JP3969431B2 - Shock absorbing steering column - Google Patents

Shock absorbing steering column Download PDF

Info

Publication number
JP3969431B2
JP3969431B2 JP2005086328A JP2005086328A JP3969431B2 JP 3969431 B2 JP3969431 B2 JP 3969431B2 JP 2005086328 A JP2005086328 A JP 2005086328A JP 2005086328 A JP2005086328 A JP 2005086328A JP 3969431 B2 JP3969431 B2 JP 3969431B2
Authority
JP
Japan
Prior art keywords
spacer
column
press
molecular weight
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005086328A
Other languages
Japanese (ja)
Other versions
JP2005193906A (en
Inventor
周三 平櫛
博美 磯川
進 今垣
昭夫 松田
義久 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005086328A priority Critical patent/JP3969431B2/en
Publication of JP2005193906A publication Critical patent/JP2005193906A/en
Application granted granted Critical
Publication of JP3969431B2 publication Critical patent/JP3969431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Controls (AREA)

Description

本発明は、車両の衝突時において運転者に作用する衝撃を吸収するために用いられる衝撃吸収式ステアリングコラムに関する。   The present invention relates to an impact-absorbing steering column used to absorb an impact acting on a driver at the time of a vehicle collision.

筒状の第1コラムに筒状の第2コラムを筒状のスペーサを介し圧入し、両コラムの軸方向相対移動によって衝撃エネルギーを吸収するようにした衝撃吸収式ステアリングコラムが提案されている(特許文献1参照)。そのスペーサは、両コラムが互いにこじれるのを防止し、両コラムを円滑に軸方向相対移動させる。
実開平1‐172965号公報
An impact-absorbing steering column has been proposed in which a cylindrical second column is press-fitted into a cylindrical first column via a cylindrical spacer, and the impact energy is absorbed by the axial relative movement of both columns ( Patent Document 1). The spacer prevents the two columns from being twisted with each other, and smoothly moves both columns in the axial direction.
Japanese Utility Model Publication No. 1-172965

そのスペーサの材料として合成樹脂を用いることが提案されているが、通常の分子量の合成樹脂材は高温時に軟化し易く、引っ張り強さ等の強度や硬度が低く、第1コラムへの第2コラムのスペーサを介する圧入時に容易に塑性変形し、また、低温時に収縮が大きくなる。そのため、その圧入荷重が小さくなり過ぎ、衝撃エネルギーを充分に吸収できなくなる。
一方、スペーサの材料として用いる合成樹脂材の靱性が小さいと、衝撃作用時に割れ易く、衝撃吸収機能を阻害する。さらに、その合成樹脂材の摩擦係数が大きいと、衝撃作用時にスペーサが第1コラムと第2コラムの軸方向相対移動を阻害し、衝撃吸収時に過大な荷重がドライバーに作用する。
そのため、衝撃吸収式ステアリングコラムにおけるスペーサとして合成樹脂製のものを実用に供することができなかった。
It has been proposed to use a synthetic resin as a material for the spacer, but a synthetic resin material having a normal molecular weight is easy to soften at high temperatures and has low strength and hardness such as tensile strength, and the second column to the first column. The plastic deformation easily occurs during press-fitting through the spacer, and the shrinkage increases at low temperatures. Therefore, the press-fitting load becomes too small and the impact energy cannot be sufficiently absorbed.
On the other hand, if the toughness of the synthetic resin material used as the material for the spacer is small, it is easy to break at the time of impact action and hinders the impact absorbing function. Further, when the friction coefficient of the synthetic resin material is large, the spacer inhibits the relative movement in the axial direction of the first column and the second column at the time of impact action, and an excessive load acts on the driver at the time of impact absorption.
Therefore, a synthetic resin spacer cannot be put to practical use as a spacer in the shock absorbing steering column.

本発明は、上記従来技術の問題を解決することのできる衝撃吸収式ステアリングコラムを提供することを目的とする。   An object of the present invention is to provide an impact-absorbing steering column that can solve the above-described problems of the prior art.

本発明は、筒状の第1コラムに筒状の第2コラムが筒状のスペーサを介し圧入されている衝撃吸収式ステアリングコラムにおいて、そのスペーサの材料を分子量が500000以上6000000以下の超高分子量ポリエチレンとし、前記スペーサの外周の周方向に間隔をおいた複数の領域、軸方向に沿って複数の突条が、その突条の形成されていない外周領域は平坦な円筒面とされるように形成され、前記スペーサの前記圧入前の全厚み寸法は両コラム間の隙間寸法よりも大きくされると共に、前記スペーサの前記圧入前の全厚み寸法から前記突条の高さ寸法を差し引いた寸法は両コラム間の隙間寸法よりも小さくされ、前記突条は前記圧入の際に圧縮変形され、両コラム間に圧入されている状態での前記スペーサにおける前記突条の高さ寸法は、前記突条の形成されていない部分の厚み寸法よりも小さくされていることを特徴とする。そのスペーサの材料となる超高分子量ポリエチレンの分子量を3000000以上4500000以下とするのが好ましい。
The present invention relates to an impact absorption type steering column in which a cylindrical second column is press-fitted into a cylindrical first column via a cylindrical spacer, and the material of the spacer is an ultra high molecular weight having a molecular weight of 500,000 to 6,000,000. A plurality of protrusions along the axial direction are formed in a plurality of regions spaced in the circumferential direction of the outer periphery of the spacer, and the outer peripheral region where the protrusions are not formed is a flat cylindrical surface. It is formed on the entire thickness of the front the press-fitting of the spacer dimension minus while being larger than the gap dimension between the two columns, the height of the protrusion from the total thickness of the front the press-fitting of the spacer Is smaller than the gap dimension between the two columns, and the protrusion is compressed and deformed during the press-fitting, and the height of the protrusion in the spacer in the state of being press-fitted between the two columns. Size is characterized by being smaller than the thickness of the formed portion not of the ridge. It is preferable that the molecular weight of the ultrahigh molecular weight polyethylene used as the material of the spacer is 3000000 to 4500000.

