JPH08145916A - Small angle scattering x-ray equipment - Google Patents

Small angle scattering x-ray equipment

Info

Publication number
JPH08145916A
JPH08145916A JP6284762A JP28476294A JPH08145916A JP H08145916 A JPH08145916 A JP H08145916A JP 6284762 A JP6284762 A JP 6284762A JP 28476294 A JP28476294 A JP 28476294A JP H08145916 A JPH08145916 A JP H08145916A
Authority
JP
Japan
Prior art keywords
ray
rays
sample
slit
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6284762A
Other languages
Japanese (ja)
Inventor
Tatsumi Hirano
辰巳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6284762A priority Critical patent/JPH08145916A/en
Publication of JPH08145916A publication Critical patent/JPH08145916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: To obtain small angle scattering X-ray equipment which is optimum for an analyzing method of small angle X-ray scattering for obtaining knowledge on a density structure relating to an observed element by utilizing a phenomenon of extraordinary scattering of an X ray. CONSTITUTION: An incident X ray from an X-ray source 1 is made monochromatic by a spectroscope 3 and then cast on a sample 5. A scattered X ray from the sample is passed through a slit 7 and, exposed and accumulated on an X-ray detector 9. After the exposure of a small angle X ray with energy E1, the spectroscope 3 and the slit 7 are controlled in linkage through a controller 13 from a computer 14, by a spectroscope drive part 10 and a slit drive part 12 respectively, and the scattered X ray with energy E2 is exposed and accumulated on the detector 9 at a different position from the one for the X ray with E1. After this operation is repeated till prescribed energy Ei, are images of the scattered X rays on the detector 9 are read out. A scattering pattern of a density structure relating to an observed element is extracted from small angle X-ray scattering patterns of discrete energy thus obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小角散乱X線装置に係
り、特に、X線小角散乱で、分散粒子のみの情報をマト
リックスからの情報と分離,抽出する高い精度の計測手
法に最適な装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-angle scattering X-ray device, and more particularly, it is an X-ray small-angle scattering device most suitable for a highly accurate measurement method for separating and extracting information only on dispersed particles from information from a matrix. Regarding

【0002】[0002]

【従来の技術】X線小角散乱は試料中の数nm〜数百n
mのサイズでの密度の不連続領域の存在によって生じる
ため、散乱物質として結晶質だけでなく非晶質物質から
の情報も得ることができる。その対象は、セルロース等
の高分子物質,筋肉,生体膜等の生体超分子といった長
周期構造をもつ物質のほかに、分散粒子を含む合金,セ
ラミックス等の不均一構造を有する構造材料等があり、
その適用範囲は広い。小角X線散乱により得られる情報
は、前述の長周期の構造,分散粒子の粒径分布,形状,
体積率、さらには粒子間距離等である。従来の小角散乱
X線装置の一例を図2に示す。X線源1からの入射X線
2は分光器3により特定のエネルギを有するX線に単色
化された後、X線ビームを成型する四象限スリットを経
て試料5に照射される。試料からの散乱X線8は空気に
よる散乱を抑制する真空パス6を経てX線検出器9によ
り測定される。また試料で散乱されなかった入射X線は
ビームストッパ15により遮られX線検出器に入らない
ようにできる。小角散乱X線装置により得られる散乱X
線パターンの一例を図3に示す。入射X線に対する散乱
X線の散乱角(2θ)に対する散乱X線強度の依存性よ
り分散粒子の粒径や粒子形状がわかる。さらに散乱X線
強度の散乱角に対する積分量(斜線の領域)から分散粒
子の総数が求められ、前述の分散粒子の粒径や粒子形状
を考慮することにより、粒子間距離を求めることができ
る。
2. Description of the Related Art Small angle X-ray scattering is a few nm to a few hundred n in a sample.
Since it is caused by the presence of the discontinuous region of the density in the size of m, not only the crystalline substance but also the amorphous substance can be obtained as the scattering substance. Targets include polymeric substances such as cellulose, substances with long-period structure such as biomolecules such as muscles and biomembranes, as well as alloys containing dispersed particles, structural materials with non-uniform structure such as ceramics, etc. ,
Its application range is wide. Information obtained by small-angle X-ray scattering includes the long-period structure, particle size distribution and shape of dispersed particles,
The volume ratio, and further, the distance between particles and the like. An example of a conventional small angle scattering X-ray apparatus is shown in FIG. The incident X-rays 2 from the X-ray source 1 are monochromaticized into X-rays having a specific energy by the spectroscope 3, and then are irradiated onto the sample 5 through the four-quadrant slit that shapes the X-ray beam. The scattered X-rays 8 from the sample are measured by the X-ray detector 9 through the vacuum path 6 which suppresses the scattering by air. The incident X-rays not scattered by the sample can be blocked by the beam stopper 15 so as not to enter the X-ray detector. Scattering X obtained by small-angle scattering X-ray device
An example of the line pattern is shown in FIG. From the dependence of the scattered X-ray intensity on the scattering angle (2θ) of the scattered X-rays with respect to the incident X-rays, the particle size and particle shape of the dispersed particles can be known. Further, the total number of dispersed particles is obtained from the integrated amount of the scattered X-ray intensity with respect to the scattering angle (hatched area), and the interparticle distance can be obtained by considering the particle diameter and particle shape of the dispersed particles described above.

【0003】[0003]

【発明が解決しようとする課題】構造材料として粒子分
散強化合金や複合セラミックスを利用する上で大切なの
が機械的性質である。粒子分散合金の場合、この機械的
性質を支配しているのが、粒子間距離である。これは分
散粒子による強化機構として、マトリックス中を移動す
る転移の移動を抑制する粒子によるオロワン応力は粒子
間距離の逆数に比例すると考えられている。即ち、粒子
間距離が小さい材料ほど、オロワン応力は強く、クリー
プ特性は良好となる。このため、この粒子間距離を定量
的に把握することは材料を開発する上で重要となる。ま
たクリープ試験では、二千時間もの長い計測が必要とな
るため、材料を開発するプロセスの最適化のために、材
料の機械的特性を支配する粒子間距離を迅速に測定した
いという要望がある。しかし、従来装置では、以下に述
べる問題点がある。
Mechanical properties are important in utilizing particle dispersion strengthened alloys and composite ceramics as structural materials. In the case of particle-dispersed alloys, it is the distance between particles that controls this mechanical property. This is considered to be a strengthening mechanism by the dispersed particles, and the Orowan stress by the particles that suppress the movement of the transition moving in the matrix is considered to be proportional to the reciprocal of the interparticle distance. That is, the smaller the inter-particle distance, the stronger the Orowan stress and the better the creep characteristics. For this reason, it is important to quantitatively grasp the distance between particles in developing a material. In addition, since a creep test requires measurement as long as 2,000 hours, there is a demand for quickly measuring the interparticle distance that governs the mechanical properties of the material in order to optimize the process for developing the material. However, the conventional device has the following problems.

