JPH08142877A - Impact absorbing type steering column and manufacture thereof - Google Patents

Impact absorbing type steering column and manufacture thereof

Info

Publication number
JPH08142877A
JPH08142877A JP30989794A JP30989794A JPH08142877A JP H08142877 A JPH08142877 A JP H08142877A JP 30989794 A JP30989794 A JP 30989794A JP 30989794 A JP30989794 A JP 30989794A JP H08142877 A JPH08142877 A JP H08142877A
Authority
JP
Japan
Prior art keywords
spacer
column
columns
dimension
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30989794A
Other languages
Japanese (ja)
Other versions
JP3611885B2 (en
Inventor
Susumu Imagaki
進 今垣
Hiromi Isokawa
博美 磯川
Shuzo Hiragushi
周三 平櫛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP30989794A priority Critical patent/JP3611885B2/en
Publication of JPH08142877A publication Critical patent/JPH08142877A/en
Application granted granted Critical
Publication of JP3611885B2 publication Critical patent/JP3611885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Vibration Dampers (AREA)

Abstract

PURPOSE: To appropriately absorb impact energy acting upon a steering column by forming a spacer, interposed between a first and a second cylindrical columns, of synthetic resin, forming plural protrusions at least at one of the inner and outer peripheries of the spacer, and bringing the columns into sliding contact with the spacer through the protrusions. CONSTITUTION: An impact absorbing type steering column is provided with a first column 2a of cylindrical shape, and a second column 2b pressfitted into the first column 2a through a cylindrical spacer 3. This spacer 3 is formed of synthetic resin material such as nylon into cylindrical shape and elastically deformable in the radial direction by the presence of an expanding slot 3a extended along the axial direction. An inward flange 3b is formed at one end of the spacer 3 and brought into contact with the end face of the second column 2b. The periphery of such a spacer 3 is provided with plural protrusions 3d formed along the axial direction in plural areas spaced in the circumferential direction. The height dimension of the protrusions 3d is smaller than the thickness or the part, not provided with the protrusion 3d, of the spacer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の衝突時において
運転者に作用する衝撃を吸収するために用いられる衝撃
吸収式ステアリングコラムとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shock absorbing steering column used for absorbing a shock applied to a driver in the event of a vehicle collision and a method for manufacturing the same.

【0002】[0002]

【従来の技術】筒状の第1コラムに筒状の第2コラムを
筒状のスペーサを介し圧入し、両コラムの軸方向相対移
動によって衝撃エネルギーを吸収するようにした衝撃吸
収式ステアリングコラムが提案されている(実開平1‐
172965号公報参照)。そのスペーサにより両コラ
ムが互いにこじれるのを防止し、両コラムの円滑な軸方
向相対移動により衝撃エネルギーの吸収を図るものであ
る。従来、そのスペーサの内周および外周は平坦な円筒
面とされている。
2. Description of the Related Art An impact absorption type steering column in which a tubular second column is press-fitted into a tubular first column via a tubular spacer so as to absorb impact energy by the relative movement of both columns in the axial direction. Proposed (Actual Kaihei 1-
172965). The spacer prevents both columns from twisting each other, and the impact energy is absorbed by the smooth relative movement of both columns in the axial direction. Conventionally, the inner circumference and outer circumference of the spacer are flat cylindrical surfaces.

【0003】[0003]

【発明が解決しようとする課題】上記構成の衝撃吸収式
ステアリングコラムにおいては、第1コラムへの第2コ
ラムのスペーサを介する圧入荷重が過大になると、両コ
ラムの軸方向相対移動に要する荷重も過大になる。一
方、その圧入荷重が小さくなり過ぎると、両コラムの軸
方向相対移動に要する荷重も小さくなり過ぎる。すなわ
ち、両コラムの軸方向相対移動に要する荷重を適正な範
囲に設定することができなければ、大きな衝撃が運転者
に作用してしまう。
In the shock absorbing steering column having the above-mentioned structure, when the press-fitting load to the first column via the spacer of the second column becomes excessive, the load required for the relative movement of both columns in the axial direction is also increased. Be oversized. On the other hand, if the press-fitting load becomes too small, the load required for the axial relative movement of both columns will become too small. That is, if the load required for the relative movement of both columns in the axial direction cannot be set within an appropriate range, a large impact will act on the driver.

【0004】そこで、両コラムとスペーサとの間の締め
しろを管理することで、その両コラムの軸方向相対移動
に要する荷重を適正範囲内に設定することが行なわれ
る。すなわち、図14に示すように、第1コラムの内径
から第2コラムの外径を差し引いた値を2で割ることで
得られる両コラムの間の隙間寸法をD1、そのスペーサ
の圧入前の全厚み寸法をD2とする場合、その全厚み寸
法と隙間寸法との差D2−D1に応じ圧入荷重が変化す
ることから、その差D2−D1を管理することで、その
両コラムの軸方向相対移動に要する荷重を適正範囲内に
設定できる。
Therefore, by controlling the tightening margin between both columns and the spacer, the load required for the axial relative movement of both columns is set within an appropriate range. That is, as shown in FIG. 14, the gap dimension between both columns obtained by dividing the value obtained by subtracting the outer diameter of the second column from the inner diameter of the first column by D1, is the total dimension of the spacer before press fitting. When the thickness dimension is D2, the press-fit load changes according to the difference D2-D1 between the total thickness dimension and the clearance dimension. Therefore, by managing the difference D2-D1, the axial relative movement of both columns is performed. The load required for can be set within an appropriate range.