そのスペーサを、分子量が500000以上の超高分子量ポリエチレン製とすることで、分子量が100000程度の通常の熱可塑性合成樹脂製とするのに比べ、高温時に軟化し難くなり、引っ張り強さ等の強度が向上し、第1コラムへ第2コラムをスペーサを介して圧入する時に容易に塑性変形することがなくなり、また、低温時に収縮し難くなる。これにより、その圧入荷重が小さくなり過ぎるのを防止し、衝撃エネルギーを充分に吸収できる。
また、その超高分子量ポリエチレンは靱性を有すると共に適度な硬度(ショア硬度D67〜70)を有するので、衝撃作用時に割れ難く、且つ、第1コラムへ第2コラムをスペーサを介して圧入する時に容易に塑性変形することがなくなるので、衝撃エネルギーを充分に吸収できる。
さらに、その超高分子量ポリエチレンは摩擦係数が小さいので、衝撃作用時に第1コラムと第2コラムの軸方向相対移動を阻害することはなく、衝撃吸収時に過大な荷重がドライバーに作用するのを防止できる。
その超高分子量ポリエチレンの分子量を6000000以下とすることで、スペーサを型成形する場合の成型性を向上できるので、その寸法精度を向上して上記圧入荷重を正確に管理し、適正に衝撃エネルギーを吸収することができる。
その超高分子量ポリエチレンの分子量を増加させることによる上記衝撃吸収時の効果は、その分子量が3000000までは増加させる程に向上し、その分子量が3000000を超えても上記衝撃吸収時の効果が低減することはない。よって、その分子量は3000000以上とするのが好ましい。また、その分子量を4500000以下とすることで、スペーサを型成形する場合の成型性をより向上できる。
By making the spacer made of ultra high molecular weight polyethylene having a molecular weight of 500,000 or more, it becomes difficult to soften at a high temperature compared to a normal thermoplastic synthetic resin having a molecular weight of about 100,000. As a result, plastic deformation does not easily occur when the second column is press-fitted into the first column via the spacer, and it is difficult to shrink at low temperatures. Thereby, the press-fit load is prevented from becoming too small, and the impact energy can be sufficiently absorbed.
In addition, the ultra high molecular weight polyethylene has toughness and moderate hardness (Shore hardness D67 to 70), so it is difficult to break during impact action and easy to press the second column through the spacer into the first column. Therefore, the impact energy can be absorbed sufficiently.
In addition, the ultra-high molecular weight polyethylene has a small coefficient of friction, so it does not hinder the relative movement of the first and second columns in the axial direction during impact, and prevents excessive loads from acting on the driver during impact absorption. it can.
By setting the molecular weight of the ultrahigh molecular weight polyethylene to 6000000 or less, the moldability when the spacer is molded can be improved. Therefore, the dimensional accuracy is improved, the press-fitting load is accurately managed, and the impact energy is appropriately controlled. Can be absorbed.
The effect at the time of impact absorption by increasing the molecular weight of the ultra high molecular weight polyethylene is improved as the molecular weight is increased up to 3000000, and the effect at the time of impact absorption is reduced even if the molecular weight exceeds 3000000. There is nothing. Therefore, the molecular weight is preferably 3000000 or more. Moreover, the moldability in the case of mold-molding a spacer can be improved more because the molecular weight shall be 4500000 or less.

本発明の衝撃吸収式ステアリングコラムによれば、合成樹脂製のスペーサを用いて、車両の衝突時に衝撃エネルギーを充分かつ適正に吸収し、過大な荷重がドライバーに作用するのを確実に防止できる。   According to the shock absorbing steering column of the present invention, the synthetic resin spacer can be used to sufficiently and properly absorb the impact energy at the time of a vehicle collision and reliably prevent an excessive load from acting on the driver.

以下、図面を参照して本発明の実施形態を説明する。
図1に示す衝撃吸収式ステアリングコラム1は、筒状の金属製第1コラム2aと、この第1コラム2aに筒状のスペーサ3を介し圧入される金属製第2コラム2bとを備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The shock absorbing steering column 1 shown in FIG. 1 includes a cylindrical metal first column 2a and a metal second column 2b press-fitted into the first column 2a via a cylindrical spacer 3.