【0004】前述の小角X線散乱から得られる情報に
は、分散粒子からの情報の他に、マトリックス内の空隙
等の密度揺らぎに起因する情報も含まれる。そこで、分
散粒子のみの情報を得るには、粒子を含まないマトリッ
クスからの小角X線散乱のデータで、粒子を含む場合の
それを補正する手法が用いられている。しかし実際に
は、粒子を含まないマトリックスと粒子を含むそれが同
一であるという保証がないため、この補正法で得られる
結果には多くの誤差を含むという問題がある。さらに粒
子を含まないマトリックスを平行して作製する必要があ
るため、複雑な製造プロセスを最適化するという上記の
要求には適さないという問題がある。
The information obtained from the above-mentioned small angle X-ray scattering includes not only information from dispersed particles but also information resulting from density fluctuations such as voids in the matrix. Therefore, in order to obtain information only on dispersed particles, a method of correcting small-angle X-ray scattering data from a matrix that does not contain particles when it contains particles is used. However, in practice, there is no guarantee that the particle-free matrix and the particle-containing matrix are the same, so there is a problem in that the results obtained by this correction method include many errors. Further, since it is necessary to prepare the particle-free matrix in parallel, there is a problem that it is not suitable for the above requirement of optimizing a complicated manufacturing process.

【0005】本発明の目的は、分散粒子を含む試料の小
角X線散乱測定から、着目する分散粒子に関する情報の
みを、それ以外の構造に起因する情報と分離させる計測
法に最適な装置を提供することにある。
An object of the present invention is to provide an apparatus suitable for a measuring method for separating only information about a dispersed particle of interest from small-angle X-ray scattering measurement of a sample containing dispersed particles and information due to other structures. To do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の小角散乱X線装置は、試料に入射するX線のエ
ネルギを限定する分光器と試料からの散乱X線の一部を
通過させる開口部及び該開口部の場所を移動できるスリ
ットを備え、X線のエネルギE1に対してスリットの開
口部位置P1,X線のエネルギE2に対してスリットの
開口部位置P2等のように、X線のエネルギに対してス
リットの開口部の場所を連動させる制御機構を具備し
た。
In order to achieve the above object, the small-angle scattering X-ray apparatus of the present invention passes through a spectroscope for limiting the energy of X-rays incident on a sample and a part of the scattered X-rays from the sample. An opening to be made and a slit capable of moving the position of the opening are provided, and the opening position P1 of the slit is for the energy E1 of the X-ray, and the opening position P2 of the slit is for the energy E2 of the X-ray. A control mechanism for interlocking the location of the opening of the slit with the energy of the X-ray was provided.

【0007】また本発明の小角散乱X線装置は、X線発
生部に複数個の元素からなるX線ターゲットと試料から
の散乱X線の一部を通過させる開口部及び前記開口部の
場所を移動できるスリットを備え、元素1からのX線に
対してスリットの開口部位置P1,元素2からのX線に
対してスリットの開口部位置P2等のように、X線ター
ゲットを構成する元素からのX線に対してスリットの開
口部の場所を連動させる制御機構を具備してなるもので
ある。
Further, in the small-angle scattering X-ray apparatus of the present invention, the X-ray generating part is provided with an X-ray target composed of a plurality of elements, an opening for passing a part of scattered X-rays from the sample, and a place of the opening. It is provided with a movable slit, and from the elements constituting the X-ray target, such as the opening position P1 of the slit for the X-ray from the element 1, the opening position P2 of the slit for the X-ray from the element 2, and the like. And a control mechanism for interlocking the location of the opening of the slit with the X-ray.

【0008】また発明に於いて、入射するX線光路上
に、前記X線ターゲットを構成する元素からの特性X線
のみを透過させるフィルタを備え、元素1に対して該特
性のフィルタ1,元素2に対して該特性のフィルタ2等
のように、X線ターゲットを構成する元素からのX線に
対してフィルタを選択できるような制御機構を具備して
なるものである。
Further, in the invention, a filter that transmits only characteristic X-rays from the element forming the X-ray target is provided on the incident X-ray optical path. 2, such as the filter 2 having the characteristic, is provided with a control mechanism capable of selecting a filter for X-rays from the elements forming the X-ray target.

【0009】また本発明の小角散乱X線装置は、複数の
異なるエネルギを有する入射X線と試料からの異なるエ
ネルギを有する散乱X線を十分にエネルギ分解できる位
置感応型検出器を具備してなるものである。
Further, the small-angle scattered X-ray apparatus of the present invention comprises a position-sensitive detector capable of sufficiently resolving incident X-rays having different energies and scattered X-rays having different energies from a sample. It is a thing.

【0010】[0010]

【作用】このような構成にした本発明によれば、次の作
用により上記目的が達成される。最初に、着目する分散
粒子に関する情報のみをそれ以外の構造に起因する情報
と分離する手法であるX線異常分散現象を利用した解析
法について説明する。小角散乱したX線強度Iは原子散
乱因子fに比例する。
According to the present invention having such a structure, the above object is achieved by the following operation. First, an analysis method using the X-ray anomalous dispersion phenomenon, which is a method of separating only the information regarding the dispersed particles of interest from the information due to other structures, will be described. The small-angle scattered X-ray intensity I is proportional to the atomic scattering factor f.

【0011】[0011]

【数1】 I∝|f|2、 f=f0+f′+if″ …(数1) ここで、f0 はX線エネルギに依存しない原子散乱因
子、f′とf″は異常分散項の実数及び虚数項である。
f′とf″は着目元素の吸収端近傍のエネルギで図4に
示すような依存性がある。今、着目する分散粒子を構成
する元素1がマトリックスに存在しない場合、元素1の
吸収端近傍のエネルギE1及びE2で小角X線散乱の測
定をする。このとき、元素1を含まない散乱物質(例え
ばマトリックス)からの散乱X線強度はE1およびE2
でほとんど変わらない。一方元素1から構成されている
分散粒子からの散乱X線強度は、E1およびE2で大き
く変化するため、E1とE2での散乱X線強度の違いは
分散粒子からのものと考えてよい。また、元素1の
0 ,f′,f″は数表や計算から求めることができ
る。即ち、分散粒子を構成する元素1の異常分散現象を
利用することにより、着目する粒子からの小角X線散乱
強度を得ることができる。このデータから、着目する粒
子に関する粒子径,形状,体積率粒子間距離等の物理量
を小角X線散乱の解析法に従って求めることができる。
## EQU1 ## I∝ | f | 2 , f = f 0 + f ′ + if ″ (Equation 1) where f 0 is an atomic scattering factor that does not depend on X-ray energy, and f ′ and f ″ are anomalous dispersion terms. Real and imaginary terms.
f ′ and f ″ are energies in the vicinity of the absorption edge of the target element and have a dependency as shown in Fig. 4. Now, when the element 1 constituting the dispersed particles of interest does not exist in the matrix, the vicinity of the absorption edge of the element 1 is present. The small-angle X-ray scattering is measured with the energies E1 and E2 of the X-rays, and the scattered X-ray intensities from the scattering material (eg matrix) not containing the element 1 are E1 and E2.
Is almost unchanged. On the other hand, since the scattered X-ray intensity from the dispersed particles composed of the element 1 changes greatly between E1 and E2, it can be considered that the difference in the scattered X-ray intensity between E1 and E2 is due to the dispersed particles. Further, f 0 , f ′, and f ″ of the element 1 can be obtained from a number table or calculation. That is, by utilizing the abnormal dispersion phenomenon of the element 1 forming the dispersed particles, a small angle X from the particle of interest can be obtained. It is possible to obtain the line scattering intensity, and from this data, the physical quantities such as the particle diameter, the shape, and the volume ratio interparticle distance regarding the particle of interest can be obtained according to the analysis method of small angle X-ray scattering.