【0005】しかし、第1コラムの内径寸法、第2コラ
ムの外径寸法およびスペーサの圧入前の全厚み寸法は、
一定以上の加工公差が必要である。その公差に応じ、両
コラムの間の隙間寸法D1およびスペーサの圧入前の全
厚み寸法D2はばらつく。例えば、図13における実線
は、従来のスペーサの圧入前の全厚み寸法D2が一定で
あるとした場合における、両コラムの間の隙間寸法D1
の設定値からのばらつきと軸方向相対移動に要する荷重
との関係を示し、両コラムの間の隙間寸法D1は公差範
囲±δ(例えば±0.025mm程度)でばらつき、そ
のばらつきに応じ荷重がばらつくのを確認できる。これ
は、図14に示すように、両コラムの間の隙間寸法D1
が±δの範囲でばらつく場合、そのばらつきに応じスペ
ーサの圧入時の圧縮変形量が変動するためである。その
荷重のばらつきは、実際にはスペーサの全厚み寸法もば
らつくため、図13に示すよりも大きくなる。特に、そ
のスペーサを合成樹脂材により型成形する場合、成形誤
差が大きくなるため、その荷重を適正範囲内に設定する
ことは困難であった。
However, the inner diameter of the first column, the outer diameter of the second column and the total thickness of the spacer before press fitting are
Machining tolerance above a certain level is required. Depending on the tolerance, the gap dimension D1 between both columns and the total thickness dimension D2 of the spacer before press fitting vary. For example, the solid line in FIG. 13 indicates a gap dimension D1 between both columns in the case where the total thickness dimension D2 of the conventional spacer before press fitting is constant.
Shows the relationship between the variation from the set value of and the load required for the relative movement in the axial direction. The gap dimension D1 between both columns varies within the tolerance range ± δ (for example, about ± 0.025 mm), and the load varies depending on the variation. You can see the variations. This is the gap dimension D1 between both columns, as shown in FIG.
This is because when the value of Δ varies within the range of ± δ, the amount of compressive deformation of the spacer during press fitting varies depending on the variation. The variation in the load is actually larger than that shown in FIG. 13 because the total thickness dimension of the spacer also varies. In particular, when the spacer is molded with a synthetic resin material, a molding error increases, and it is difficult to set the load within an appropriate range.

【0006】本発明は、上記従来技術の問題を解決する
ことのできる衝撃吸収式ステアリングコラムとその製造
方法を提供することを目的とする。
An object of the present invention is to provide a shock absorbing steering column and a method for manufacturing the same, which can solve the problems of the prior art.

【0007】[0007]

【課題を解決するための手段】本件第1発明は、筒状の
第1コラムに筒状の第2コラムが筒状のスペーサを介し
圧入されている衝撃吸収式ステアリングコラムにおい
て、そのスペーサは、合成樹脂材により形成されると共
に外周および内周のうちの少なくとも一方に形成される
複数の突条を有し、その第1コラムの内周および第2コ
ラムの外周のうちの少なくとも一方は、それら突条を介
しスペーサに接することを特徴とする。両コラム間に圧
入されているスペーサの突条の高さ寸法は、突条の形成
されていない部分の厚み寸法よりも小さくされているの
が好ましい。
According to the first aspect of the present invention, in a shock absorbing steering column in which a tubular second column is press-fitted into a tubular first column through a tubular spacer, the spacer is It has a plurality of ridges formed of a synthetic resin material and formed on at least one of the outer circumference and the inner circumference, and at least one of the inner circumference of the first column and the outer circumference of the second column is It is characterized in that it is in contact with the spacer through a ridge. The height dimension of the protrusion of the spacer press-fitted between the two columns is preferably smaller than the thickness dimension of the portion where the protrusion is not formed.

【0008】本件第2発明は、本件第1発明の衝撃吸収
式ステアリングコラムを製造するに際し、そのスペーサ
の圧入前の全厚み寸法を両コラムの間の隙間寸法よりも
大きくし、そのスペーサの圧入前の全厚み寸法から突条
の高さ寸法を差し引いた寸法を両コラムの間の隙間寸法
よりも小さくし、各突条を圧縮変形させつつ第1コラム
に第2コラムをスペーサを介し圧入することを特徴とす
る。
According to the second aspect of the present invention, when manufacturing the shock absorbing steering column of the first aspect of the present invention, the total thickness dimension of the spacer before press-fitting is made larger than the gap dimension between both columns, and the press-fitting of the spacer is performed. The dimension obtained by subtracting the height of the ridge from the previous total thickness is made smaller than the gap between both columns, and the second column is press-fitted into the first column via the spacer while compressing and deforming each ridge. It is characterized by

【0009】[0009]