その第1コラム2aは、ベアリング4を介し筒状の第1ハンドルシャフト5を支持する。その第1ハンドルシャフト5の一端にステアリングホイール(図示省略)が連結され、他端に第2ハンドルシャフト7の一端が挿入され、その第2ハンドルシャフト7はベアリング6を介し第2コラム2bにより支持される。その第1ハンドルシャフト5を支持するベアリング4は、第1コラム2aの内周に形成された段差と第1ハンドルシャフト5の外周に取り付けられた止め輪12とにより、第1コラム2aと第1ハンドルシャフト5とに対する軸方向相対移動が規制される。   The first column 2 a supports a cylindrical first handle shaft 5 via a bearing 4. A steering wheel (not shown) is connected to one end of the first handle shaft 5, and one end of the second handle shaft 7 is inserted to the other end, and the second handle shaft 7 is supported by the second column 2 b via a bearing 6. Is done. The bearing 4 that supports the first handle shaft 5 includes a first column 2a and a first column that are formed by a step formed on the inner periphery of the first column 2a and a retaining ring 12 attached to the outer periphery of the first handle shaft 5. Axial relative movement with respect to the handle shaft 5 is restricted.

その第1コラム2aにアッパーブラケット11が溶接され、そのアッパーブラケット11と後述の衝撃吸収機構とを介して、第1コラム2aは車体に支持される。   An upper bracket 11 is welded to the first column 2a, and the first column 2a is supported by the vehicle body via the upper bracket 11 and an impact absorbing mechanism described later.

その第2コラム2bにロアブラケット10が溶接され、そのロアブラケット10を介して第2コラム2bは車体に支持される。   The lower bracket 10 is welded to the second column 2b, and the second column 2b is supported by the vehicle body via the lower bracket 10.

図2に示すように、その第2ハンドルシャフト7の外周に一対の周溝8が形成され、その周溝8に通じる通孔9が第1ハンドルシャフト5に形成され、その通孔9と周溝8とに樹脂60が充填される。
衝撃が作用すると、その樹脂60が破断され、第1ハンドルシャフト5と第2ハンドルシャフト7とは軸方向相対移動する。第1ハンドルシャフト5の内周形状と第2ハンドルシャフト7の外周形状とは非円形とされることで、第1ハンドルシャフト5と第2ハンドルシャフト7とは回転伝達可能に連結されている。
As shown in FIG. 2, a pair of circumferential grooves 8 are formed on the outer periphery of the second handle shaft 7, and a through hole 9 communicating with the circumferential groove 8 is formed in the first handle shaft 5. Resin 60 is filled in the grooves 8.
When the impact is applied, the resin 60 is broken, and the first handle shaft 5 and the second handle shaft 7 move relative to each other in the axial direction. Since the inner peripheral shape of the first handle shaft 5 and the outer peripheral shape of the second handle shaft 7 are non-circular, the first handle shaft 5 and the second handle shaft 7 are coupled so as to be able to transmit rotation.

図3、図4および図5の(1)に示すように、そのアッパーブラケット11は、第1コラム2aの径方向外方に延び出る一対の支持部11aと、各支持部11aの一端から第1コラム2aの軸方向に対して直角方向に延び出る側壁部11dと、各側壁部11dの一端から第1コラム2aの軸方向に平行に延び出る突出部11eと、各突出部11eに一体化されたリング11hとを有する。各支持部11aに、ステアリングホイール側において開口する切欠11bが形成され、各切欠11bに連結部材20が挿入されている。   As shown in FIG. 3, FIG. 4 and FIG. 5 (1), the upper bracket 11 includes a pair of support portions 11a extending outward in the radial direction of the first column 2a and one end of each support portion 11a. The side wall portion 11d extending in a direction perpendicular to the axial direction of the one column 2a, the protruding portion 11e extending in parallel to the axial direction of the first column 2a from one end of each side wall portion 11d, and the protruding portion 11e are integrated. Ring 11h. Each support portion 11a is formed with a notch 11b that opens on the steering wheel side, and a connecting member 20 is inserted into each notch 11b.

図5の(2)に示すように、各連結部材20は、各切欠11bの内面に入り込む上部20aと、各切欠11bの周囲の下面に沿う下部20bとを有する。各支持部11aの切欠11bの周縁に沿う部分に、複数の通孔11gが形成される。各通孔11gに通じる通孔20cが、各連結部材20の下部20bに形成される。それら通孔11g、20cに、合成樹脂製のピン61が挿通される。各ピン61は、各切欠11bの周囲の上面に沿う保持部材61′に一体化される。
各連結部材20と各保持部材61′の上面に、板金製の衝撃吸収部材63が沿わせられる。各衝撃吸収部材63の一端側と各連結部材20とに形成されるボルト通孔63′、20′に、車体側部材45に植え込まれるネジ軸40が挿通される。そのネジ軸40にねじ合わされるナット41と車体側部材45とで、その衝撃吸収部材63と保持部材61′と支持部11aと連結部材20とが挟み込まれる。これにより、衝撃吸収部材63の一端側は車体に同行移動するように連結される。なお、各ボルト通孔63′、20′は、コラム軸方向が長手方向の長孔とされ、製作誤差による各部材相互の位置ずれに対応可能とされている。
衝撃が作用すると、それらピン61が剪断され、そのアッパーブラケット11は第1コラム2aと同行して、第1コラム2aの軸方向に、車体と第2コラム2bと衝撃吸収部材63と保持部材61′と連結部材20とに対して相対移動する。
As shown in (2) of FIG. 5, each connecting member 20 has an upper portion 20a that enters the inner surface of each notch 11b, and a lower portion 20b that extends along the lower surface around each notch 11b. A plurality of through holes 11g are formed in a portion along the periphery of the notch 11b of each support portion 11a. A through hole 20 c communicating with each through hole 11 g is formed in the lower part 20 b of each connecting member 20. A synthetic resin pin 61 is inserted through the through holes 11g and 20c. Each pin 61 is integrated with a holding member 61 'along the upper surface around each notch 11b.
An impact absorbing member 63 made of sheet metal is placed along the upper surface of each connecting member 20 and each holding member 61 '. The screw shaft 40 implanted in the vehicle body side member 45 is inserted into bolt through holes 63 ′ and 20 ′ formed in one end side of each impact absorbing member 63 and each connecting member 20. The impact absorbing member 63, the holding member 61 ′, the support portion 11 a, and the connecting member 20 are sandwiched between the nut 41 and the vehicle body side member 45 that are screwed together with the screw shaft 40. Thereby, the one end side of the shock absorbing member 63 is connected so as to move along with the vehicle body. The bolt through holes 63 ′ and 20 ′ are elongated holes in the longitudinal direction in the column axis direction so as to be able to cope with misalignment between members due to manufacturing errors.
When an impact acts, the pins 61 are sheared, and the upper bracket 11 accompanies the first column 2a, and in the axial direction of the first column 2a, the vehicle body, the second column 2b, the shock absorbing member 63, and the holding member 61. 'And relative movement with respect to the connecting member 20.