【0012】次に、本発明による小角散乱X線装置の構
成を図1に示し、本発明の作用を説明する。X線源1か
らの連続エネルギの入射X線2は分光器3により特定の
エネルギを有するX線に単色化された後、X線ビームを
成型する四象限スリットを経て試料5に照射される。試
料からの散乱X線8は空気による散乱を抑制する真空パ
ス6を経た後、散乱X線の一部を通過させるスリット7
を経て、X線検出器9に露光される。露光後の検出器の
読み出し操作により、露光されたX線の強度と位置の信
号は、制御部13を経て、計算機14に取り込まれる。
また、分光器,試料,スリットは各々分光器駆動部1
0,試料駆動部11,スリット駆動部12によって計算
機より制御部を通して制御される。次に、X線異常分散
現象を利用した本発明による計測法について記述する。
分光器により単色化されたX線のエネルギをE1とす
る。この時、スリットの開口部の位置をP1とする。試
料からの散乱X線のうちスリットの開口部を通過した散
乱X線のみがX線検出器上に露光される。所定の露光時
間後、分光器駆動部により分光器を駆動させ、分光後の
X線のエネルギをE2とすると共に、スリット駆動部に
よりスリットの開口部をP1とは重ならない位置P2に
移動させた後、散乱X線をX線検出器上に露光させる。
この様に、X線のエネルギに対してスリットの開口部の
位置を連動させるような制御を計算機から制御部を通じ
て実施する。これにより、エネルギE2での散乱X線は
E1とは異なる位置に露光・記録されることになる。こ
の操作を所定回数繰り返すことにより、各X線エネルギ
i での散乱X線が、X線検出器上に露光・記録される
ことになる。この一連の操作が終了した後、これを読み
出すことにより、各X線エネルギEi での散乱X線を同
時に検出することができる。これによればX線異常分散
現象を利用した測定の計測時間を短縮でき、本発明によ
る装置は、この計測法に最適な測定装置となる。
Next, the structure of the small-angle scattering X-ray apparatus according to the present invention is shown in FIG. 1 to explain the operation of the present invention. The incident X-rays 2 of continuous energy from the X-ray source 1 are monochromated into X-rays having a specific energy by the spectroscope 3, and then are irradiated on the sample 5 through the four-quadrant slit for shaping the X-ray beam. The scattered X-rays 8 from the sample pass through a vacuum path 6 that suppresses scattering by air, and then a slit 7 that allows a part of the scattered X-rays to pass therethrough.
After that, the X-ray detector 9 is exposed. The signal of the intensity and position of the exposed X-ray is read into the computer 14 through the control unit 13 by the reading operation of the detector after the exposure.
In addition, the spectroscope, the sample, and the slit are each the spectroscope drive unit 1.
0, the sample drive unit 11, and the slit drive unit 12 are controlled by the computer through the control unit. Next, a measuring method according to the present invention using the X-ray anomalous dispersion phenomenon will be described.
The energy of X-rays monochromated by the spectroscope is defined as E1. At this time, the position of the opening of the slit is P1. Of the scattered X-rays from the sample, only the scattered X-rays that have passed through the slit opening are exposed on the X-ray detector. After a predetermined exposure time, the spectroscope driving section drives the spectroscope to set the energy of the X-rays after the spectroscopic analysis to E2, and the slit driving section moves the slit opening to a position P2 that does not overlap P1. After that, scattered X-rays are exposed on an X-ray detector.
In this way, control is performed from the computer through the control unit so that the position of the opening of the slit is interlocked with the energy of the X-ray. As a result, the scattered X-rays with the energy E2 are exposed and recorded at a position different from that of E1. By repeating this operation a predetermined number of times, scattered X-rays at each X-ray energy E i are exposed / recorded on the X-ray detector. After this series of operations is completed, by reading this out, scattered X-rays at each X-ray energy E i can be detected at the same time. According to this, the measurement time of the measurement using the X-ray anomalous dispersion phenomenon can be shortened, and the apparatus according to the present invention becomes an optimum measurement apparatus for this measurement method.

【0013】次に、図1とは異なる本発明の小角散乱X
線装置の構成を図5に示し、本発明を説明する。本発明
では、複数の異なるX線を発生するX線発生源と所定の
特性X線を透過させるフィルタを入射X線光路上に設け
たことが図1と異なる。電子銃16からの電子線17は
X線ターゲット20に衝突しX線を発生させる。X線タ
ーゲット20の表面は、複数の異なる元素18や元素1
9等から構成されている。元素18からのX線は、X線
発生部の真空を保持する真空隔壁21、及びフィルタ2
2を経て試料に入射する。フィルタ22の一部は元素1
8からの特性X線のみを選択的に透過させるフィルタを
使用することにより、試料に入射するX線のエネルギは
元素1固有のエネルギE1となり、前述と同様に、その
エネルギの散乱X線を露光する。次に、X線ターゲット
を駆動し元素2からのX線を発生させ、フィルタ駆動部
23により元素2に最適なフィルタがX線光路上にくる
ようにフィルタを駆動し、更にスリット駆動部12によ
り、スリット7の開口部の位置がP2となるようにスリ
ットを駆動する。これら一連の操作を連動させるべく、
計算機14より制御部13を経て実施し、元素2固有の
エネルギE2における散乱X線を露光する。その後、検
出器上に露光されたエネルギE1及びE2における散乱
X線を同時に読み出すことにより、X線異常分散現象を
利用した測定の計測時間を短縮でき、本発明による装置
は、この計測法に最適な測定装置となる。
Next, a small angle scattering X of the present invention different from that of FIG.
The configuration of the line device is shown in FIG. 5, and the present invention will be described. The present invention differs from FIG. 1 in that an X-ray generation source that generates a plurality of different X-rays and a filter that transmits predetermined characteristic X-rays are provided on the incident X-ray optical path. The electron beam 17 from the electron gun 16 collides with the X-ray target 20 to generate X-rays. The surface of the X-ray target 20 has a plurality of different elements 18 and elements 1.
It is composed of 9 etc. The X-rays from the element 18 are the vacuum partition wall 21 for holding the vacuum of the X-ray generation part, and the filter 2.
It is incident on the sample via 2. Part of filter 22 is element 1
By using a filter that selectively transmits only the characteristic X-rays from 8, the energy of the X-rays incident on the sample becomes the energy E1 peculiar to element 1, and the scattered X-rays of that energy are exposed as described above. To do. Next, the X-ray target is driven to generate X-rays from the element 2, the filter driving unit 23 drives the filter so that the optimum filter for the element 2 is on the X-ray optical path, and the slit driving unit 12 further. , The slit is driven so that the position of the opening of the slit 7 becomes P2. In order to link these series of operations,
The calculation is performed by the computer 14 via the control unit 13, and the scattered X-rays at the energy E2 unique to the element 2 are exposed. After that, by simultaneously reading the scattered X-rays at the energies E1 and E2 exposed on the detector, it is possible to shorten the measurement time of the measurement using the X-ray anomalous dispersion phenomenon, and the device according to the present invention is optimal for this measurement method. It becomes a measuring device.

