is electrodeposited evenly on the front and back surface side of the plate thickness and inside and inside the plate thickness, and the metal adhesion amount It becomes uniform in the thickness direction.

【0020】上記電着塗装では、短時間で必要な膜厚を
得ることができ、従来同一の膜厚を電気メッキで付着す
る場合に30分〜1時間要した場合、5秒〜5分程度に
大幅に短縮できる。また、電気使用量が電気メッキと比
較して約130分の1程度に大幅に低減出来、それだ
け、コストの大幅な低下を図ることが出来る。
In the above electrodeposition coating, the required film thickness can be obtained in a short time, and when it takes 30 minutes to 1 hour to deposit the same film thickness by electroplating, it takes about 5 seconds to 5 minutes. Can be greatly shortened. In addition, the amount of electricity used can be significantly reduced to about 1/130 of that of electroplating, and thus the cost can be significantly reduced.

【0021】また、金属粉末を電着塗装で多孔性基材に
付着するため、異種金属粉末を混合して付着させること
ができ、よって、どのような配合比でも異種金属を付着
させることができる。例えば、Fe,Ni,Cr,Mo
等の粉末を混合分散し、SUS430等の合金金属多孔
体を製造することも可能となる。
Further, since the metal powder is attached to the porous substrate by electrodeposition coating, it is possible to mix and attach the different metal powders. Therefore, the different metals can be attached at any mixing ratio. . For example, Fe, Ni, Cr, Mo
It is also possible to produce a metal alloy porous body such as SUS430 by mixing and dispersing powders such as.

【0022】さらに、金属粉末を電着塗装で付着するた
め、電気メッキにより金属を付着する場合より、表面に
凹凸が発生し、該金属粉末からなる金属層で囲まれる空
孔に活物質を充填すると、活物質と金属層との接触面積
が増加し、この活物質を充填した電極板を用いた電池の
充放電特性を向上させることができる。
Further, since the metal powder is attached by electrodeposition coating, unevenness is generated on the surface and the pores surrounded by the metal layer made of the metal powder are filled with the active material, as compared with the case where the metal is attached by electroplating. Then, the contact area between the active material and the metal layer increases, and the charge / discharge characteristics of the battery using the electrode plate filled with the active material can be improved.

【0023】請求項2に記載の如く、導電処理の後に、
電気メッキで金属を付着した後に、電着塗装で金属粉末
を付着してもよく、この電気メッキによる付着量と電着
塗装による付着量とを任意に調整できる。請求項3に記
載の如く、電着塗装後に脱媒、焼結を行うと、有機樹脂
等からなる基材が焼き飛ばされ、金属層のみからなる金
属多孔体が製造できる。かつ、該脱媒、焼結時に、下地
処理を少なくして金属粉末の電着量を増加させておく
と、収縮率を1〜10%と電気メッキの場合より増加さ
せることができる。即ち、格子径が小さくなり、セル径
も小さくなって金属層で囲む空孔面積を小さくでき、該
空孔に充填する活物質と金属層との接触面積を増加させ
て充放電特性を向上させることができる。
After the conductive treatment as described in claim 2,
After the metal is attached by electroplating, the metal powder may be attached by electrodeposition coating, and the attachment amount by this electroplating and the attachment amount by electrodeposition coating can be arbitrarily adjusted. As described in claim 3, when the solvent removal and the sintering are performed after the electrodeposition coating, the base material made of the organic resin or the like is burned off, and the metal porous body having only the metal layer can be manufactured. In addition, when the amount of electrodeposition of the metal powder is increased by reducing the base treatment during the degassing and sintering, the shrinkage rate can be increased to 1 to 10% compared with the case of electroplating. That is, the lattice diameter is reduced, the cell diameter is also reduced, and the area of the holes surrounded by the metal layer can be reduced, and the contact area between the active material filling the holes and the metal layer is increased to improve the charge / discharge characteristics. be able to.

【0024】請求項4に記載の如く、水に金属粉末、電
着塗料用樹脂および分散剤を混合したスラリー状の電着
塗料を用いると、水の電気分解で電着塗料中の金属粉末
を多孔性基材に迅速かつ確実に析出することが出来る。
また、請求項5に記載のように、電着塗料中の金属粉末
を単体、合金、あるいは単体あるいは/および合金の混
合より構成すると、同一金属層中に複数種類の金属を混
在させることが可能となり、金属層中の金属の種類を選
択できる範囲を拡大することが出来る。また、酸化粉末
を用いると、酸素と電着塗料用樹脂中の官能基とのなじ
みが良いため、電着塗料中で粉末の分散性がよくなり、
電着塗装を確実に出来る。
According to the fourth aspect of the present invention, when a slurry-like electrodeposition coating obtained by mixing water with a metal powder, a resin for electrodeposition coating and a dispersant is used, the metal powder in the electrodeposition coating is electrolyzed by water. It can be rapidly and surely deposited on the porous substrate.
Further, as described in claim 5, when the metal powder in the electrodeposition paint is composed of a simple substance, an alloy, or a mixture of simple substances and / or alloys, a plurality of kinds of metals can be mixed in the same metal layer. Therefore, the range in which the type of metal in the metal layer can be selected can be expanded. In addition, when an oxide powder is used, since the oxygen and the functional groups in the resin for electrodeposition coating are well compatible, the dispersibility of the powder in the electrodeposition coating is improved,
The electrodeposition coating can be surely done.