図6にも示すように、各衝撃吸収部材63は、一端から他端に向かって第1コラム2aの軸方向に沿って延びる第1の部分63aと、その第1の部分63aから第1コラム2aの軸方向に対して直角な方向に沿って延びる第2の部分63bと、その第2の部分63bから他端に向かって第1コラム2aの軸方向に沿って延びる第3の部分63cとを有し、他端は自由端とされている。
各衝撃吸収部材63の第1の部分63aは、前述のように保持部材61′と車体側部材45とで挟み込まれて車体に連結される。各衝撃吸収部材63の第2の部分63bは、アッパーブラケット11の各支持部11aに形成される開口11fに挿入される。各衝撃吸収部材63の第3の部分63cは、アッパーブラケット11の各突出部11eに一体化されたリング11hに挿入される。
As shown also in FIG. 6, each shock absorbing member 63 includes a first portion 63a extending from one end to the other end along the axial direction of the first column 2a, and the first portion 63a to the first column. A second portion 63b extending along a direction perpendicular to the axial direction of 2a; a third portion 63c extending along the axial direction of the first column 2a from the second portion 63b toward the other end; The other end is a free end.
As described above, the first portion 63a of each impact absorbing member 63 is sandwiched between the holding member 61 'and the vehicle body side member 45 and connected to the vehicle body. The second portion 63 b of each shock absorbing member 63 is inserted into the opening 11 f formed in each support portion 11 a of the upper bracket 11. The third portion 63c of each shock absorbing member 63 is inserted into a ring 11h integrated with each protrusion 11e of the upper bracket 11.

図7の(1)に示すように、その開口11fの周縁部の一側は第1押し付け部11jとされ、その第2の部分63bに衝撃吸収部材63の一端側において間隔δをおいて対向する。その第1押し付け部11jは凸曲面とされている。その第1押し付け部11jから第1コラム2aの軸方向に対して直角な方向に離れた位置において、アッパーブラケット11の側壁部11dと突出部11eとの境界部が第2押し付け部11kを構成する。その第2押し付け部11kは、その第2の部分63bに衝撃吸収部材63の他端側において対向する。その第2押し付け部11kは凸曲面とされている。そのリング11hの内面は、その第3の部分63cが第1コラム2aの軸方向に交差する方向に相対移動するのを規制可能なガイド部11h′とされている。   As shown in (1) of FIG. 7, one side of the peripheral edge of the opening 11f is a first pressing portion 11j, and is opposed to the second portion 63b at one end side of the shock absorbing member 63 with an interval δ. To do. The first pressing portion 11j is a convex curved surface. At a position away from the first pressing portion 11j in a direction perpendicular to the axial direction of the first column 2a, the boundary portion between the side wall portion 11d and the protruding portion 11e of the upper bracket 11 constitutes the second pressing portion 11k. . The second pressing portion 11k faces the second portion 63b on the other end side of the shock absorbing member 63. The second pressing portion 11k is a convex curved surface. The inner surface of the ring 11h is a guide portion 11h 'that can restrict the relative movement of the third portion 63c in the direction intersecting the axial direction of the first column 2a.

図8、図9の(1)、(2)に示すように、上記スペーサ3は円筒形であり、軸方向に沿う割り溝3aを有することで径方向に弾性変形可能とされている。このスペーサ3は、超高分子量ポリエチレン材により射出成形等により型成形され、その超高分子量ポリエチレンの分子量は、500000以上6000000以下とされ、好ましくは3000000以上4500000以下とされる。   As shown in FIGS. 8 and 9 (1) and (2), the spacer 3 has a cylindrical shape, and can be elastically deformed in the radial direction by having a split groove 3a along the axial direction. The spacer 3 is molded by ultra high molecular weight polyethylene material by injection molding or the like, and the molecular weight of the ultra high molecular weight polyethylene is 500,000 or more and 6000000 or less, preferably 3000000 or more and 4500000 or less.