【発明の作用および効果】本件発明によれば、両コラム
とスペーサとの間の締めしろを管理することで、両コラ
ムの軸方向相対移動に要する荷重を適正範囲内に設定す
ることができる。すなわち、図12に示すように、第1
コラムの内径から第2コラムの外径を差し引いた値を2
で割ることで得られる両コラムの間の隙間寸法をD1、
そのスペーサの圧入前の全厚み寸法をD2とする場合、
その全厚み寸法と隙間寸法との差D2−D1に応じ圧入
荷重が変化し、その圧入荷重は両コラムの軸方向相対移
動に要する荷重に対応する。その両コラムの軸方向相対
移動に要する荷重のばらつきは、その第1コラムの内径
寸法、第2コラムの外径寸法およびスペーサの圧入前の
全厚み寸法の加工公差に応じ、両コラムの間の隙間寸法
D1およびスペーサの圧入前の全厚み寸法D2がばらつ
いたとしても、従来よりも小さくできる。これは、図1
2に示すように、そのスペーサの圧入前の全厚み寸法D
2を両コラムの間の隙間寸法D1よりも大きくし、その
スペーサの圧入前の全厚み寸法D2から突条3dの高さ
寸法Hを差し引いた寸法D3を両コラムの間の隙間寸法
D1よりも小さくすることで、スペーサの圧入時の圧縮
変形量が従来よりも小さくなることによる。すなわち、
両コラムの間の隙間寸法D1が±δの公差範囲でばらつ
いたとしても、そのばらつきによるスペーサの圧入時の
圧縮変形量の変動は、従来のようにスペーサの内外周が
平坦な円筒面である場合よりも小さくなる。これによ
り、両コラムの軸方向相対移動に要する荷重を適正範囲
内に設定し、適正に衝撃エネルギーを吸収することがで
きる。なお、スペーサの圧入前の全厚み寸法D2がばら
ついたとしても、D2>D1>D3の関係が成立して適
正に衝撃エネルギーを吸収できるように、スペーサの圧
入前の全厚み寸法D2および突条3dの高さ寸法Hは設
定される。
According to the present invention, by controlling the tightening margin between both columns and the spacer, the load required for the axial relative movement of both columns can be set within an appropriate range. That is, as shown in FIG.
The value obtained by subtracting the outer diameter of the second column from the inner diameter of the column is 2
Divide the gap dimension between both columns obtained by dividing by D1,
When the total thickness dimension of the spacer before press fitting is D2,
The press-fitting load changes according to the difference D2-D1 between the total thickness dimension and the clearance dimension, and the press-fitting load corresponds to the load required for the axial relative movement of both columns. The variation in the load required for the relative movement of both columns in the axial direction depends on the machining tolerance of the inner diameter dimension of the first column, the outer diameter dimension of the second column, and the total thickness dimension of the spacer before press fitting. Even if the gap dimension D1 and the total thickness dimension D2 of the spacer before press-fitting vary, it can be made smaller than before. This is
As shown in 2, the total thickness dimension D of the spacer before press fitting
2 is made larger than the gap dimension D1 between both columns, and the dimension D3 obtained by subtracting the height dimension H of the ridge 3d from the total thickness dimension D2 of the spacer before press fitting is larger than the gap dimension D1 between both columns. By making it smaller, the amount of compressive deformation when the spacer is press-fitted becomes smaller than in the conventional case. That is,
Even if the gap dimension D1 between both columns varies within the tolerance range of ± δ, the variation in the amount of compressive deformation at the time of press-fitting of the spacer due to the variation is due to the flat inner and outer peripheries of the spacer as in the conventional case. Smaller than if. Thereby, the load required for the relative movement of both columns in the axial direction can be set within an appropriate range, and the impact energy can be appropriately absorbed. Even if the total thickness dimension D2 of the spacer before press-fitting varies, the total thickness dimension D2 of the spacer before press-fitting and the ridges are set so that the relationship of D2>D1> D3 is established and the impact energy can be properly absorbed. The height dimension H of 3d is set.

【0010】両コラム間に圧入されている状態でのスペ
ーサの突条の高さ寸法を、突条の形成されていない部分
の厚み寸法よりも小さくすることで、そのスペーサが合
成樹脂材製で金属等に比べ変形し易いものであっても、
衝撃作用時における突条の変形による両コラムの相対的
な傾きを小さくし、また、その突条の形成されていない
変形し難い部分により両コラムを軸方向相対移動するよ
うに案内できるので、両コラムを円滑に軸方向相対移動
させて適正に衝撃エネルギーを吸収できる。
By making the height dimension of the ridges of the spacer in the state of being press-fitted between both columns smaller than the thickness dimension of the portion where the ridges are not formed, the spacer is made of synthetic resin material. Even if it is more easily deformed than metal,
The relative inclination of both columns due to the deformation of the ridges during impact action can be reduced, and both columns can be guided to move axially relative to each other due to the non-deformable portion where the ridges are not formed. The column can be smoothly moved in the axial direction to properly absorb the impact energy.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1〜図6に示す衝撃吸収式ステアリング
コラム1は、筒状の金属製第1コラム2aと、この第1
コラム2aに筒状のスペーサ3を介し圧入される金属製
第2コラム2bとを備える。その第1コラム2aは、ベ
アリング4を介し筒状の第1ハンドルシャフト5を支持
する。その第1ハンドルシャフト5の一端にステアリン
グホイール(図示省略)が連結され、他端に第2ハンド
ルシャフト7の一端が挿入され、その第2ハンドルシャ
フト7はベアリング6を介し第2コラム2bにより支持
される。そのベアリング4は、第1コラム2aの内周に
形成された段差と第1ハンドルシャフト5の外周に取り
付けられた止め輪12とにより、第1コラム2aと第1
ハンドルシャフト5とに対する軸方向相対移動が規制さ
れる。
The shock absorbing steering column 1 shown in FIGS. 1 to 6 has a cylindrical first metallic column 2a and a first metallic column 2a.
A second metal column 2b press-fitted into the column 2a via a cylindrical spacer 3 is provided. The first column 2a supports a tubular first handle shaft 5 via a bearing 4. A steering wheel (not shown) is connected to one end of the first handle shaft 5, one end of the second handle shaft 7 is inserted into the other end, and the second handle shaft 7 is supported by the second column 2b via a bearing 6. To be done. The bearing 4 has a step formed on the inner circumference of the first column 2a and a retaining ring 12 mounted on the outer circumference of the first handle shaft 5 so that the first column 2a and the first
Axial relative movement with respect to the handle shaft 5 is restricted.