【0025】また、請求項6に記載のように、電着槽内
に連続した多孔性基材を搬送しながら、連続的に電着塗
装を行うと、大量生産を効率よく行うことができる。請
求項7に記載の如く、多孔性基材として有機樹脂等から
なる発泡状、不織布状、メッシュ状等の多孔体を用いる
と、多孔性基材を選択することで、空孔形状や空孔率を
任意に調整できると共に、金属多孔体を簡単に製造でき
る。請求項8に記載のように、電着塗装が施せる程度に
できる下地導電処理として、化学メッキ、カーボン塗
布、金属粉末の蒸着、化学蒸着(CVD)、スパッタリ
ング、パラジウム処理等を任意に選択して用いることが
できる。
Further, as described in claim 6, mass production can be efficiently performed by continuously performing electrodeposition coating while transporting the continuous porous substrate into the electrodeposition tank. As described in claim 7, when a foamed, non-woven fabric, mesh, or other porous body made of an organic resin or the like is used as the porous base material, the porous base material is selected to obtain the pore shape or the pores. The rate can be adjusted arbitrarily and the metal porous body can be easily manufactured. As described in claim 8, chemical plating, carbon coating, vapor deposition of metal powder, chemical vapor deposition (CVD), sputtering, palladium treatment or the like is arbitrarily selected as the underlying conductive treatment that can be performed by electrodeposition coating. Can be used.

【0026】請求項9に記載の如く、電着塗料中の金属
粉末と電着塗料用樹脂の比率は、金属粉末70〜98%
で、樹脂が2〜30%の範囲で設定できるが、金属粉末
の比率を90%以上高めることが可能で、その場合は、
電着塗装により短時間で基材に金属を付着することがで
きる。
As described in claim 9, the ratio of the metal powder in the electrodeposition coating material to the resin for electrodeposition coating material is 70 to 98% of the metal powder.
The resin can be set in the range of 2 to 30%, but the ratio of the metal powder can be increased by 90% or more. In that case,
By electrodeposition coating, the metal can be attached to the substrate in a short time.

【0027】請求項10乃至13に記載の上記請求項1
乃至請求項9のいずれか1項に記載の製造方法により製
造された多孔繊維状構造体あるいは三次元網状構造体か
らなる電池電極基板用金属多孔体は、空孔面積を小さく
できると共に、電気メッキと比較して表面に凹凸がある
ため、空孔に充填する活物質との接触面積を増加させ
て、電池特性を向上させることが出来る。
The above-mentioned claim 1 according to any one of claims 10 to 13
The metal porous body for a battery electrode substrate comprising the porous fibrous structure or the three-dimensional network structure manufactured by the manufacturing method according to any one of claims 9 to 10 can have a small pore area and can be electroplated. Since the surface has unevenness, the contact area with the active material filling the pores can be increased and the battery characteristics can be improved.

【0028】[0028]

【実施例】以下、本発明の実施例を図面を参照して説明
する。第1実施例の製造方法は図1のフローチャートに
示す通りであり、まず、ステップ#1で多孔性基材に導
電処理を施す。本実施例では、多孔性基材として、厚さ
1.6mm、セル径40ppi/インチのウレタンスポ
ンジを用いている。導電処理方法として、化学メッキを
用い、上記ウレタンスポンジに化学メッキでニッケルを
0.12g/dm2付着した。
Embodiments of the present invention will be described below with reference to the drawings. The manufacturing method of the first embodiment is as shown in the flowchart of FIG. 1. First, in step # 1, the porous base material is subjected to a conductive treatment. In this embodiment, a urethane sponge having a thickness of 1.6 mm and a cell diameter of 40 ppi / inch is used as the porous base material. Chemical plating was used as the conductive treatment method, and nickel of 0.12 g / dm 2 was attached to the urethane sponge by chemical plating.

【0029】上記導電処理後、ステップ#2の水洗処理
を施した後、ステップ#3で電着塗装を施す。具体的に
は、本実施例では、粒径0.3〜1.0μmの酸化ニッ
ケルの粉末を100重量部と、アクリル・カチオンバイ
ンダーを44重量部(固形分25%で、11重量部含
む)と、純水522重量部とをボールミル分散機に投入
し、混合して純水中に酸化ニッケル粉末とアクリル・カ
チオンバインダーとを分散した。分散後に上記アルカリ
性の希釈濃度を調整するために純水を更に添加し、酸化
ニッケル粉末が10〜20%の範囲になるように調整し
た。
After the above conductive treatment, the washing treatment of step # 2 is performed, and then the electrodeposition coating is performed in step # 3. Specifically, in this example, 100 parts by weight of nickel oxide powder having a particle size of 0.3 to 1.0 μm and 44 parts by weight of an acrylic / cationic binder (solid content 25%, including 11 parts by weight). And 522 parts by weight of pure water were put into a ball mill disperser and mixed to disperse the nickel oxide powder and the acrylic / cationic binder in the pure water. After dispersion, pure water was further added to adjust the alkaline dilution concentration, and the nickel oxide powder was adjusted to be in the range of 10 to 20%.