そのスペーサ3の一端には内向きに突出するフランジ3bが形成され、このフランジ3bは第2コラム2bの端面に接する。このスペーサ3は、その外周の周方向に間隔をおいた複数の領域に、軸方向に沿って形成された複数の突条3dを有する。その突条3dの形成されていない外周領域3eは平坦な円筒面とされている。これにより、第1コラム2aの内周面は各突条3dを介しスペーサ3に接する。図9の(3)に示すように、両コラム2a、2b間に圧入された状態でのスペーサ3の突条3dの高さ寸法hは、突条3dの形成されていない部分3fの厚み寸法D3よりも小さくされている。   A flange 3b protruding inward is formed at one end of the spacer 3, and this flange 3b is in contact with the end surface of the second column 2b. The spacer 3 has a plurality of protrusions 3d formed along the axial direction in a plurality of regions spaced in the circumferential direction of the outer periphery thereof. The outer peripheral region 3e where the protrusion 3d is not formed is a flat cylindrical surface. Thereby, the inner peripheral surface of the first column 2a is in contact with the spacer 3 via each protrusion 3d. As shown in (3) of FIG. 9, the height dimension h of the protrusion 3d of the spacer 3 in a state where it is press-fitted between both columns 2a and 2b is the thickness dimension of the portion 3f where the protrusion 3d is not formed. It is made smaller than D3.

図10に示すように、そのスペーサ3の圧入前の全厚み寸法D2は両コラム2a、2bの間の隙間寸法D1よりも大きく、そのスペーサ3の圧入前の全厚み寸法2から突条の高さ寸法Hを差し引いた寸法D3は両コラム2a、2bの間の隙間寸法D1よりも小さくされる。その圧入前のスペーサ3は第2コラム2bの外周に嵌合され、その一端のフランジ3bは第2コラム2bの端面に当接される。そのスペーサ3の外周に第1コラム2aが圧入され、その圧入の際に各突条3dが圧縮変形される。なお、スペーサ3の圧入前の全厚み寸法D2が加工公差によりばらついたとしても、D2>D1>D3の関係がするように、スペーサ3の圧入前の全厚み寸法D2および突条3dの高さ寸法Hが設定される。   As shown in FIG. 10, the total thickness dimension D2 of the spacer 3 before press-fitting is larger than the gap dimension D1 between the columns 2a and 2b, and the height of the ridge is higher than the total thickness dimension 2 of the spacer 3 before press-fitting. The dimension D3 obtained by subtracting the dimension H is made smaller than the gap dimension D1 between the columns 2a and 2b. The spacer 3 before press-fitting is fitted to the outer periphery of the second column 2b, and the flange 3b at one end thereof is in contact with the end surface of the second column 2b. The first column 2a is press-fitted into the outer periphery of the spacer 3, and each protrusion 3d is compressed and deformed during the press-fitting. In addition, even if the total thickness dimension D2 before press-fitting of the spacer 3 varies due to processing tolerances, the total thickness dimension D2 before press-fitting of the spacer 3 and the height of the protrusion 3d are set so that D2> D1> D3. A dimension H is set.

上記構成において、車両の衝突により衝撃が作用すると、先ず、樹脂60とピン61とが剪断されることで衝撃が吸収される。   In the above configuration, when an impact is applied due to a vehicle collision, the impact is absorbed by shearing the resin 60 and the pin 61 first.