【0013】図2に示すように、その第2ハンドルシャ
フト7の外周に一対の周溝8が形成され、その周溝8に
連通する通孔9が第1ハンドルシャフト5に形成され、
その通孔9と周溝8とに樹脂60が充填される。衝撃が
作用すると、その樹脂60が破断され、第1ハンドルシ
ャフト5と第2ハンドルシャフト7とは軸方向相対移動
する。第1ハンドルシャフト5の内周形状と第2ハンド
ルシャフト7の外周形状とは非円形とされることで、第
1ハンドルシャフト5と第2ハンドルシャフト7とは回
転伝達可能に連結されている。
As shown in FIG. 2, a pair of peripheral grooves 8 are formed on the outer periphery of the second handle shaft 7, and a through hole 9 communicating with the peripheral groove 8 is formed in the first handle shaft 5.
Resin 60 is filled in the through hole 9 and the circumferential groove 8. When an impact is applied, the resin 60 is broken and the first handle shaft 5 and the second handle shaft 7 move relative to each other in the axial direction. Since the inner peripheral shape of the first handle shaft 5 and the outer peripheral shape of the second handle shaft 7 are non-circular, the first handle shaft 5 and the second handle shaft 7 are coupled so as to be able to rotate.

【0014】その第1コラム2aにアッパーブラケット
11が溶接されている。そのアッパーブラケット11
は、図3、図4、図5(1)に示すように、第1コラム
2aの径方向外方に延び出る一対の支持部11aを有す
る。各支持部11aの一端から第1コラム2aの軸方向
に直角に延び出る側壁部11dと、各側壁部11dの一
端から第1コラム2aの軸方向に平行に延び出る突出部
11eとを有する。各支持部11aに、ステアリングホ
イール側において開口する切欠11bが形成されてい
る。各切欠11bに連結部材20が挿入されている。図
5の(2)に示すように、各連結部材20は、各切欠1
1bの内面に入り込む上部20aと、各切欠11bの周
囲の下面に沿う下部20bとを有する。各支持部11a
の切欠11bの周縁に沿う部分に複数の通孔が形成さ
れ、各通孔に通じる通孔20cが連結部材20の下部2
0bに形成され、それら通孔に合成樹脂製のピン61が
挿通される。各ピン61は、各切欠11bの周囲の上面
に沿う保持部材61′に一体化されている。各連結部材
20と各保持部材61′の上面に、板金製プレート63
が沿わせられ、そのプレート63と各連結部材20に形
成される通孔63′、20′に、車体側部材45に植え
込まれるネジ軸40が挿通される。そのネジ軸40にね
じ合わされるナット41と車体側部材45とで、そのプ
レート63と保持部材61′と支持部11aと連結部材
20とが挟み込まれる。なお、そのプレート63と連結
部材20の通孔63′、20′は、コラム軸方向が長手
方向の長孔とされ、製作誤差による各部材相互の位置ず
れに対応可能とされている。衝撃が作用すると、そのピ
ン61が破断され、そのアッパーブラケット11は第1
コラム2aと共にプレート63と保持部材61′と連結
部材20とに対し相対移動する。
An upper bracket 11 is welded to the first column 2a. The upper bracket 11
As shown in FIG. 3, FIG. 4 and FIG. 5 (1), has a pair of support portions 11a extending outward in the radial direction of the first column 2a. It has a side wall portion 11d extending from one end of each support portion 11a at right angles to the axial direction of the first column 2a, and a protrusion portion 11e extending from one end of each side wall portion 11d in parallel to the axial direction of the first column 2a. A notch 11b that opens on the steering wheel side is formed in each support portion 11a. The connecting member 20 is inserted into each notch 11b. As shown in (2) of FIG. 5, each connecting member 20 has a cutout 1
It has the upper part 20a which penetrates into the inner surface of 1b, and the lower part 20b along the lower surface around each notch 11b. Each support 11a
A plurality of through holes are formed in the portion along the peripheral edge of the notch 11b, and the through holes 20c communicating with the respective through holes are formed in the lower portion 2 of the connecting member 20.
0b, and pins 61 made of synthetic resin are inserted into the through holes. Each pin 61 is integrated with a holding member 61 'along the upper surface around each notch 11b. On the upper surface of each connecting member 20 and each holding member 61 ′, a plate 63 made of sheet metal is provided.
The screw shaft 40 to be planted in the vehicle body side member 45 is inserted into the through holes 63 ′ and 20 ′ formed in the plate 63 and the respective connecting members 20. The plate 63, the holding member 61 ′, the support portion 11 a, and the connecting member 20 are sandwiched by the nut 41 screwed to the screw shaft 40 and the vehicle body-side member 45. The plate 63 and the through holes 63 'and 20' of the connecting member 20 are elongated holes in the longitudinal direction of the column, and are capable of coping with the positional deviation between the respective members due to manufacturing errors. When an impact is applied, the pin 61 is broken and the upper bracket 11 is
Together with the column 2a, they move relative to the plate 63, the holding member 61 ', and the connecting member 20.