【0014】最後に、図1,図5とは異なる本発明の小
角散乱X線装置の構成を図6に示し、本発明を説明す
る。本発明においては、複数の異なるエネルギを有する
入射X線と試料からの散乱X線のエネルギを十分識別で
きるエネルギ分解能を有した位置感応型X線検出器を備
えた点が前述の発明と異なる。X線発生源として、例え
ば前述の図5のそれと同様な構成からなり、元素1及び
元素2からの特性X線の発生を交互に連続的に発生させ
てもよい。元素1からのエネルギE1の特性X線により
発生する試料からの散乱X線は、エネルギ分解位置感応
型X線検出器24により随時計測され、X線のエネル
ギ,強度,検出位置の信号が制御器を通じて計算機に取
り込まれる。また元素2からのエネルギE2の特性X線
による試料からの散乱X線も同様に計測される。本装置
によれば、エネルギE1及びE2の各々における小角X
線散乱を同時に計測できることから、X線異常分散現象
を利用した測定の計測時間を短縮でき、本発明による装
置は、この計測法に最適な測定装置となる。
Finally, the structure of the small-angle scattering X-ray apparatus of the present invention, which is different from those of FIGS. 1 and 5, is shown in FIG. 6 to explain the present invention. The present invention differs from the above-mentioned invention in that a position-sensitive X-ray detector having an energy resolution capable of sufficiently discriminating the energy of incident X-rays having a plurality of different energies and the energy of scattered X-rays from a sample is provided. As the X-ray generation source, for example, the same configuration as that of FIG. 5 described above may be used, and the characteristic X-rays from the elements 1 and 2 may be alternately and continuously generated. The scattered X-rays from the sample generated by the characteristic X-rays of energy E1 from the element 1 are measured at any time by the energy-resolving position-sensitive X-ray detector 24, and the X-ray energy, intensity, and detection position signals are controlled by the controller. Is taken into the computer through. The scattered X-rays from the sample due to the characteristic X-rays of the energy E2 from the element 2 are also measured. According to this device, the small angle X at each of the energies E1 and E2
Since the line scattering can be measured at the same time, the measurement time of the measurement using the X-ray anomalous dispersion phenomenon can be shortened, and the device according to the present invention becomes the optimum measuring device for this measuring method.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0016】図1に、本発明を適用してなる一実施例の
小角X線散乱装置を示す。X線源1からの連続エネルギ
の入射X線2は分光器3により特定のエネルギを有する
X線に単色化された後、X線ビームを成型する四象限ス
リットを経て試料5に照射される。試料からの散乱X線
8は空気による散乱を抑制する真空パス6を経た後、散
乱X線の一部を通過させるスリット7を経て、X線検出
器9に露光される。露光後の検出器の読み出し操作によ
り、露光されたX線の強度と位置の信号は、制御部13
を経て、計算機14に取り込まれる。また、分光器,試
料,スリットは各々分光器駆動部10,試料駆動部1
1,スリット駆動部12によって計算機より制御部を通
して制御される。X線源1には、高強度,連続エネルギ
の放射が可能なシンクロトロン放射光を光源とした。シ
ンクロトロン放射光からのX線は水平面に偏向している
ため、分光器3には垂直分散によりX線を分光する方式
を採った。分光器は、二枚のSi(111)結晶とX線
の結晶に対する入射角を0.1秒の精度で制御できる結
晶あおり機構から構成されている。また、この結晶を所
定の角度回転させる水平一軸回転台(分光器駆動部1
0)により、所望のエネルギを有するX線が分光器より
出射される。四象限スリット4には二枚のタンタル板を
向い合わせて配置した一次元スリットを二組、水平及び
垂直に交差させて使用した。本実施例では、この四象限
スリットを二つ使用した。一つは、分光器の直下に設置
し、分光器3から出射される単色X線のビームを成型す
ると共に、分光器からの所望のエネルギの単色X線以外
のX線を遮蔽する目的がある。他の一つは、試料直前に
設置し、分光器や先の四象限スリット等からの寄生散乱
が試料に入射しないようにX線を制限した。本実施例で
は、四象限スリットの開口幅を1mm×1mmとした。分光
器及び試料直前の四象限スリットまでのX線光路は、空
気による寄生散乱を抑制するため、ヘリウムで置換し
た。試料5は、y,z方向の並進機構を備えた試料駆動
部11により、試料の任意の位置にX線が照射するよう
に計算機14より制御部13を通じて制御できる。真空
パス6は、上流の開口径25mm、下流のそれを140mm
とし、窓材にポリイミド膜を用いて、内部を10-2Torr
程度の真空にし、X線の空気による散乱を抑制した。ス
リット7は、円盤状で、その1/4の領域が散乱X線を
透過させる開口部となっている。X線を遮蔽する領域
は、アルミニウム板に厚さ0.5mm の鉛を張り合わせた
もので、円盤の中心を回転軸として、スリット駆動部に
より任意に回転或いはその位置で保持できる構造となっ
ている。X線検出器9は散乱X線像を蓄積する輝尽性蛍
光板を使用した。この検出器には、その直前に置かれた
スリット7により、試料からの散乱X線像の一部が露光
・蓄積される。
FIG. 1 shows a small-angle X-ray scattering apparatus according to an embodiment of the present invention. The incident X-rays 2 of continuous energy from the X-ray source 1 are monochromated into X-rays having a specific energy by the spectroscope 3, and then are irradiated on the sample 5 through the four-quadrant slit for shaping the X-ray beam. The scattered X-rays 8 from the sample pass through a vacuum path 6 that suppresses scattering by air, and then are exposed to an X-ray detector 9 through a slit 7 that allows a part of the scattered X-rays to pass. The signal of the intensity and position of the exposed X-ray is read by the control unit 13 by the reading operation of the detector after the exposure.
After that, it is taken into the computer 14. Further, the spectroscope, the sample, and the slit are respectively the spectroscope drive unit 10 and the sample drive unit 1.
1. The computer is controlled by the slit drive unit 12 through the control unit by the computer. As the X-ray source 1, a synchrotron radiation light capable of emitting high intensity and continuous energy was used as a light source. Since the X-rays from the synchrotron radiation are deflected in the horizontal plane, the spectroscope 3 adopts a method of dispersing the X-rays by vertical dispersion. The spectroscope is composed of two Si (111) crystals and a crystal tilting mechanism that can control the incident angle of X-rays on the crystal with an accuracy of 0.1 second. In addition, a horizontal uniaxial turntable for rotating this crystal at a predetermined angle (spectrometer drive unit 1
0), X-rays having desired energy are emitted from the spectroscope. For the four-quadrant slit 4, two sets of one-dimensional slits in which two tantalum plates were faced to each other were used, which were used by intersecting them horizontally and vertically. In this embodiment, two of these four quadrant slits are used. One is to be installed directly below the spectroscope to form a monochromatic X-ray beam emitted from the spectroscope 3 and to shield X-rays other than the monochromatic X-ray of desired energy from the spectroscope. . The other one was installed immediately before the sample, and X-rays were restricted so that parasitic scattering from a spectroscope or the above-mentioned four-quadrant slit did not enter the sample. In this embodiment, the opening width of the four-quadrant slit is 1 mm × 1 mm. The X-ray optical path to the spectroscope and the four-quadrant slit just before the sample was replaced with helium in order to suppress parasitic scattering by air. The sample 5 can be controlled by the computer 14 through the control unit 13 so that the X-ray is irradiated to an arbitrary position of the sample by the sample driving unit 11 having a translation mechanism in the y and z directions. Vacuum path 6 has an opening diameter of 25 mm upstream and 140 mm downstream.
And, using polyimide film for the window material, the inside is 10 -2 Torr
A vacuum of about a certain degree was applied to suppress scattering of X-rays by air. The slit 7 is disk-shaped, and a quarter of the slit 7 is an opening for transmitting scattered X-rays. The X-ray shielding area is an aluminum plate to which 0.5 mm thick lead is attached, and the structure is such that the center of the disk is the axis of rotation and can be arbitrarily rotated or held at that position by the slit drive unit. . As the X-ray detector 9, a stimulable fluorescent plate that accumulates scattered X-ray images is used. A part of the scattered X-ray image from the sample is exposed and accumulated on this detector by the slit 7 placed immediately before it.