次に、第1コラム2aが車体と第2コラム2bとに対し相対移動することで、両コラム2a、2b間に圧入されたスペーサ3の圧入荷重に応じて衝撃が吸収される。
そのスペーサ3の圧入前の全厚み寸法D2は両コラム2a、2bの間の隙間寸法D1よりも大きく、そのスペーサ3の圧入前の全厚み寸法D2から突条3dの高さ寸法Hを差し引いた寸法D3は両コラム2a、2bの間の隙間寸法D1よりも小さいので、スペーサ3の圧入時における圧縮変形量は、スペーサの内外周が平坦な円筒面である場合よりも小さくなる。これにより、加工公差に応じ両コラム2a、2bの間の隙間寸法D1およびスペーサ3の圧入前の全厚み寸法D2がばらついたとしても、そのばらつきによるスペーサ3の圧入時の圧縮変形量の変動は小さくなり、その圧入荷重に対応する両コラム2a、2bの軸方向相対移動に要する荷重のばらつきも小さくできる。図11における2点鎖線は、そのスペーサ3の圧入前の全厚み寸法D2が一定であるとした場合における、両コラム2a、2b間の隙間寸法D1の設定値からのばらつきと軸方向相対移動に要する荷重との関係を示し、その隙間寸法D1のばらつきに対する荷重のばらつきは、実線で示した内外周が平坦な円筒面であるスペーサの荷重のばらつきよりも小さくなるのを確認できる。これにより、両コラム2a、2bの軸方向相対移動に要する荷重を適正範囲内に設定し、適正に衝撃エネルギーを吸収できる。
また、両コラム2a、2b間に圧入されている状態でのスペーサ3の突条3dの高さ寸法hを、突条3dの形成されていない部分3fの厚み寸法D3よりも小さくすることで、そのスペーサ3が超高分子量ポリエチレン製で金属等に比べ変形し易いものであっても、衝撃作用時における突条3dの変形による両コラム2a、2bの相対的な傾きを小さくし、また、その突条3dの形成されていない変形し難い部分3fにより両コラム2a、2bを軸方向相対移動するように案内できるので、両コラム2a、2bを円滑に軸方向相対移動させて適正に衝撃エネルギーを吸収できる。
Next, the first column 2a moves relative to the vehicle body and the second column 2b, so that the impact is absorbed according to the press-fit load of the spacer 3 press-fitted between the columns 2a and 2b.
The total thickness dimension D2 before the spacer 3 is press-fitted is larger than the gap dimension D1 between the columns 2a and 2b, and the height dimension H of the protrusion 3d is subtracted from the total thickness dimension D2 before the spacer 3 is press-fitted. Since the dimension D3 is smaller than the gap dimension D1 between the two columns 2a and 2b, the amount of compressive deformation when the spacer 3 is press-fitted is smaller than when the spacer has a flat cylindrical surface. As a result, even if the gap dimension D1 between both the columns 2a and 2b and the total thickness dimension D2 before press-fitting of the spacer 3 vary depending on the processing tolerance, the variation in the amount of compressive deformation at the time of press-fitting of the spacer 3 due to the variation is The variation in the load required for the relative movement in the axial direction of both the columns 2a and 2b corresponding to the press-fit load can be reduced. The two-dot chain line in FIG. 11 shows the variation from the set value of the gap dimension D1 between the columns 2a and 2b and the relative movement in the axial direction when the total thickness dimension D2 before press-fitting of the spacer 3 is constant. It shows the relationship with the required load, and it can be confirmed that the variation in the load with respect to the variation in the gap dimension D1 is smaller than the variation in the load of the spacer whose inner and outer circumferences are flat cylindrical surfaces indicated by the solid line. Thereby, the load required for the axial relative movement of both the columns 2a and 2b can be set within an appropriate range, and impact energy can be absorbed appropriately.
Further, by making the height dimension h of the protrusion 3d of the spacer 3 in a state where it is press-fitted between both the columns 2a and 2b, smaller than the thickness dimension D3 of the portion 3f where the protrusion 3d is not formed, Even if the spacer 3 is made of ultra high molecular weight polyethylene and is more easily deformed than metal or the like, the relative inclination of both columns 2a and 2b due to deformation of the protrusion 3d during impact action is reduced, and Since the two columns 2a and 2b can be guided so as to move relative to each other in the axial direction by the portion 3f which is not formed with the protrusion 3d and is difficult to deform, the impact energy can be appropriately adjusted by smoothly moving both the columns 2a and 2b in the axial direction Can absorb.

また、第1コラム2aが車体に対して、衝撃吸収部材63の第2の部分63bとアッパーブラケット11の第1押し付け部11jとの間隔δだけ相対移動した後に、衝撃吸収部材63が塑性変形して衝撃が吸収される。すなわち、図7の(2)に示すように、その間隔δだけ第1コラム2aが車体に対して相対移動すると、その第2の部分63bが第1押し付け部11jに押し付けられる。さらに第1コラム2aが車体に対して相対移動すると、衝撃吸収部材63の第1の部分63aと第2の部分63bとの境界部が塑性変形する。その塑性変形により、図7の(3)に示すように、その第2の部分63bが第2押し付け部11kに押し付けられる。
さらに第1コラム2aが車体に対して相対移動すると、図12に示すように、その相対移動に伴い第1押し付け部11jと第2押し付け部11kとが衝撃吸収部材63を塑性変形させる。
Further, after the first column 2a is moved relative to the vehicle body by a distance δ between the second portion 63b of the shock absorbing member 63 and the first pressing portion 11j of the upper bracket 11, the shock absorbing member 63 is plastically deformed. Shock is absorbed. That is, as shown in (2) of FIG. 7, when the first column 2a moves relative to the vehicle body by the interval δ, the second portion 63b is pressed against the first pressing portion 11j. Further, when the first column 2a moves relative to the vehicle body, the boundary portion between the first portion 63a and the second portion 63b of the shock absorbing member 63 is plastically deformed. Due to the plastic deformation, as shown in (3) of FIG. 7, the second portion 63b is pressed against the second pressing portion 11k.
Further, when the first column 2a moves relative to the vehicle body, as shown in FIG. 12, the first pressing portion 11j and the second pressing portion 11k plastically deform the impact absorbing member 63 along with the relative movement.

これにより、図13に示すように、車体に対する第1コラム2aの相対移動ストロークとドライバーに作用する荷重との関係は、その衝撃吸収初期において変動の小さなものにでき、ドライバーに大きな荷重を作用させることなく効果的に衝撃を吸収できる。   As a result, as shown in FIG. 13, the relationship between the relative movement stroke of the first column 2a relative to the vehicle body and the load acting on the driver can be small in the initial stage of the shock absorption, and a large load is applied to the driver. It can absorb the impact effectively without any problems.