【0015】各プレート63は、保持部材61′と車体
側部材45とで挟み込まれる上部63aと、その上部6
3aの一端から第1コラム2aの軸方向に直角に延び出
る中間部63bと、その中間部63bの一端から第1コ
ラム2aの軸方向に平行に延び出る下部63cとを有す
る。各中間部63bはアッパーブラケット11の各支持
部11aに形成される開口11fに挿入されると共に各
側壁部11dに沿い、各下部63cは突出部11eに沿
う。各下部63cと突出部11eとにリング64が嵌合
される。これにより、衝撃が作用してアッパーブラケッ
ト11がプレート63に対し相対移動すると、そのアッ
パーブラケット11の開口11fの内面によりプレート
63の中間部63bが押され、図6に示すように、プレ
ート63が塑性変形する。
Each plate 63 has an upper portion 63a sandwiched between the holding member 61 'and the vehicle body side member 45, and an upper portion 6a thereof.
It has an intermediate portion 63b extending from one end of 3a at a right angle to the axial direction of the first column 2a, and a lower portion 63c extending from one end of the intermediate portion 63b in parallel to the axial direction of the first column 2a. Each intermediate portion 63b is inserted into an opening 11f formed in each supporting portion 11a of the upper bracket 11 and along each side wall portion 11d, and each lower portion 63c is along the protruding portion 11e. The ring 64 is fitted to each lower portion 63c and the protruding portion 11e. As a result, when an impact acts and the upper bracket 11 moves relative to the plate 63, the intermediate portion 63b of the plate 63 is pushed by the inner surface of the opening 11f of the upper bracket 11, and as shown in FIG. Plastically deforms.

【0016】図1に示すように、その第2コラム2bに
ロアブラケット10が溶接され、そのロアブラケット1
0を介し第2コラム2bは車体に取り付けられる。
As shown in FIG. 1, a lower bracket 10 is welded to the second column 2b, and the lower bracket 1 is
The second column 2b is attached to the vehicle body through 0.

【0017】図7、図8の(1)、(2)に示すよう
に、前記スペーサ3は例えばナイロン等の合成樹脂材に
より円筒形に型成形され、軸方向に沿う割り溝3aを有
することで径方向に弾性変形可能とされ、また、一端に
内向きに突出するフランジ3bを有する。そのフランジ
3bは第2コラム2bの端面に接する。そのスペーサ3
は、その外周の周方向に間隔をおいた複数の領域に、軸
方向に沿って形成された複数の突条3dを有する。その
突条3dの形成されていない外周領域3eは平坦な円筒
面とされている。これにより、第1コラム2aの内周面
は各突条3dを介しスペーサ3に接する。図8の(3)
に示すように、両コラム2a、2b間に圧入された状態
でのスペーサ3の突条3dの高さ寸法hは、突条3dの
形成されていない部分3fの厚み寸法D3よりも小さく
されている。
As shown in (1) and (2) of FIGS. 7 and 8, the spacer 3 is formed by molding a synthetic resin material such as nylon into a cylindrical shape and has a split groove 3a along the axial direction. It is elastically deformable in the radial direction and has a flange 3b protruding inward at one end. The flange 3b contacts the end surface of the second column 2b. The spacer 3
Has a plurality of ridges 3d formed along the axial direction in a plurality of circumferentially spaced regions on its outer circumference. The outer peripheral region 3e where the protrusion 3d is not formed is a flat cylindrical surface. As a result, the inner peripheral surface of the first column 2a contacts the spacer 3 via each ridge 3d. (3) in FIG.
As shown in, the height dimension h of the protrusion 3d of the spacer 3 in the state of being press-fitted between the columns 2a and 2b is smaller than the thickness dimension D3 of the portion 3f where the protrusion 3d is not formed. There is.

【0018】図12に示すように、そのスペーサ3の圧
入前の全厚み寸法D2は両コラム2a、2bの間の隙間
寸法D1よりも大きく、そのスペーサ3の圧入前の全厚
み寸法2から突条の高さ寸法Hを差し引いた寸法D3は
両コラム2a、2bの間の隙間寸法D1よりも小さくさ
れる。その圧入前のスペーサ3は第2コラム2bの外周
に嵌合され、その一端のフランジ3bは第2コラム2b
の端面に当接される。そのスペーサ3の外周に第1コラ
ム2aが圧入され、その圧入の際に各突条3dが圧縮変
形される。なお、スペーサ3の圧入前の全厚み寸法D2
がばらついたとしても、D2>D1>D3の関係が成立
して適正に衝撃エネルギーを吸収できるように、スペー
サ3の圧入前の全厚み寸法D2および突条3dの高さ寸
法Hが設定される。
As shown in FIG. 12, the total thickness dimension D2 of the spacer 3 before press-fitting is larger than the gap dimension D1 between the columns 2a and 2b, and the spacer 3 projects from the total thickness dimension 2 of the spacer 3 before press-fitting. The dimension D3 obtained by subtracting the height H of the strip is made smaller than the gap dimension D1 between the columns 2a and 2b. The spacer 3 before press-fitting is fitted to the outer periphery of the second column 2b, and the flange 3b at one end thereof is the second column 2b.
Is abutted on the end face of. The first column 2a is press-fitted into the outer periphery of the spacer 3, and the protrusions 3d are compressed and deformed during the press-fitting. The total thickness dimension D2 of the spacer 3 before press fitting
Even if there are variations, the total thickness dimension D2 of the spacer 3 before press fitting and the height dimension H of the protrusion 3d are set so that the relationship of D2>D1> D3 is established and the impact energy can be properly absorbed. .