【0030】上記酸化ニッケル粉末とアクリル・カチオ
ンバインダーと純水との混合液からなるスラリー液を、
図2(A)(B)に示すように、電着槽1に入れ、液温
を20℃に保持した。上記電着槽1の中央部には、上記
導電処理を施した多孔性基材10を垂直方向に吊り下げ
ながら連続的に搬送しており、該多孔性基材10の両側
に、SUS304からなる電極板2、2を垂設してい
る。尚、電着槽1内への搬入部および電着槽1からの搬
出部は水密にシールしながら多孔性基材を通過させてい
る。上記電着槽1中に投入するスラリー液は、電着槽1
の底壁に形成した取出口1aより取り出し、ポンプ16
を介設した循環管15へと流し、ポンプ16により電着
槽1の上部に水平に配置した供給管17へと還流し、該
供給管17に設けたノズル17aより電着槽1へと噴出
させ、電着槽1内部で液流を発生させている。上記2つ
の電極板2、2と多孔性基材10との間には夫々5cm
の間隔をあけ、かつ、電極板2、2の面積と多孔性基材
10の面積の比率を、1:1に設定した。また、多孔性
基材10は搬送用吊下機11を介して整流器12の陰極
(−)側と接続すると共に、両側の電極板2、2は吊下
機13を介して整流器12の陽極(+)側と接続した。
A slurry liquid consisting of a mixed liquid of the above nickel oxide powder, an acrylic / cationic binder and pure water,
As shown in FIGS. 2 (A) and 2 (B), the liquid temperature was kept at 20 ° C. in the electrodeposition tank 1. In the central part of the electrodeposition tank 1, the porous base material 10 subjected to the conductive treatment is continuously conveyed while being suspended in the vertical direction, and SUS304 is formed on both sides of the porous base material 10. The electrode plates 2 and 2 are vertically provided. It should be noted that the carry-in part into the electrodeposition tank 1 and the carry-out part from the electrodeposition tank 1 pass through the porous base material while sealing in a watertight manner. The slurry liquid charged into the electrodeposition tank 1 is the electrodeposition tank 1
From the outlet 1a formed on the bottom wall of the pump 16
To a circulation pipe 15 which is provided between the electrodeposition tank 1 and a supply pipe 17 which is horizontally arranged above the electrodeposition tank 1 by a pump 16 and jetted into the electrodeposition tank 1 from a nozzle 17a provided in the supply pipe 17. Then, a liquid flow is generated inside the electrodeposition tank 1. The distance between the two electrode plates 2 and 2 and the porous substrate 10 is 5 cm, respectively.
And the ratio of the area of the electrode plates 2, 2 to the area of the porous substrate 10 was set to 1: 1. The porous substrate 10 is connected to the cathode (−) side of the rectifier 12 via the transport suspender 11, and the electrode plates 2 and 2 on both sides are connected to the anode of the rectifier 12 via the suspender 13 ( +) Side was connected.

【0031】ついで、整流器12より電圧50V、電気
量55クーロンで電極板2、2、多孔性基材10に電流
を流し、カチオン型(陰イオン型)電着塗装を施した。
電着塗装の原理は、従来公知の如く、図3(A)(B)
(C)に示すように、スラリー液中で分散している粒
子、即ち、樹脂(アクリル・カチオンバインダー)およ
び金属粉末(酸化ニッケル)は陽極(+)に帯電し、陰
極(−)の電極に向かって移動して電気泳動をおこし、
陰極を帯電した多孔性基材10に達した粒子(金属粉末
および樹脂バインダー)は陰極表面で放電し、電気を失
って凝集析出する。
Then, a current was applied to the electrode plates 2 and 2 and the porous substrate 10 from the rectifier 12 with a voltage of 50 V and an electric quantity of 55 coulombs to apply cationic (anionic) electrodeposition coating.
The principle of electrodeposition coating is as shown in FIG.
As shown in (C), the particles dispersed in the slurry liquid, that is, the resin (acrylic / cationic binder) and the metal powder (nickel oxide) are charged to the anode (+) and to the cathode (-) electrode. Move towards and cause electrophoresis,
The particles (metal powder and resin binder) that have reached the porous substrate 10 with the cathode charged are discharged on the surface of the cathode, lose electricity and aggregate and deposit.

【0032】上記電着塗装工程において、陰極を帯電さ
せた多孔性基材10には、その表裏両面から陽極(+)
を帯電した金属粉末(酸化ニッケル)が凝集析出し、析
出の形成に従い、金属粉末の析出部分の電気抵抗値が高
くなる。よって、膜厚の増加が止まり、まだ金属が析出
していない未電着部分へと金属粉末は泳動し、多孔性基
材の板厚内部へと移動して付着していく。即ち、表裏両
面および板厚内部の空孔を囲む骨格部分の表面に均等な
厚さで金属が電着されることとなる。本実施例では、最
終的に、4.5g/dm2(樹脂10%)で付着させ
た。
In the above electrodeposition coating process, the porous base material 10 having the cathode charged is charged with an anode (+) from both front and back surfaces thereof.
The metal powder (nickel oxide) charged with is aggregated and deposited, and the electrical resistance value of the deposited portion of the metal powder increases as the deposit is formed. Therefore, the increase of the film thickness stops, and the metal powder migrates to the non-electrodeposited portion where the metal has not yet been deposited and moves to the inside of the plate thickness of the porous substrate and adheres thereto. That is, the metal is electrodeposited on both the front and back surfaces and the surface of the skeleton portion surrounding the holes inside the plate thickness with a uniform thickness. In this example, finally, 4.5 g / dm 2 (10% resin) was applied.

【0033】よって、多孔性基材10には、図4(A)
に示すように、多孔性基材10の空孔Sを囲む骨格9の
表面には、ステップ#1の導電処理で付着した0.12
g/dm2のニッケル金属層20が付着し、その表面
に、ステップ#3の電着塗装で4.5g/dm2(樹脂
10%含む)のニッケル金属層30が付着される。
Therefore, the porous substrate 10 has a structure shown in FIG.
As shown in FIG. 3, 0.12 attached to the surface of the skeleton 9 surrounding the pores S of the porous substrate 10 by the conductive treatment in step # 1.
A nickel metal layer 20 of g / dm 2 is deposited, and a nickel metal layer 30 of 4.5 g / dm 2 (containing 10% resin) is deposited on the surface thereof by electrodeposition coating in step # 3.

【0034】上記電着塗装後、ステップ#4で水洗処理
を施し、ついで、ステップ#5で温度130℃で2分間
乾燥処理を施した。ついで、ステップ#6で850℃で
3分間加熱して、脱煤処理を施し、多孔性基材のウレタ
ンスポンジおよびバインダー樹脂を焼き飛ばし、ニッケ
ルのみを残留させた。即ち、図4(B)に示す如く、多
孔性基材10の骨格9が無くなり、金属層20と30と
が残留して、空孔Sを囲む骨格を形成することとなる。
最後に、ステップ#7で1200℃で3分間加熱して焼
結を施した。焼結上がりの目付量は4.15g/dm2
となっていた。
After the above electrodeposition coating, a washing treatment was performed in step # 4, and then a drying treatment was performed in step # 5 at a temperature of 130 ° C. for 2 minutes. Next, in step # 6, heating was performed at 850 ° C. for 3 minutes to perform soot removal treatment, the urethane sponge of the porous substrate and the binder resin were burned off, and only nickel was left. That is, as shown in FIG. 4B, the skeleton 9 of the porous substrate 10 disappears, the metal layers 20 and 30 remain, and a skeleton surrounding the pores S is formed.
Finally, in step # 7, heating was performed at 1200 ° C. for 3 minutes to perform sintering. The basis weight after sintering is 4.15 g / dm 2.
It was.

【0035】上記工程で製造された金属多孔体は、ステ
ップ#2の化学メッキによる金属層20が少なく、金属
粉末からなる金属層30が多いため、ステップ#7の焼
結時に金属粉末の間の樹脂バインダーが焼き飛ばされて
凝縮するため、体積が1〜10%収縮し、空孔Sの面積
が小さくなる。また、空孔Sを囲む表面が金属粉末から
なる金属層30であるため、電気メッキによる金属層と
比較して表面に凹凸があり、図4(C)に示すように表
面粗さが大となっている。
The metal porous body manufactured in the above process has a small number of metal layers 20 formed by chemical plating in step # 2 and a large number of metal layers 30 made of metal powder. Since the resin binder is burned off and condensed, the volume shrinks by 1 to 10% and the area of the holes S becomes smaller. Further, since the surface surrounding the pores S is the metal layer 30 made of metal powder, the surface has irregularities as compared with the metal layer formed by electroplating, and the surface roughness is large as shown in FIG. 4C. Has become.

【0036】上記のように、空孔Sの面積が小さく、か
つ、表面に凹凸があると、該金属多孔体の空孔Sに活物
質を充填すると、活物質と金属層との接触面積が増大
し、電極板として用いると、充放電特性が向上する。
As described above, when the pores S have a small area and the surface is uneven, when the pores S of the porous metal body are filled with the active material, the contact area between the active material and the metal layer is reduced. When used as an electrode plate, the charge and discharge characteristics are improved.

【0037】上記第1実施例の必要目付量(4〜5g/
dm2)の90%以上を金属粉末を電着塗装で施した場
合と、必要目付量の100%を電気メッキで施した場合
とを比較すると、所要時間は、電気メッキの場合は電気
量によって変わるが30〜1時間必要であったが、本発
明の第1実施例では5秒〜5分で大幅に短縮した。か
つ、所要電気量も第1実施例は電気メッキの場合の13
0分の1程度と大幅に減少できた。さらに、第1実施例
の金属多孔体の機械特性は、張力4.2kgf/20m
m、伸び13%であり、同一の目付量を電気メッキで施
して形成した金属多孔体の張力4.5kgf/20m
m、伸び15%と殆ど同等で、機械特性上で問題はなか
った。
The required basis weight of the first embodiment (4-5 g /
Comparing 90% or more of dm 2 ) with metal powder by electrodeposition coating and 100% of required basis weight with electroplating, the required time depends on the amount of electricity with electroplating. Although it took 30 to 1 hour to change, it was significantly shortened to 5 seconds to 5 minutes in the first embodiment of the present invention. In addition, the required amount of electricity is 13 in the case of electroplating in the first embodiment.
It was able to be greatly reduced to about 1/0. Furthermore, the mechanical properties of the porous metal body of the first example are such that the tension is 4.2 kgf / 20 m.
m, elongation 13%, tension of metal porous body formed by electroplating the same basis weight 4.5 kgf / 20 m
m and elongation of 15% were almost the same, and there was no problem in mechanical properties.

【0038】上記第1実施例と同一の工程で、電着塗装
に用いる金属粉末と樹脂バインダーとの混合比率を代え
ると共に、電着塗装時の電気量(クーロンC)を代えて
目付量を代えた場合の第1変形例と第2変形例を表1に
示し、かつ、これら変形例の焼結後の張力および伸びを
表2に示す。
In the same process as in the first embodiment, the mixing ratio of the metal powder and the resin binder used for electrodeposition coating was changed, and the amount of electricity (Coulomb C) during electrodeposition coating was changed to change the basis weight. Table 1 shows the first modified example and the second modified example of the above cases, and Table 2 shows the tension and elongation after sintering of these modified examples.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】本発明は上記第1実施例に限定されず、電
着塗装を連続的に行わずに、バッチ式で行ってもよい。
また、図5のフローチャートの第2実施例に示すよう
に、脱煤、焼結を行わず、多孔性基材および樹脂バイン
ダーを焼き飛ばさずに残存させて用いてもよい。
The present invention is not limited to the above-mentioned first embodiment, and the electrodeposition coating may be carried out batchwise instead of continuously.
Further, as shown in the second embodiment of the flowchart of FIG. 5, the soot removal and the sintering may not be performed, and the porous base material and the resin binder may be left without being burnt out.

【0042】図6は第3実施例のフローチャートを示
し、ステップ#1の導電処理、ステップ#2の水洗処理
の後、ステップ#3で電気メッキを施し、その後、ステ
ップ#4で電着塗装を行ってもよい。ステップ#5から
は第1実施例のステップ#4と同一である。
FIG. 6 shows a flow chart of the third embodiment. After the conductive treatment in step # 1 and the washing treatment in step # 2, electroplating is performed in step # 3, and then electrodeposition coating is performed in step # 4. You can go. From step # 5, it is the same as step # 4 of the first embodiment.

【0043】上記第2実施例では、ステップ#1の導電
処理で、第1実施例と同様に、化学メッキで0.12g
/dm2のニッケルメッキを施し、ステップ#3の電気
メッキで0.88g/dm2のニッケルメッキを施して
いる。ステップ#4の電着塗装では第1実施例と同様に
4.5g/dm2でニッケルを付着している。
In the second embodiment, the conductive treatment in step # 1 is similar to the first embodiment, and the chemical plating is 0.12 g.
/ Dm 2 nickel plating is applied, and 0.88 g / dm 2 nickel plating is applied by electroplating in step # 3. In the electrodeposition coating of step # 4, nickel was deposited at 4.5 g / dm 2 as in the first embodiment.

【0044】上記のように、電気メッキで電着塗装が容
易にできる程度に薄膜で金属を付着してもよいし、場合
によっては、電気メッキで必要目付量の略半分を施し、
残り半分を電着塗装で施してもよい。また、電気メッキ
を電着塗装を施す前に行った場合も、図7の第4実施例
に示すように、後工程の脱煤および焼結を無くしてよ
い。
As described above, the metal may be adhered in a thin film to the extent that electrodeposition coating can be easily performed by electroplating, or in some cases, electroplating may be performed to give approximately half of the required basis weight.
The other half may be electrodeposited. Further, even when the electroplating is performed before the electrodeposition coating, the soot removal and the sintering in the subsequent process may be eliminated as shown in the fourth embodiment of FIG.

【0045】[0045]

【発明の効果】以上の説明より明らかなように、請求項
1乃至請求項9に記載の本発明に係わる電池電極基板用
金属多孔体の製造方法は下記に列挙する効果を有する。
まず、請求項1に記載の方法では、下地処理の導電処理
後に電着塗装で多孔性基材の空孔を囲む骨格表面に金属
層を形成するため、基材の表裏両面および板厚内部の骨
格表面に均一な厚さで金属層を形成できる。かつ、電着
塗装を用いるため、電気メッキと比較して処理時間の大
幅な短縮が図れると共に使用電気量の大幅な低減により
コストダウンが図れ、大量生産に好適に採用できる。
As is apparent from the above description, the method for producing a metal porous body for a battery electrode substrate according to the present invention described in claims 1 to 9 has the effects listed below.
First, in the method according to claim 1, since the metal layer is formed on the skeleton surface surrounding the pores of the porous base material by electrodeposition coating after the conductive treatment of the base treatment, the front and back surfaces of the base material and the inside of the plate thickness are formed. The metal layer can be formed on the surface of the skeleton with a uniform thickness. In addition, since the electrodeposition coating is used, the processing time can be greatly shortened as compared with the electroplating, and the amount of electricity used can be greatly reduced to reduce the cost, which can be suitably used for mass production.

【0046】請求項2に記載のように、電着塗装の前工
程で電気メッキを行うと、電着塗装工程での金属粉末の
電着をより迅速かつ確実に行う事ができ、100%電気
メッキの場合と比較して、上記の如く、処理時間の短縮
および使用電気量の低減が図れる。
When the electroplating is performed in the step before the electrodeposition coating as described in claim 2, the electrodeposition of the metal powder in the electrodeposition coating step can be performed more quickly and surely, resulting in 100% electricity. As described above, the processing time and the amount of electricity used can be reduced as compared with the case of plating.

【0047】請求項3に記載のように、電着塗装後に脱
煤、焼結を行うと、金属粉末の間に存在する樹脂バイン
ダーが焼き飛ばされるため、金属層の体積が収縮し、該
金属層により囲まれる空孔の面積を小とできる。請求項
4に記載したように、電着塗料として水と金属粉末とバ
インダー樹脂とを混合したスラリー液を用いると、水の
電気分解によりスラリー液中の金属粉末に電気泳動を生
じさせて、多孔性基材の表裏両面および空孔を通して板
厚内部の空孔を囲む骨格まで金属粉末を電着塗装で付着
することが出来る。
As described in claim 3, when soot removal and sintering are performed after the electrodeposition coating, the resin binder existing between the metal powders is burned off, so that the volume of the metal layer shrinks, and the metal The area of the holes surrounded by the layers can be made small. As described in claim 4, when a slurry liquid in which water, metal powder and a binder resin are mixed is used as the electrodeposition paint, electrolysis of water causes the metal powder in the slurry liquid to electrophorese, resulting in porosity. The metal powder can be attached by electrodeposition coating to the front and back surfaces of the flexible substrate and the skeleton surrounding the holes inside the plate thickness through the holes.

【0048】請求項5に記載したように、金属粉末を、
単体、合金、あるいはこれらの酸化粉末から構成し、こ
れら金属粉末を一種類だけ用いて、一種類の金属層を形
成することが出来ると共に、複数種類を混合して用い、
多種類の金属からなる金属層を形成することができる。
請求項6に記載のように、連続的に電着塗装を施して、
金属多孔体を連続製造すると、製造された金属多孔体を
コイル状に巻き取ることができ、製造された金属多孔体
の保管、搬送等を容易とすることができる。
As described in claim 5, the metal powder is
Simple substance, alloy, or composed of these oxide powders, using only one kind of these metal powders, it is possible to form one kind of metal layer, and a plurality of kinds are mixed and used.
It is possible to form a metal layer composed of various kinds of metals.
As described in claim 6, by continuously performing electrodeposition coating,
When the metal porous body is continuously manufactured, the manufactured metal porous body can be wound into a coil, and the manufactured metal porous body can be easily stored and transported.

【0049】請求項7に記載のように、多孔性基材とし
て発泡体、メッシュ体、不織布を単体あるいは積層して
用いると、所要形状の空孔および所要の空孔率を有する
金属多孔体を製造することができる。請求項8に記載す
るような下地導電処理を用いると、有機樹脂等からなる
多孔性基材に対して電着塗装を行うことができる。請求
項9に記載のように、電着塗料液中の金属粉末の比率を
高めておくと、短時間で効率よく電着塗装を施すことが
でき、かつ、析出部の金属粉末の割合を高め、場合によ
っては後工程の脱煤、焼結を無くすことができる。
When a foamed body, a mesh body or a non-woven fabric is used as the porous substrate alone or in a laminated form as described in claim 7, a porous metal body having pores of a required shape and a required porosity can be obtained. It can be manufactured. By using the underlying conductive treatment as described in claim 8, electrodeposition coating can be performed on the porous substrate made of an organic resin or the like. When the ratio of the metal powder in the electrodeposition coating liquid is increased as described in claim 9, the electrodeposition coating can be efficiently performed in a short time, and the ratio of the metal powder in the deposited portion is increased. In some cases, it is possible to eliminate the soot removal and sintering in the subsequent process.

【0050】上記請求項1乃至請求項9の製造方法によ
り製造された請求項10乃至13に記載の電池電極基板
用金属多孔体は、金属粉末の電着塗装膜からなる金属層
により空孔を囲む骨格が形成されているため、表裏両面
および板厚内部の金属層の厚さが略均一な厚さになって
いる。かつ、金属層の表面が電気メッキによる金属層の
表面と比較して凹凸があり表面粗さが大となっており、
しかも、空孔の面積が小さくなるため、空孔に充填され
る活物質との接触面積が大となり、電池特性を向上させ
ることができる。また、請求項11、12に記載のよう
に、電着塗装により製造するため、どのような形状の表
面にも金属を析出させて金属層を形成することができ
る。
The metal porous body for a battery electrode substrate according to any one of claims 10 to 13 manufactured by the manufacturing method according to any one of claims 1 to 9 has pores formed by a metal layer formed of an electrodeposition coating film of metal powder. Since the surrounding skeleton is formed, the thickness of the metal layer on both the front and back surfaces and inside the plate thickness is substantially uniform. Moreover, the surface of the metal layer has unevenness and a large surface roughness compared to the surface of the metal layer formed by electroplating,
Moreover, since the area of the pores is small, the contact area with the active material filled in the pores is large, and the battery characteristics can be improved. Further, as described in the eleventh and twelfth aspects, since it is manufactured by electrodeposition coating, a metal layer can be formed by depositing a metal on the surface of any shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例のフローチャートであ
る。
FIG. 1 is a flow chart of a first embodiment of the present invention.

【図2】 第1実施例の電着槽で行う電着塗装工程を示
し、(A)は概略側断面図、(B)は概略正面断面図で
ある。
FIG. 2 shows an electrodeposition coating process performed in the electrodeposition tank of the first embodiment, (A) is a schematic side sectional view, and (B) is a schematic front sectional view.

【図3】 (A)(B)(C)は電着塗装の原理図であ
る。
3 (A), (B) and (C) are principle diagrams of electrodeposition coating.

【図4】 (A)は多孔性基材の表面に導電処理と電着
塗装が施された状態を示す断面図、(B)は脱煤が行わ
れた後の断面図、(C)は(B)のC−C線断面図であ
る。
4A is a cross-sectional view showing a state in which conductive treatment and electrodeposition coating are applied to the surface of a porous substrate, FIG. 4B is a cross-sectional view after soot removal, and FIG. It is the CC sectional view taken on the line of (B).

【図5】 第2実施例のフローチャートである。FIG. 5 is a flowchart of a second embodiment.

【図6】 第3実施例のフローチャートである。FIG. 6 is a flowchart of a third embodiment.

【図7】 第4実施例のフローチャートである。FIG. 7 is a flowchart of a fourth embodiment.