上記構成によれば、スペーサ3を、分子量が500000以上の超高分子量ポリエチレン製とすることで、分子量が100000程度の通常の熱可塑性合成樹脂製とするのに比べ、高温時に軟化し難くなり、引っ張り強さ等の強度が向上し、第1コラム2aへ第2コラム2bをスペーサ3を介して圧入する時に容易に塑性変形することはなく、また、低温時に収縮し難くなる。これにより、その圧入荷重が小さくなり過ぎるのを防止し、衝撃エネルギーを充分に吸収できる。
また、その超高分子量ポリエチレンは靱性を有すると共に適度な硬度(ショア硬度D67〜70)を有するので、衝撃作用時に割れ難く、且つ、第1コラム2aへ第2コラム2bをスペーサ3を介して圧入する時に容易に塑性変形することはないので衝撃エネルギーを充分に吸収できる。
さらに、その超高分子量ポリエチレンは摩擦係数が小さいので、衝撃作用時に第1コラム2aと第2コラム2bの軸方向相対移動を阻害することはなく、衝撃吸収時に過大な荷重がドライバーに作用するのを防止できる。
その超高分子量ポリエチレンの分子量を6000000以下とすることで、スペーサ3の成型性を向上できるので、その寸法精度を向上して上記圧入荷重を正確に管理し、適正に衝撃エネルギーを吸収することができる。
その超高分子量ポリエチレンの分子量を、3000000以上とすることで上記衝撃吸収時の効果をより向上し、4500000以下とすることで成型性をより向上できる。
According to the above configuration, the spacer 3 is made of ultrahigh molecular weight polyethylene having a molecular weight of 500,000 or more, so that it becomes difficult to soften at a high temperature as compared to a normal thermoplastic synthetic resin having a molecular weight of about 100,000. The strength such as the tensile strength is improved, and when the second column 2b is press-fitted into the first column 2a via the spacer 3, it is not easily plastically deformed, and is difficult to shrink at a low temperature. Thereby, the press-fit load is prevented from becoming too small, and the impact energy can be sufficiently absorbed.
Further, since the ultra high molecular weight polyethylene has toughness and moderate hardness (Shore hardness D67 to 70), it is difficult to break at the time of impact, and the second column 2b is press-fitted into the first column 2a through the spacer 3. Since it is not easily plastically deformed, the impact energy can be sufficiently absorbed.
Furthermore, since the ultra high molecular weight polyethylene has a small friction coefficient, it does not hinder the relative movement in the axial direction of the first column 2a and the second column 2b during impact action, and an excessive load acts on the driver during shock absorption. Can be prevented.
By setting the molecular weight of the ultrahigh molecular weight polyethylene to 6000000 or less, the moldability of the spacer 3 can be improved. Therefore, the dimensional accuracy can be improved, the press-fitting load can be accurately managed, and impact energy can be absorbed appropriately. it can.
By setting the molecular weight of the ultrahigh molecular weight polyethylene to 3000000 or more, the effect at the time of impact absorption is further improved, and by setting the molecular weight to 4500000 or less, moldability can be further improved.

なお、本発明は上記実施形態に限定されない。例えば、スペーサの形態は筒状であれば特に限定されない。また、衝撃吸収機構の構成も特に限定されない。   In addition, this invention is not limited to the said embodiment. For example, the shape of the spacer is not particularly limited as long as it is cylindrical. Further, the configuration of the shock absorbing mechanism is not particularly limited.

本発明の実施形態のステアリングコラムの側断面図Side sectional view of a steering column according to an embodiment of the present invention 本発明の実施形態のステアリングコラムの部分側断面図1 is a partial side sectional view of a steering column according to an embodiment of the present invention. 本発明の実施形態のステアリングコラムの部分側面図The partial side view of the steering column of embodiment of this invention 本発明の実施形態のステアリングコラムの部分平面図The partial top view of the steering column of embodiment of this invention 本発明の実施形態のステアリングコラムの(1)は図3のV‐V線断面図、(2)は保持部材と連結部材の斜視図(1) of the steering column of the embodiment of the present invention is a cross-sectional view taken along line VV of FIG. 3, and (2) is a perspective view of the holding member and the connecting member. 本発明の実施形態のステアリングコラムのアッパーブラケットと衝撃吸収部材の斜視図1 is a perspective view of an upper bracket and an impact absorbing member of a steering column according to an embodiment of the present invention. 本発明の実施形態のステアリングコラムのアッパーブラケットと衝撃吸収部材の(1)は衝撃作用前の断面図、(2)は衝撃作用後におけるδの相対移動後の断面図、(3)は衝撃吸収作用時の断面図(1) of the upper bracket and impact absorbing member of the steering column according to the embodiment of the present invention is a cross-sectional view before impact action, (2) is a cross-sectional view after relative movement of δ after impact action, and (3) is shock absorption. Cross section during operation 本発明の実施形態のステアリングコラムのスペーサの斜視図The perspective view of the spacer of the steering column of embodiment of this invention 本発明の実施形態のスペーサの(1)は縦断面図、(2)は横断面図、(3)は両コラム間への圧入状態での部分断面図(1) is a longitudinal sectional view, (2) is a transverse sectional view, and (3) is a partial sectional view in a press-fitted state between both columns of the spacer according to the embodiment of the present invention. 本発明の実施形態のスペーサの寸法関係の説明図Explanatory drawing of the dimensional relationship of the spacer of embodiment of this invention 両コラム間の隙間のばらつきと両コラムを軸方向相対移動させるのに要する荷重との関係を示す図Diagram showing the relationship between the variation in the gap between both columns and the load required to move both columns relative to each other in the axial direction そのステアリングコラムの衝撃作用後の部分側面図Partial side view of the steering column after impact そのステアリングコラムの第1コラムと車体との相対移動ストロークとドライバーに作用する荷重との関係を示す図The figure which shows the relationship between the relative movement stroke of the 1st column of the steering column and a vehicle body, and the load which acts on a driver.