【0017】次に、このように構成される実施例装置を
用いて、X線異常分散現象を利用した試料の小角散乱測
定について説明する。試料はNi基超合金のマトリック
ス内にイットリア(Y23)が微細分散されたもので、
高温での耐熱特性の向上を図った材料である。この試料
の小角散乱により、材料の耐熱特性を支配する分散粒子
イットリアの粒子径分布、体積率さらには粒子間の距離
をX線異常分散現象を利用して測定した。イットリアを
構成するイットリウム(Y)元素のK−吸収端エネルギ
は、17.039keVである。そこで、この吸収端より低
いエネルギの17.038keV,17.031keV,16.
973keV,16.807keVの四つのエネルギで小角散
乱の測定をした。試料は、これらのX線エネルギで光学
的厚さが〜2となるように薄片化(厚み〜20μm)し
て、試料台にセットした。最初に、分光器からの単色X
線のエネルギが、17.038keVとなるように分光器を
調整すると共に、スリット7の開口部の位置がy−z平
面上で第一象限となるように調整した。その後、シンク
ロトロン放射光のビームを出射して、試料からの散乱X
線を検出器上に露光した。露光時間は30分とした。露
光後、放射光のビームを遮断し、分光器からのX線が1
7.031keVとなるように、またスリットの開口部の位
置が第二象限となるように各々調整した後、再び放射光
のビームを出射して露光した。これを、16.807keV
のX線による露光が終了するまで繰り返す。その後、輝
尽性蛍光板に蓄積された各X線エネルギでの散乱X線像
を同時に読み出し、X線の散乱強度と位置の情報を、制
御部13を経て計算機14に取り込んだ。測定データ
は、計算機上で各エネルギ毎に図3に示す散乱角度(2
θ)に対する散乱X線強度となるよう、各X線検出位置
の散乱角度への補正、同じ散乱角度毎のX線強度の積分
等のデータ処理を行った。その後、得られた各エネルギ
での散乱X線パターンより、作用の項で記述したよう
に、イットリウムの原子散乱因子のエネルギ依存性を考
慮することで、イットリアからの小角散乱成分のみを抽
出することができた。これから所定の小角散乱の解析に
より、イットリアの粒子径分布,体積率,粒子間距離な
どの物理量を得ることができた。
Next, the small-angle scattering measurement of the sample using the X-ray anomalous dispersion phenomenon will be described by using the apparatus of the embodiment thus constructed. The sample is yttria (Y 2 O 3 ) finely dispersed in a matrix of Ni-based superalloy.
It is a material with improved heat resistance at high temperatures. The small-angle scattering of this sample was used to measure the particle size distribution and volume ratio of the dispersed particles yttria, which governs the heat resistance of the material, as well as the distance between the particles, using the X-ray anomalous dispersion phenomenon. The K-edge energy of the yttrium (Y) element forming yttria is 17.039 keV. Therefore, the energy lower than the absorption edge is 17.038keV, 17.031keV, 16.
Small angle scattering was measured at four energies of 973 keV and 16.807 keV. The sample was sliced (thickness ˜20 μm) so as to have an optical thickness of ˜2 with these X-ray energies and set on the sample stage. First, the monochromatic X from the spectrometer
The spectrometer was adjusted so that the energy of the line was 17.038 keV, and the position of the opening of the slit 7 was adjusted to be in the first quadrant on the yz plane. After that, a beam of synchrotron radiation is emitted to scatter X-rays from the sample.
The line was exposed on the detector. The exposure time was 30 minutes. After the exposure, the beam of synchrotron radiation is blocked, and the X-ray from the spectroscope becomes 1
After adjusting so that it was 7.031 keV and the position of the slit opening was in the second quadrant, a beam of radiated light was emitted again for exposure. This is 16.807keV
Repeat until the X-ray exposure is completed. After that, the scattered X-ray images at each X-ray energy accumulated on the stimulable phosphor plate were read out at the same time, and the information on the scattering intensity and position of the X-rays was taken into the computer 14 via the control unit 13. The measurement data is calculated on the computer for each energy by the scattering angle (2
Data processing such as correction to the scattering angle at each X-ray detection position and integration of the X-ray intensity for each same scattering angle were performed so that the scattered X-ray intensity would correspond to θ). Then, from the obtained scattered X-ray patterns at each energy, as described in the section of action, only the small-angle scattering component from yttria is extracted by considering the energy dependence of the atomic scattering factor of yttrium. I was able to. From this, it was possible to obtain physical quantities such as the particle size distribution of yttria, the volume ratio, and the distance between particles by the analysis of predetermined small-angle scattering.

【0018】本実施例では、X線源に高強度なシンクロ
トロン放射光源を使用したため、短い露光時間で小角散
乱測定ができるという効果がある。さらに、シンクロト
ロン放射光からのX線は高い平行性を有するため、高い
小角分解能での測定が可能となる効果がある。また、検
出器の直前にスリットを設けることにより、試料に散乱
されない強度の高い透過X線が検出器に直接入射しない
ため、輝尽性蛍光板の過度の露光や、焼き付き等の問題
を回避できる。さらに、本実施例では、検出器に輝尽性
蓄積板を使用しているため、通常のX線フィルムに比べ
帯域が広く精度の高い測定が可能になると共に、散乱画
像のデジタルの読み出しが可能となり、データ処理等が
容易になる。本実施例では光源にシンクロトロン放射光
光源を使用したが、通常の実験室で使用されているX線
管球を光源に用いることで、放射光の実験期間などの制
約を受けずに小角散乱測定ができる。また検出器に輝尽
性蛍光板の代りに、通常のX線フィルムを用いることで
簡単なセットアップで小角散乱測定ができる。また、本
実施例の装置構成によれば、分光器からの単色X線のエ
ネルギを固定する代りに、スリットの開口部位置の駆動
と試料の照射X線位置の駆動を連動させることにより、
非一様な試料中の場所による密度構造を効率良く測定す
ることが可能である。
In this embodiment, since a high intensity synchrotron radiation source is used as the X-ray source, there is an effect that small angle scattering measurement can be performed in a short exposure time. Further, since X-rays from the synchrotron radiation have high parallelism, there is an effect that measurement with high small angle resolution is possible. Further, by providing the slit immediately before the detector, high-intensity transmitted X-rays that are not scattered by the sample do not directly enter the detector, so problems such as excessive exposure of the stimulable fluorescent plate and burn-in can be avoided. Further, in the present embodiment, since the photostimulable storage plate is used for the detector, the band is wider than that of the ordinary X-ray film and the measurement can be performed with high accuracy, and the scatter image can be digitally read out. Therefore, data processing becomes easy. Although the synchrotron radiation light source was used as the light source in the present embodiment, by using the X-ray tube used in a normal laboratory as the light source, small-angle scattering can be performed without being restricted by the experimental period of synchrotron radiation. You can measure. Moreover, small-angle scattering measurement can be performed with a simple setup by using an ordinary X-ray film instead of the stimulable fluorescent plate for the detector. Further, according to the apparatus configuration of the present embodiment, instead of fixing the energy of the monochromatic X-ray from the spectroscope, the driving of the opening position of the slit and the driving of the irradiation X-ray position of the sample are interlocked,
It is possible to efficiently measure the density structure depending on the location in a non-uniform sample.

【0019】次に、本発明を適用してなる他の実施例の
小角散乱X線装置を図5に示す。本実施例は図1の実施
例とX線源、分光器が異なる。電子銃16からの電子線
17はX線ターゲット20に衝突し、特性X線及び連続
エネルギのX線を発生させる。X線はX線源の真空を保
持するベリリウム窓からなる真空隔壁21を通り、所定
の特性X線を主に透過させるフィルタ22を経て試料に
入射する。試料からの散乱X線は、その一部を通過させ
る開口部を有するスリット7を経てX線検出器9上に露
光される。X線ターゲット20の表面には銅元素18と
モリブデン元素19が貼り付けられている。銅のK−α
及びβ線のエネルギは各々8.040keV,8.9keVであ
る。またモリブデンのK−α及びβ線のエネルギは各々
17.46keV,18.99keVである。またフィルタ22はK
−吸収端エネルギ8.332keVのニッケッル箔とK−吸
収端エネルギ18.99keVのニオブ箔から構成されてい
る。これらの構成により、銅からのX線に対しニッケッ
ルをモリブデンからのX線に対しニオブを用いること
で、各々K−α線の特性X線を主に利用することができ
る。また本実施例でのスリット7は円盤の半分が開口部
となっている。
Next, FIG. 5 shows a small-angle scattering X-ray apparatus according to another embodiment of the present invention. This embodiment differs from the embodiment of FIG. 1 in the X-ray source and the spectroscope. The electron beam 17 from the electron gun 16 collides with the X-ray target 20 to generate characteristic X-rays and continuous-energy X-rays. The X-rays pass through a vacuum partition wall 21 composed of a beryllium window that holds the vacuum of the X-ray source, and enter the sample through a filter 22 that mainly transmits predetermined characteristic X-rays. The scattered X-rays from the sample are exposed on the X-ray detector 9 through the slit 7 having an opening that allows a part of the X-rays to pass therethrough. A copper element 18 and a molybdenum element 19 are attached to the surface of the X-ray target 20. Copper K-α
And β-ray energies are 8.040 keV and 8.9 keV, respectively. The energies of K-α and β rays of molybdenum are respectively
They are 17.46keV and 18.99keV. The filter 22 is K
It consists of a nickel foil with an absorption edge energy of 8.332 keV and a niobium foil with a K-absorption edge energy of 18.99 keV. With these configurations, by using nickel for X-rays from copper and niobium for X-rays from molybdenum, the characteristic X-rays of K-α rays can be mainly used. Further, in the slit 7 in this embodiment, half of the disk is an opening.

【0020】次に、このように構成される実施例装置を
用いて、X線異常分散現象を利用した試料の小角散乱測
定について説明する。最初に、銅元素18からのX線が
取り出せるようにX線ターゲットを設定し、X線光路上
にニッケッル箔がくるようにフィルタ駆動部23により
フィルタを駆動した。またフィルタ7の開口部がy,z
平面の第一及び第二象限となるようスリット駆動部によ
りスリットを設定した。その後、真空隔壁21の下流に
設けたシャッタを開いて、試料からの散乱X線を検出器
上に所定の時間露光した。露光後、モリブデン元素19
からのX線を利用すべく、X線ターゲット,ニオブのフ
ィルタを設定すると共に、スリットの開口部がy,z平
面の第三及び第四象限となるようスリット駆動した。こ
れら一連の駆動を連動させた後、再度散乱X線を露光す
る。露光後、検出器に蓄積された散乱X線像を読み出
し、前述の実施例と同様な処理によりデータを処理・解
析した。本実施例にいては、分光器を使用しないため装
置の小型化が可能であるという効果がある。
Next, the small-angle scattering measurement of a sample using the X-ray anomalous dispersion phenomenon will be described using the apparatus of the above-described configuration. First, the X-ray target was set so that the X-rays from the copper element 18 could be extracted, and the filter was driven by the filter driving unit 23 so that the nickel foil was on the X-ray optical path. The opening of the filter 7 is y, z
The slit was set by the slit driving unit so as to be in the first and second quadrants of the plane. After that, a shutter provided downstream of the vacuum partition 21 was opened, and scattered X-rays from the sample were exposed on the detector for a predetermined time. After exposure, molybdenum element 19
The X-ray target and niobium filter were set in order to use the X-rays from S., and the slits were driven so that the slit openings were in the third and fourth quadrants of the y and z planes. After interlocking these series of drives, the scattered X-rays are exposed again. After the exposure, the scattered X-ray image accumulated in the detector was read out, and the data was processed and analyzed by the same processing as in the above-mentioned embodiment. In the present embodiment, there is an effect that the apparatus can be downsized because no spectroscope is used.

【0021】最後に、本発明を適用してなる他の実施例
の小角散乱X線装置を図6に示す。本実施例は図5の実
施例とフィルタ,スリット及び検出器が異なる。X線タ
ーゲット20からのX線は、真空隔壁21,四象限スリ
ット4を経て、試料に入射する。試料からの散乱X線6
は、エネルギ分解位置感応型検出器により測定される。
X線ターゲット20は円筒型の回転ターゲットでその表
面の半分は銅元素18、あとの半分はモリブデン元素1
9から構成されている。このX線ターゲットの回転によ
りターゲットからのX線は、銅及びモリブデンの特性X
線及び連続エネルギのX線からなっている。連続エネル
ギのX線の各エネルギ幅での強度は特性X線の強度に比
べ、三から四桁弱いため、試料からの散乱X線は銅及び
モリブデンの特性X線によるものと考えてよい。この特
性X線のエネルギは前述の実施例で示したように、離散
的である。検出器24には、X線を直接検出するX線CC
D(Charge Coupled Device)を使用した。このX線CC
Dのエネルギ分解能は、0.3keV以下であるので、K−
α,β線の特性X線を十分に分離できる。このため、検
出した散乱X線のエネルギ、位置の信号を制御器13を
経て計算機14に随時記録させた。所定の露光時間後、
計算機上には各特性X線による散乱X線パターンが得ら
れた。これから、前述の実施例と同様な処理によりデー
タを処理・解析した。本実施例については、フィルタ,
分光器,スリットを使用しないため、装置の小型化が可
能であるという効果がある。また本実施例では、検出器
の直前にビームストッパ15を設け、試料により散乱し
なかった透過X線を遮蔽し、検出器の散乱X線の測定の
障害とならないようにした。
Finally, FIG. 6 shows a small-angle scattering X-ray apparatus according to another embodiment of the present invention. This embodiment differs from the embodiment of FIG. 5 in the filter, slit and detector. The X-rays from the X-ray target 20 enter the sample through the vacuum partition 21 and the four-quadrant slit 4. Scattered X-ray from sample 6
Is measured by an energy-resolving position sensitive detector.
The X-ray target 20 is a cylindrical rotating target, half of the surface of which is copper element 18 and the other half of which is molybdenum element 1.
It is composed of nine. Due to the rotation of this X-ray target, the X-ray from the target is the characteristic X of copper and molybdenum.
X-rays of continuous energy and continuous energy. Since the intensity of continuous energy in each energy width of X-rays is weaker by three to four orders of magnitude than the intensity of characteristic X-rays, it can be considered that the scattered X-rays from the sample are due to the characteristic X-rays of copper and molybdenum. The energy of this characteristic X-ray is discrete as shown in the above-mentioned embodiment. The detector 24 has an X-ray CC that directly detects X-rays.
D (Charge Coupled Device) was used. This X-ray CC
The energy resolution of D is less than 0.3 keV, so K-
Characteristic X-rays of α and β rays can be sufficiently separated. For this reason, the detected scattered X-ray energy and position signals were recorded by the computer 14 via the controller 13 at any time. After a predetermined exposure time,
A scattered X-ray pattern by each characteristic X-ray was obtained on the computer. From this, the data was processed / analyzed by the same processing as the above-mentioned embodiment. In this embodiment, a filter,
Since the spectroscope and the slit are not used, there is an effect that the device can be downsized. Further, in this embodiment, the beam stopper 15 is provided immediately in front of the detector to shield the transmitted X-rays not scattered by the sample so as not to obstruct the measurement of scattered X-rays by the detector.

【0022】[0022]

【発明の効果】本発明によれば、複数のX線エネルギに
よる小角X線パターンを効率良く測定できるため、試料
中の着目した元素の吸収端近傍のX線異常分散現象を利
用した小角X線散乱の解析手法が適用でき、着目した元
素に関与する密度構造とそれ以外の密度構造との分離が
可能となる効果がある。
According to the present invention, a small-angle X-ray pattern due to a plurality of X-ray energies can be efficiently measured. Therefore, the small-angle X-ray utilizing the X-ray anomalous dispersion phenomenon near the absorption edge of the element of interest in the sample. The scattering analysis method can be applied, and there is an effect that the density structure related to the focused element and the density structure other than that can be separated.

【0023】また、本発明によれば、検出器の直前に散
乱X線の一部を通過させるスリットを設けることや、既
存の検出器の代りにエネルギ分解位置感応型検出器を設
けるだけですむので、既存の装置に簡単に適用,設置で
きるという効果がある。
Further, according to the present invention, it suffices to provide a slit for passing a part of the scattered X-rays just before the detector, or to provide an energy-resolving position-sensitive detector instead of the existing detector. Therefore, there is an effect that it can be easily applied to and installed in an existing device.

【0024】また、本装置によれば、スリットの開口部
の位置と連動させて試料のX線の照射位置の駆動も可能
であるので、非一様な試料で場所による密度構造の違い
を小角X線散乱で測定する場合でも、それらを効率良く
測定できる。
Further, according to the present apparatus, the X-ray irradiation position of the sample can be driven in conjunction with the position of the opening of the slit, so that the difference in the density structure depending on the position of the nonuniform sample can be reduced. Even when measuring by X-ray scattering, they can be measured efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の小角散乱X線装置の説明
図。
FIG. 1 is an explanatory diagram of a small-angle scattering X-ray device according to an embodiment of the present invention.

【図2】従来法による小角散乱X線装置の説明図。FIG. 2 is an explanatory view of a small-angle scattering X-ray device according to a conventional method.

【図3】小角散乱X線装置により得られる一般的な小角
X線散乱パターンとそれから得られる物理情報を示す特
性図。
FIG. 3 is a characteristic diagram showing a general small-angle X-ray scattering pattern obtained by a small-angle scattering X-ray device and physical information obtained from the pattern.

【図4】着目元素の吸収端の近くに置ける原子散乱因子
のX線エネルギ依存性を示す特性図。
FIG. 4 is a characteristic diagram showing the X-ray energy dependence of an atomic scattering factor placed near the absorption edge of an element of interest.

【図5】本発明の一実施例の小角散乱X線装置の説明
図。
FIG. 5 is an explanatory diagram of a small-angle scattering X-ray device according to an embodiment of the present invention.

【図6】本発明の一実施例の小角散乱X線装置の説明
図。
FIG. 6 is an explanatory diagram of a small-angle scattering X-ray device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線源、2…入射X線、3…分光器、4…四象限ス
リット、5…試料、6…真空パス、7…スリット、8…
散乱X線、9…X線検出器、10…分光器駆動部、11
…試料台駆動部、12…スリット駆動部、13…制御
部、14…計算機。
1 ... X-ray source, 2 ... Incident X-ray, 3 ... Spectrometer, 4 ... Quadrant slit, 5 ... Sample, 6 ... Vacuum path, 7 ... Slit, 8 ...
Scattered X-ray, 9 ... X-ray detector, 10 ... Spectrometer drive unit, 11
... sample stage drive unit, 12 ... slit drive unit, 13 ... control unit, 14 ... calculator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料にX線を照射し、入射X線に対して小
角度の範囲に前記試料から散乱或いは回折したX線の強
度を測定する小角散乱X線装置に於いて、前記試料に入
射するX線のエネルギを限定する分光器と前記試料から
の散乱X線の一部を通過させる開口部及び前記開口部の
場所を移動できるスリットを備え、X線のエネルギE1
に対してスリットの開口部位置P1,X線のエネルギE
2に対してスリットの開口部位置P2等のように、X線
のエネルギに対してスリットの開口部の場所を連動させ
る制御機構を備えたことを特徴とする小角散乱X線装
置。
1. A small-angle scattering X-ray device for irradiating a sample with X-rays and measuring the intensity of X-rays scattered or diffracted from the sample in a small angle range with respect to the incident X-rays. The X-ray energy E1 is provided with a spectroscope for limiting the energy of incident X-rays, an opening for passing a part of scattered X-rays from the sample, and a slit for moving the place of the opening.
With respect to the slit opening position P1, X-ray energy E
2. A small-angle scattering X-ray device provided with a control mechanism for interlocking the location of the opening of the slit with the energy of the X-ray, such as the position P2 of the opening of the slit.
【請求項2】試料にX線を照射し、入射X線に対して小
角度の範囲に前記試料から散乱或いは回折したX線の強
度を測定する小角散乱X線装置に於いて、X線発生部に
複数個の元素からなるX線ターゲットと前記試料からの
散乱X線の一部を通過させる開口部及び前記開口部の場
所を移動できるスリットを備え、元素1からのX線に対
してスリットの開口部位置P1、元素2からのX線に対
してスリットの開口部位置P2等のように、X線ターゲ
ットを構成する元素からのX線に対してスリットの開口
部の場所を連動させる制御機構を備えたことを特徴とす
る小角散乱X線装置。
2. A small-angle scattering X-ray device for irradiating a sample with X-rays and measuring the intensity of X-rays scattered or diffracted from the sample in a small angle range with respect to the incident X-rays. Part is provided with an X-ray target composed of a plurality of elements, an opening for passing a part of scattered X-rays from the sample, and a slit capable of moving the location of the opening, and slits for the X-ray from element 1 Control for interlocking the location of the slit opening with respect to the X-rays from the elements forming the X-ray target, such as the opening position P1 of X, the opening position P2 of the slit with respect to the X-ray from element 2, and the like. A small-angle scattering X-ray device having a mechanism.
【請求項3】請求項2において、前記試料に入射するX
線光路上に、前記X線ターゲットを構成する元素からの
特性X線のみを透過させるフィルタを備え、元素1に対
してフィルタ1,元素2に対してフィルタ2等のよう
に、X線ターゲットを構成する元素からのX線に対して
フィルタを選択できるような制御機構を備えた小角散乱
X線装置。
3. The X incident on the sample according to claim 2.
A filter that transmits only characteristic X-rays from the elements that constitute the X-ray target is provided on the optical path of the X-ray target, and the X-ray target is provided such as a filter for element 1 and a filter 2 for element 2. A small-angle scattered X-ray device equipped with a control mechanism capable of selecting a filter for X-rays from constituent elements.
【請求項4】試料にX線を照射し、入射X線に対して小
角度の範囲に試料から散乱或いは回折したX線の強度を
測定する小角散乱X線装置に於いて、複数の異なるエネ
ルギを有する入射X線と試料からの異なるエネルギを有
する散乱X線を十分にエネルギ分解できる位置感応型検
出器を備えたことを特徴とする小角散乱X線装置。
4. A small-angle scattering X-ray device for irradiating a sample with X-rays and measuring the intensity of X-rays scattered or diffracted from the sample in a small angle range with respect to the incident X-rays, and a plurality of different energies. A small-angle scattering X-ray device provided with a position-sensitive detector capable of sufficiently resolving incident X-rays having the above and scattered X-rays having different energies from a sample.
JP6284762A 1994-11-18 1994-11-18 Small angle scattering x-ray equipment Pending JPH08145916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6284762A JPH08145916A (en) 1994-11-18 1994-11-18 Small angle scattering x-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6284762A JPH08145916A (en) 1994-11-18 1994-11-18 Small angle scattering x-ray equipment

Publications (1)

Publication Number Publication Date
JPH08145916A true JPH08145916A (en) 1996-06-07

Family

ID=17682687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6284762A Pending JPH08145916A (en) 1994-11-18 1994-11-18 Small angle scattering x-ray equipment

Country Status (1)

Country Link
JP (1) JPH08145916A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002997A1 (en) * 2001-06-27 2003-01-09 Rigaku Corporation Nonuniform-density sample analyzing method, device, and system
US7003075B2 (en) * 2002-07-12 2006-02-21 Canon Kabushiki Kaisha Optical measuring device
JP2006078464A (en) * 2004-08-11 2006-03-23 Fujitsu Ltd Apparatus and method for measuring small-angle scattering and sample analysis method
JP2007521252A (en) * 2003-04-11 2007-08-02 エスジーエックス ファーマシューティカルズ,インコーポレイティド Compound library and drug discovery method
JP2014092456A (en) * 2012-11-02 2014-05-19 Nippon Steel & Sumitomo Metal Structure evaluation method by x-ray diffractometry
JP2014182139A (en) * 2013-03-15 2014-09-29 Bruker Axs Gmbh X-ray analyzing system for x-ray scattering analysis

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002997A1 (en) * 2001-06-27 2003-01-09 Rigaku Corporation Nonuniform-density sample analyzing method, device, and system
US7116755B2 (en) 2001-06-27 2006-10-03 Rigaku Corporation Non-uniform density sample analyzing method, device and system
CN1293382C (en) * 2001-06-27 2007-01-03 理学电机株式会社 Nonuniform-density sample analyzing method, device and system
US7003075B2 (en) * 2002-07-12 2006-02-21 Canon Kabushiki Kaisha Optical measuring device
JP2007521252A (en) * 2003-04-11 2007-08-02 エスジーエックス ファーマシューティカルズ,インコーポレイティド Compound library and drug discovery method
JP2006078464A (en) * 2004-08-11 2006-03-23 Fujitsu Ltd Apparatus and method for measuring small-angle scattering and sample analysis method
JP2014092456A (en) * 2012-11-02 2014-05-19 Nippon Steel & Sumitomo Metal Structure evaluation method by x-ray diffractometry
JP2014182139A (en) * 2013-03-15 2014-09-29 Bruker Axs Gmbh X-ray analyzing system for x-ray scattering analysis
US9958404B2 (en) 2013-03-15 2018-05-01 Bruker Axs Gmbh X-ray analyzing system for x-ray scattering analysis

Similar Documents

Publication Publication Date Title
Cosslett et al. X-ray Microscopy
Rutherford et al. XCIV. The wave-length of the soft γ rays from radium B
Matsushita et al. A fast X-ray absorption spectrometer for use with synchrotron radiation
US8971488B2 (en) Systems and methods for detecting an image of an object using multi-beam imaging from an X-ray beam having a polychromatic distribution
DuMond et al. Precision measurement of the wave-length and spectral profile of the annihilation radiation from Cu 64 with the two-meter focusing curved crystal spectrometer
JPH07504491A (en) Particle, X-ray and gamma-ray quantum beam control equipment
Hayakawa et al. Development of a scanning x‐ray microprobe with synchrotron radiation
JPS63173941A (en) Nondestructive inspection method and device by radiation
JP4554512B2 (en) Tomographic energy dispersive X-ray diffractometer with detector and associated collimator array
WO1996023211A1 (en) Method for ge-xrf x-ray analysis of materials, and apparatus for carrying out the method
Straasø et al. The Debye–Scherrer camera at synchrotron sources: a revisit
JPH08145916A (en) Small angle scattering x-ray equipment
Samadi et al. Optimization of a phase-space beam position and size monitor for low-emittance light sources
US3344274A (en) Ray analysis apparatus having both diffraction amd spectrometer tubes mounted on a common housing
JPH06249804A (en) Fluorescent x-ray spectroscopic device
GB2343825A (en) X-ray micro-diffraction apparatus comprising a cylindrical surrounding the specimen
Bradley et al. The construction and use of X-ray powder cameras
JP6202484B2 (en) Neutron imaging device and method of using the same
Siegbahn X-ray Spectroscopy
MacDonald et al. Polycapillary optics for medical applications
JP3090780B2 (en) X-ray diffraction image dynamic exposure system
JP6395275B2 (en) X-ray imaging apparatus and method of using the same
Parrish et al. 2.3. Powder and related techniques: X-ray techniques
Nowak et al. Road to micron resolution with a color X-ray camera--polycapillary optics characterization
He et al. X-ray lens of monolithic polycapillaries for macromolecular crystallography