【符号の説明】[Explanation of symbols]

1 電着槽 2 電極板 9 基材の骨格 10 多孔性基材 12 整流器 20 導電処理による金属層 30 電着塗装による金属層 S 空孔 DESCRIPTION OF SYMBOLS 1 Electrodeposition tank 2 Electrode plate 9 Framework of base material 10 Porous base material 12 Rectifier 20 Metal layer by conductive treatment 30 Metal layer by electrodeposition coating S Hole

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 多孔性基材に導電処理を施した後、金属
粉末を含む電着塗料により電着塗装を施すことを特徴と
する電池電極基板用金属多孔体の製造方法。
1. A method for producing a metal porous body for a battery electrode substrate, which comprises subjecting a porous base material to a conductive treatment and then applying electrodeposition coating with an electrodeposition coating material containing a metal powder.
【請求項2】 多孔性基材に導電処理を施した後、電気
メッキを施し、ついで、金属粉末を含む電着塗料により
電着塗装を施すことを特徴とする電池電極基板用金属多
孔体の製造方法。
2. A metal porous body for a battery electrode substrate, characterized in that a porous substrate is subjected to a conductive treatment, then electroplated, and then electrodeposition coating with an electrodeposition coating material containing a metal powder. Production method.
【請求項3】 上記電着塗装を施した後、所要温度で所
要時間加熱して、脱煤、焼結を行う請求項1または請求
項2に記載の製造方法。
3. The manufacturing method according to claim 1, wherein after applying the electrodeposition coating, heating is performed at a required temperature for a required time to remove soot and sinter.
【請求項4】 上記電着塗料は、水に上記金属粉末と電
着塗料用樹脂と分散剤とを混合したものからなる請求項
1乃至請求項3のいずれか1項に記載の製造方法。
4. The production method according to claim 1, wherein the electrodeposition coating material comprises water mixed with the metal powder, a resin for electrodeposition coating material, and a dispersant.
【請求項5】 上記金属粉末は、金属単体、合金あるい
はこれら単体および合金の酸化粉末からなり、かつ、一
種類の上記金属粉末あるいは複数種の上記金属粉末を混
合したものからなる請求項1乃至請求項4のいずれか1
項に記載の製造方法。
5. The metal powder comprises a metal simple substance, an alloy, or an oxide powder of these simple substances and alloys, and one kind of the metal powder or a mixture of a plurality of kinds of the metal powders. Any one of claim 4
The manufacturing method according to item.
【請求項6】 上記電着塗装は、電着槽内に連続した多
孔性基材を搬送しながら、連続的に行っている請求項1
乃至請求項5のいずれか1項に記載の製造方法。
6. The electrodeposition coating is continuously carried out while transporting a continuous porous substrate into the electrodeposition tank.
To the manufacturing method according to claim 5.
【請求項7】 上記多孔性基材は、合成樹脂、天然繊
維、セルロースおよび紙等の有機質からなる発泡状、不
織布状、メッシュ状、織物状、フエルト状、スクリーン
状、エキスパンデッド状等の多孔体からなり、これらを
単体あるいは積層して用いている請求項1乃至請求項6
のいずれか1項に記載の製造方法。
7. The porous substrate is in the form of foam, non-woven fabric, mesh, woven fabric, felt, screen, expanded or the like made of organic material such as synthetic resin, natural fiber, cellulose and paper. It consists of a porous body, and these are used individually or laminatedly.
The manufacturing method according to any one of 1.
【請求項8】 上記導電処理として、化学メッキ、カー
ボン塗布、金属粉末の蒸着、化学蒸着(CVD)、スパ
ッタリング、パラジウム処理等を用い、電着塗装ができ
る程度に多孔性基材に対して下地導電処理を行っている
請求項1乃至請求項7のいずれか1項に記載の製造方
法。
8. The conductive treatment is performed by chemical plating, carbon coating, vapor deposition of metal powder, chemical vapor deposition (CVD), sputtering, palladium treatment, or the like, and a base is formed on a porous substrate to the extent that electrodeposition coating is possible. The manufacturing method according to claim 1, wherein the conductive treatment is performed.
【請求項9】 上記電着塗料中の金属粉末と電着塗料用
樹脂の比率は、金属粉末70〜98%で、樹脂が2〜3
0%である請求項1乃至請求項8のいずれか1項に記載
の製造方法。
9. The ratio of the metal powder and the resin for electrodeposition coating in the electrodeposition coating is 70 to 98% of metal powder, and the resin is 2 to 3%.
It is 0%, The manufacturing method of any one of Claim 1 thru | or 8.
【請求項10】 請求項1乃至請求項9のいずれか1項
に記載の製造方法により製造された、多孔繊維状構造体
あるいは三次元網状構造体からなる電池電極基板用金属
多孔体。
10. A metal porous body for a battery electrode substrate, comprising a porous fibrous structure or a three-dimensional network structure, which is manufactured by the manufacturing method according to any one of claims 1 to 9.
【請求項11】 上記多孔繊維状構造体は、不織布状、
メッシュ状、織物状、編物状、フエルト状、スクリーン
状、エキスパンデッド状等の構造からなる請求項10に
記載の電池電極基板用金属多孔体。
11. The porous fibrous structure is a non-woven fabric,
The metal porous body for a battery electrode substrate according to claim 10, having a structure of a mesh shape, a woven shape, a knitted shape, a felt shape, a screen shape, an expanded shape, or the like.
【請求項12】 上記三次元網状構造体は、発泡状、ス
ポンジ状、海綿状、ハニカム状等の構造からなる請求項
10に記載の電池電極基板用金属多孔体。
12. The metal porous body for a battery electrode substrate according to claim 10, wherein the three-dimensional network structure has a foamed, sponge-like, sponge-like, honeycomb-like structure or the like.
【請求項13】 上記多孔繊維状構造体あるいは三次元
網状構造体を構成する金属粉末の粒径は、0.1μm〜
5μmである請求項10乃至12のいずれか1項に記載
の電池電極基板用金属多孔体。
13. The particle size of the metal powder constituting the porous fibrous structure or the three-dimensional network structure is 0.1 μm to
It is 5 micrometers, The metal porous body for battery electrode substrates of any one of Claims 10 thru | or 12.
JP6291464A 1994-11-25 1994-11-25 Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate Withdrawn JPH08148142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291464A JPH08148142A (en) 1994-11-25 1994-11-25 Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291464A JPH08148142A (en) 1994-11-25 1994-11-25 Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate

Publications (1)

Publication Number Publication Date
JPH08148142A true JPH08148142A (en) 1996-06-07

Family

ID=17769216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291464A Withdrawn JPH08148142A (en) 1994-11-25 1994-11-25 Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate

Country Status (1)

Country Link
JP (1) JPH08148142A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099217A1 (en) * 2000-06-23 2001-12-27 Wowtec Co., Ltd. Method of fabricating catalyzed porous carbon electrode for fuel cell
JP2003532609A (en) * 2000-05-10 2003-11-05 アルバータ リサーチ カウンシル インコーポレイテッド Production of hollow ceramic membranes by electrophoretic deposition
JP2005285599A (en) * 2004-03-30 2005-10-13 Masayuki Takashima Collector for fuel cell and electrolyte complex using the same
WO2012111605A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Three-dimensional porous aluminum mesh for use in collector, collector using said porous aluminum mesh, electrode using said collector, and nonaqueous-electrolyte battery, capacitor, and lithium-ion capacitor using said electrode
JP2015521793A (en) * 2012-06-19 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag Method for manufacturing ceramic device and ceramic device
JP2019160403A (en) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 Method for manufacturing battery
CN115663206A (en) * 2022-09-16 2023-01-31 上海氢蓝新能源科技有限公司 Preparation method of Fe-Ni-B multi-grain spherical structure catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532609A (en) * 2000-05-10 2003-11-05 アルバータ リサーチ カウンシル インコーポレイテッド Production of hollow ceramic membranes by electrophoretic deposition
WO2001099217A1 (en) * 2000-06-23 2001-12-27 Wowtec Co., Ltd. Method of fabricating catalyzed porous carbon electrode for fuel cell
JP2005285599A (en) * 2004-03-30 2005-10-13 Masayuki Takashima Collector for fuel cell and electrolyte complex using the same
WO2012111605A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Three-dimensional porous aluminum mesh for use in collector, collector using said porous aluminum mesh, electrode using said collector, and nonaqueous-electrolyte battery, capacitor, and lithium-ion capacitor using said electrode
JPWO2012111605A1 (en) * 2011-02-18 2014-07-07 住友電気工業株式会社 Three-dimensional network aluminum porous body for current collector, current collector using the aluminum porous body, electrode using the current collector, non-aqueous electrolyte battery using the electrode, capacitor, and lithium ion capacitor
JP2015521793A (en) * 2012-06-19 2015-07-30 エプコス アクチエンゲゼルシャフトEpcos Ag Method for manufacturing ceramic device and ceramic device
US9873952B2 (en) 2012-06-19 2018-01-23 Epos Ag Method of producing a ceramic component having a main body with internal electrodes
JP2019160403A (en) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 Method for manufacturing battery
CN115663206A (en) * 2022-09-16 2023-01-31 上海氢蓝新能源科技有限公司 Preparation method of Fe-Ni-B multi-grain spherical structure catalyst
CN115663206B (en) * 2022-09-16 2023-06-20 上海氢蓝新能源科技有限公司 Preparation method of Fe-Ni-B multi-striation sphere structure catalyst

Similar Documents

Publication Publication Date Title
KR101818085B1 (en) Highly corrosion-resistant porous metal body and method for producing the same
CN1043668C (en) Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
US4302322A (en) Low hydrogen overvoltage electrode
CN100355131C (en) Current collector structure and methods to improve the performance of a lead-acid battery
CN101098990B (en) Insoluble electrode
US5374491A (en) High density, high capacity battery electrode
WO2000028114A1 (en) Electrodeposition of catalytic metals using pulsed electric fields
CN107851806A (en) Metal porous body, fuel cell and the method for manufacturing metal porous body
US4470893A (en) Method for water electrolysis
CN111074317B (en) Surface treatment method of copper foil and copper foil material
JPH08148142A (en) Manufacture of metal porous body for battery electrode plate and metal porous body for battery electrode plate
CA2179347C (en) Electrode substrate for battery and process for preparing the same
US3377202A (en) Process for producing sintered nickel electrode plates
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
CN107636203B (en) Method for producing a metal coating having macropores, substrate coated with such a coating and use of such a substrate
EP0321711B1 (en) Process for manufacturing porous electrodes
JPH08165590A (en) Production of porous metal
US4236978A (en) Stable lead dioxide anode and method for production
JPS6125790B2 (en)
CN1039073A (en) The technology of preparation porous metal
JPS5925985A (en) Low overvoltage cathode having high durability and its production
JP3373141B2 (en) Partially silver-coated porous metal foam and gas diffusion electrode using it
US3674561A (en) Process for producing electrodes for rechargeable alkaline cells
JPS6344833B2 (en)
JPH0665775A (en) Electrodeposition method of metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205