【0019】上記構成において、車両の衝突により衝撃
力が作用すると、樹脂60、61が剪断されて衝撃エネ
ルギーが吸収され、両コラム2a、2bが軸方向相対移
動することによってプレート63が塑性変形することで
衝撃エネルギーが吸収され、両コラム2a、2bを軸方
向相対移動させるのに要する荷重に応じた衝撃エネルギ
ーが吸収される。
In the above structure, when an impact force acts due to a collision of a vehicle, the resins 60 and 61 are sheared to absorb the impact energy, and the columns 2a and 2b relatively move in the axial direction, whereby the plate 63 is plastically deformed. As a result, the impact energy is absorbed, and the impact energy corresponding to the load required to move the columns 2a and 2b relative to each other in the axial direction is absorbed.

【0020】上記実施例によれば、スペーサ3の圧入前
の全厚み寸法D2は両コラム2a、2bの間の隙間寸法
D1よりも大きく、そのスペーサ3の圧入前の全厚み寸
法D2から突条3dの高さ寸法Hを差し引いた寸法D3
は両コラム2a、2bの間の隙間寸法D1よりも小さい
ので、スペーサ3の圧入時における圧縮変形量は、従来
のようにスペーサの内外周が平坦な円筒面である場合よ
りも小さくなる。これにより、加工公差に応じ両コラム
2a、2bの間の隙間寸法D1およびスペーサ3の圧入
前の全厚み寸法D2がばらついたとしても、そのばらつ
きによるスペーサ3の圧入時の圧縮変形量の変動は従来
より小さくなり、その圧入荷重に対応する両コラム2
a、2bの軸方向相対移動に要する荷重のばらつきも従
来より小さくできる。図13における2点鎖線は、上記
実施例のスペーサ3の圧入前の全厚み寸法D2が一定で
あるとした場合における、両コラム2a、2b間の隙間
寸法D1の設定値からのばらつきと軸方向相対移動に要
する荷重との関係を示し、その隙間寸法D1のばらつき
に対する荷重のばらつきは、実線で示した従来のスペー
サの荷重のばらつきよりも小さくなるのを確認できる。
これにより、両コラム2a、2bの軸方向相対移動に要
する荷重を適正範囲内に設定し、適正に衝撃エネルギー
を吸収できる。
According to the above embodiment, the total thickness dimension D2 of the spacer 3 before press-fitting is larger than the gap dimension D1 between the columns 2a and 2b, and the total thickness dimension D2 of the spacer 3 before press-fitting is projected from the total thickness dimension D2. Dimension D3 less height dimension H of 3d
Is smaller than the gap dimension D1 between the columns 2a and 2b, the amount of compressive deformation when the spacer 3 is press-fitted is smaller than in the conventional case where the inner and outer peripheries of the spacer are flat cylindrical surfaces. As a result, even if the gap dimension D1 between the columns 2a and 2b and the total thickness dimension D2 of the spacer 3 before press-fitting vary depending on the working tolerance, the variation of the compression deformation amount at the press-fitting of the spacer 3 due to the variation. Both columns 2 that are smaller than conventional ones and can handle the press-fitting load
The variation in the load required for the axial relative movement of a and 2b can be made smaller than before. The two-dot chain line in FIG. 13 indicates the variation from the set value of the gap dimension D1 between the columns 2a and 2b and the axial direction when the total thickness dimension D2 of the spacer 3 before press-fitting is constant. It can be confirmed that the relation with the load required for the relative movement is shown, and the variation of the load with respect to the variation of the gap dimension D1 is smaller than the variation of the load of the conventional spacer shown by the solid line.
Thereby, the load required for the axial relative movement of both columns 2a, 2b can be set within an appropriate range, and the impact energy can be properly absorbed.

【0021】また、両コラム2a、2b間に圧入されて
いる状態でのスペーサ3の突条3dの高さ寸法hを、突
条3dの形成されていない部分3fの厚み寸法D3より
も小さくすることで、そのスペーサ3が合成樹脂材製で
金属等に比べ変形し易いものであっても、衝撃作用時に
おける突条3dの変形による両コラム2a、2bの相対
的な傾きを小さくし、また、その突条3dの形成されて
いない変形し難い部分3fにより両コラム2a、2bを
軸方向相対移動するように案内できるので、両コラム2
a、2bを円滑に軸方向相対移動させて適正に衝撃エネ
ルギーを吸収できる。
Further, the height dimension h of the protrusion 3d of the spacer 3 in a state of being press-fitted between the columns 2a and 2b is made smaller than the thickness dimension D3 of the portion 3f where the protrusion 3d is not formed. Thus, even if the spacer 3 is made of a synthetic resin material and is more easily deformed than metal or the like, the relative inclination between the columns 2a and 2b due to the deformation of the protrusion 3d at the time of impact is reduced, and , The columns 3a and 2b, which are not formed with the protrusions 3d and are not easily deformed, can guide the two columns 2a and 2b so as to relatively move in the axial direction.
Impact energy can be properly absorbed by smoothly moving a and 2b relative to each other in the axial direction.

【0022】なお、本発明は上記実施例に限定されな
い。例えば、上記実施例ではスペーサ3を円筒形状とし
たが、図9に示すように、円筒形の一端において開口す
る複数の切欠3gを有する形状とし、その切欠3gを除
く外周全域に突条3dを設けてもよい。また、上記実施
例では円筒形のスペーサ3の外周の周方向に間隔をおい
た複数の領域に突条3dを形成したが、図10に示すよ
うに、外周の全領域に突条3dを形成してもよい。な
お、この場合はスペーサ3の圧入時の圧縮変形量は従来
よりは少ないが上記実施例よりも多くなるため、図13
において破線で示すように、両コラム2a、2b間の隙
間寸法D1の設定値からのばらつきに対する両コラム2
a、2bの軸方向相対移動に要する荷重のばらつきは、
実線で示した従来のスペーサよりも小さくなるが、上記
実施例よりは大きくなる。また、上記実施例ではスペー
サ3の一端から内向きに突出するフランジ3bを第2コ
ラム2bの端面に当接させたが、図11に示すように、
スペーサ3の一端から外向きに突出するフランジ3hを
第1コラム2aの端面に当接させてもよく、この場合、
突条はスペーサ3の内周に設ける。また、スペーサ3の
内周と外周の両方に突条を設けてもよい。また、上記実
施例ではスペーサ3の軸方向に沿って突条3dを設けた
が、スペーサの周方向に沿って突条を設けてもよい。ま
た、上記実施例ではスペーサ3の突条3dの断面形状が
略三角形のものについて説明したが、その断面形状を略
台形としてもよい。
The present invention is not limited to the above embodiment. For example, although the spacer 3 has a cylindrical shape in the above-described embodiment, as shown in FIG. 9, it has a shape having a plurality of notches 3g that open at one end of the cylinder, and the protrusions 3d are provided on the entire outer periphery except the notch 3g. It may be provided. Further, in the above-described embodiment, the ridges 3d are formed in a plurality of circumferentially spaced regions on the outer periphery of the cylindrical spacer 3, but as shown in FIG. 10, the ridges 3d are formed in the entire outer periphery. You may. In this case, the amount of compressive deformation when the spacer 3 is press-fitted is smaller than that of the conventional example, but is larger than that of the above-described embodiment.
As indicated by a broken line in FIG. 2, both columns 2a and 2b are provided with respect to variations in the gap dimension D1 from the set value.
The variation of the load required for the axial relative movement of a and 2b is
It is smaller than the conventional spacer shown by the solid line, but larger than the above-mentioned embodiment. Further, in the above embodiment, the flange 3b protruding inward from one end of the spacer 3 is brought into contact with the end face of the second column 2b, but as shown in FIG.
The flange 3h protruding outward from one end of the spacer 3 may be brought into contact with the end surface of the first column 2a. In this case,
The ridge is provided on the inner circumference of the spacer 3. Further, ridges may be provided on both the inner circumference and the outer circumference of the spacer 3. Further, although the protrusion 3d is provided along the axial direction of the spacer 3 in the above embodiment, the protrusion may be provided along the circumferential direction of the spacer. Further, in the above-described embodiment, the ridge 3d of the spacer 3 has a substantially triangular sectional shape, but the sectional shape may be substantially trapezoidal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のステアリングコラムの断面図FIG. 1 is a sectional view of a steering column according to an embodiment of the present invention.

【図2】そのステアリングコラムの部分断面図FIG. 2 is a partial sectional view of the steering column.

【図3】そのステアリングコラムの部分側面図FIG. 3 is a partial side view of the steering column.

【図4】そのステアリングコラムの部分平面図FIG. 4 is a partial plan view of the steering column.

【図5】そのステアリングコラムの(1)は部分断面
図、(2)は連結部材と保持部材の斜視図
5 is a partial sectional view of the steering column (1), and (2) is a perspective view of a connecting member and a holding member. FIG.

【図6】そのステアリングコラムの衝撃作用後の側面図FIG. 6 is a side view of the steering column after impact is applied.

【図7】そのステアリングコラムのスペーサの斜視図FIG. 7 is a perspective view of a spacer of the steering column.

【図8】そのスペーサの(1)は縦断面図、(2)は横
断面図、(3)は両コラム間への圧入状態での部分断面
8 (a) is a vertical sectional view, FIG. 8 (2) is a horizontal sectional view, and FIG. 8 (3) is a partial sectional view in a press-fitted state between both columns.

【図9】本発明の変形例のスペーサの斜視図FIG. 9 is a perspective view of a spacer according to a modified example of the present invention.

【図10】本発明の変形例のスペーサの斜視図FIG. 10 is a perspective view of a spacer according to a modified example of the present invention.

【図11】本発明の変形例のステアリングコラムの部分
断面図
FIG. 11 is a partial cross-sectional view of a steering column according to a modified example of the present invention.

【図12】本発明のステアリングコラムの作用説明図FIG. 12 is an explanatory view of the operation of the steering column of the present invention.

【図13】両コラム間の隙間のばらつきと両コラムを軸
方向相対移動させるのに要する荷重との関係を示す図
FIG. 13 is a diagram showing the relationship between the variation in the gap between both columns and the load required to relatively move both columns in the axial direction.

【図14】従来のステアリングコラムの作用説明図FIG. 14 is an operation explanatory view of a conventional steering column.

【符号の説明】[Explanation of symbols]

2a 第1コラム 2b 第2コラム 3 スペーサ 3d 突条 2a 1st column 2b 2nd column 3 Spacer 3d Projection

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 筒状の第1コラムに筒状の第2コラムが
筒状のスペーサを介し圧入されている衝撃吸収式ステア
リングコラムにおいて、そのスペーサは、合成樹脂材に
より形成されると共に外周および内周のうちの少なくと
も一方に形成される複数の突条を有し、その第1コラム
の内周および第2コラムの外周のうちの少なくとも一方
は、それら突条を介しスペーサに接することを特徴とす
る衝撃吸収式ステアリングコラム。
1. A shock absorbing steering column in which a tubular second column is press-fitted into a tubular first column via a tubular spacer, the spacer being formed of a synthetic resin material and at the outer periphery and A plurality of protrusions are formed on at least one of the inner circumferences, and at least one of the inner periphery of the first column and the outer periphery of the second column is in contact with the spacer through the protrusions. Shock absorption type steering column.
【請求項2】 両コラム間に圧入されているスペーサの
突条の高さ寸法は、突条の形成されていない部分の厚み
寸法よりも小さくされている請求項1に記載の衝撃吸収
式ステアリングコラム。
2. The shock absorbing steering system according to claim 1, wherein the height dimension of the protrusion of the spacer press-fitted between both columns is smaller than the thickness dimension of the portion where the protrusion is not formed. column.
【請求項3】 請求項1または2に記載の衝撃吸収式ス
テアリングコラムを製造するに際し、そのスペーサの圧
入前の全厚み寸法を両コラムの間の隙間寸法よりも大き
くし、そのスペーサの圧入前の全厚み寸法から突条の高
さ寸法を差し引いた寸法を両コラムの間の隙間寸法より
も小さくし、各突条を圧縮変形させつつ第1コラムに第
2コラムをスペーサを介し圧入することを特徴とする衝
撃吸収式ステアリングコラムの製造方法。
3. When manufacturing the shock absorbing steering column according to claim 1 or 2, the total thickness dimension of the spacer before press-fitting is made larger than the clearance dimension between both columns, and the spacer before press-fitting. Make the dimension of the total thickness of the product minus the height of the ridges smaller than the gap between the columns, and press-fit the second column into the first column via the spacer while compressing and deforming each ridge. A method of manufacturing a shock absorbing steering column, characterized by:
JP30989794A 1994-11-18 1994-11-18 Shock absorbing steering column and manufacturing method thereof Expired - Fee Related JP3611885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30989794A JP3611885B2 (en) 1994-11-18 1994-11-18 Shock absorbing steering column and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30989794A JP3611885B2 (en) 1994-11-18 1994-11-18 Shock absorbing steering column and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08142877A true JPH08142877A (en) 1996-06-04
JP3611885B2 JP3611885B2 (en) 2005-01-19

Family

ID=17998646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30989794A Expired - Fee Related JP3611885B2 (en) 1994-11-18 1994-11-18 Shock absorbing steering column and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3611885B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108502A1 (en) 2003-06-03 2004-12-16 Nsk Ltd. Impact absorbing steering column device for vehicle
GB2368894B (en) * 2000-11-14 2005-07-20 Nastech Europ Ltd Steering column assembly for a vehicle
US7168741B2 (en) 2002-11-28 2007-01-30 Koyo Seiko Co., Ltd Steering apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868213B2 (en) 2005-12-21 2012-02-01 アイシン精機株式会社 Energy absorbing steering column

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368894B (en) * 2000-11-14 2005-07-20 Nastech Europ Ltd Steering column assembly for a vehicle
US7168741B2 (en) 2002-11-28 2007-01-30 Koyo Seiko Co., Ltd Steering apparatus
WO2004108502A1 (en) 2003-06-03 2004-12-16 Nsk Ltd. Impact absorbing steering column device for vehicle
US7506893B2 (en) 2003-06-03 2009-03-24 Nsk Ltd. Impact absorbing steering column device for vehicle

Also Published As

Publication number Publication date
JP3611885B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
US8408089B2 (en) Energy absorbing steering column
US3950834A (en) Process for providing bearing surfaces on trunnions of a universal joint
US3999872A (en) Preloaded tie rod end assembly
US4478531A (en) Rack and pinion ball joint assembly
US4939947A (en) Rack and pinion type steering apparatus
US4469376A (en) Hinge, particularly for seat with adjustable back rest and method of manufacturing the same
US20160244084A1 (en) Steering column for a motor vehicle
US4028784A (en) Preloaded tie rod end assembly
JP2503354Y2 (en) Steering device
JPH08142877A (en) Impact absorbing type steering column and manufacture thereof
US6935657B2 (en) Steering shaft for energy absorbing steering column and manufacturing method thereof
JP3181488B2 (en) Shock absorbing steering device
JP3969431B2 (en) Shock absorbing steering column
JP3698820B2 (en) Shock absorbing steering column jacket and its assembly method
JPH0995245A (en) Impact absorption type steering column
JPS6317855Y2 (en)
JPH0747961A (en) Impact absorbing type steering device
JPH1045005A (en) Power transmission shaft of steering device and method for assembling it
JP3645673B2 (en) Shock absorbing steering device
JPH0724661Y2 (en) Cardan fittings
JP3956157B2 (en) Steering device
JPH0740458Y2 (en) Steering column structure
JP2983130B2 (en) Impact absorbing steering column and method of manufacturing the same
JP4257483B2 (en) Shock absorbing steering device and manufacturing method thereof
JPH07277203A (en) Shock absorbing steering column

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A131 Notification of reasons for refusal

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091029

LAPS Cancellation because of no payment of annual fees