符号の説明Explanation of symbols

1 ステアリングコラム
2a 第1コラム
2b 第2コラム
3 スペーサ
3d 突条
1 Steering column 2a First column 2b Second column 3 Spacer 3d Projection

Claims (2)

筒状の第1コラムに筒状の第2コラムが筒状のスペーサを介し圧入されている衝撃吸収式ステアリングコラムにおいて、
そのスペーサの材料を分子量が500000以上6000000以下の超高分子量ポリエチレンとし、
前記スペーサの外周の周方向に間隔をおいた複数の領域、軸方向に沿って複数の突条が、その突条の形成されていない外周領域は平坦な円筒面とされるように形成され、
前記スペーサの前記圧入前の全厚み寸法は両コラム間の隙間寸法よりも大きくされると共に、前記スペーサの前記圧入前の全厚み寸法から前記突条の高さ寸法を差し引いた寸法は両コラム間の隙間寸法よりも小さくされ、
前記突条は前記圧入の際に圧縮変形され、
両コラム間に圧入されている状態での前記スペーサにおける前記突条の高さ寸法は、前記突条の形成されていない部分の厚み寸法よりも小さくされていることを特徴とする衝撃吸収式ステアリングコラム。
In the shock absorption type steering column in which the cylindrical second column is press-fitted into the cylindrical first column via the cylindrical spacer,
The spacer material is ultra high molecular weight polyethylene having a molecular weight of 500,000 to 6,000,000,
A plurality of ridges along the axial direction are formed in a plurality of regions spaced in the circumferential direction of the outer periphery of the spacer, and an outer peripheral region where the ridges are not formed is formed as a flat cylindrical surface. ,
The total thickness dimension before press-fitting of the spacer is made larger than the gap dimension between both columns, and the dimension obtained by subtracting the height dimension of the protrusion from the total thickness dimension of the spacer before press-fitting is the distance between both columns. The gap size is smaller than
The protrusion is compressed and deformed during the press-fitting,
The shock absorbing steering system, wherein a height dimension of the ridge in the spacer is press-fitted between both columns is smaller than a thickness dimension of a portion where the ridge is not formed. column.
そのスペーサの材料となる超高分子量ポリエチレンの分子量を3000000以上4500000以下とする請求項1に記載の衝撃吸収式ステアリングコラム。 The shock-absorbing steering column according to claim 1, wherein the molecular weight of ultra-high molecular weight polyethylene used as a material for the spacer is 3000000 to 4500000.
JP2005086328A 2005-03-24 2005-03-24 Shock absorbing steering column Expired - Fee Related JP3969431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086328A JP3969431B2 (en) 2005-03-24 2005-03-24 Shock absorbing steering column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086328A JP3969431B2 (en) 2005-03-24 2005-03-24 Shock absorbing steering column

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27711995A Division JPH0995245A (en) 1995-09-28 1995-09-28 Impact absorption type steering column

Publications (2)

Publication Number Publication Date
JP2005193906A JP2005193906A (en) 2005-07-21
JP3969431B2 true JP3969431B2 (en) 2007-09-05

Family

ID=34824892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086328A Expired - Fee Related JP3969431B2 (en) 2005-03-24 2005-03-24 Shock absorbing steering column

Country Status (1)

Country Link
JP (1) JP3969431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9139220B2 (en) 2013-04-18 2015-09-22 Hyundai Motor Company Steering system of automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209060B4 (en) * 2015-05-18 2016-12-01 Thyssenkrupp Ag Steering column for a motor vehicle and energy absorption device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9139220B2 (en) 2013-04-18 2015-09-22 Hyundai Motor Company Steering system of automobile

Also Published As

Publication number Publication date
JP2005193906A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US8408089B2 (en) Energy absorbing steering column
US20130075189A1 (en) Motor-driven power steering apparatus
EP2821325A1 (en) Vehicular shock absorbing device and vehicular shock absorbing structure
US7168741B2 (en) Steering apparatus
CN102066140B (en) Stabilizer device and method for manufacturing the same
US20120248724A1 (en) Vehicle steering device
EP1724180B1 (en) Rack guide and rack and pinion steering device using the rack guide
US20160272234A1 (en) Position adjustable steering apparatus
KR20110049815A (en) Stabilizer device and method of manufacturing same
JP2008265590A (en) Rack and pinion steering device
KR20180110119A (en) Ball joint and stabilizer link using it
JP3969431B2 (en) Shock absorbing steering column
JP5228984B2 (en) Energy absorbing steering column
US5575501A (en) Shaft for collapsible steering apparatus
JP2012214165A (en) Rack-and-pinion steering gear unit
JP2008087531A (en) Electrically-driven telescopic adjustment type steering device
CN105730497A (en) Telescopic shaft and steering system
JP3611885B2 (en) Shock absorbing steering column and manufacturing method thereof
JPH0995245A (en) Impact absorption type steering column
JPS6144540Y2 (en)
JPH1045005A (en) Power transmission shaft of steering device and method for assembling it
KR101268263B1 (en) Rack Bar Supporting Device of Steering Apparatus for Vehicle
EP1407957B1 (en) Shock absorbing type steering device for vehicles and method of producing the same
KR101304499B1 (en) Joint of steering shaft for automobile
CN219007752U (en) High-strength long-neck steering engine sensor end cover

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees