JPH08139138A - Connection method of electronic device - Google Patents

Connection method of electronic device

Info

Publication number
JPH08139138A
JPH08139138A JP6274659A JP27465994A JPH08139138A JP H08139138 A JPH08139138 A JP H08139138A JP 6274659 A JP6274659 A JP 6274659A JP 27465994 A JP27465994 A JP 27465994A JP H08139138 A JPH08139138 A JP H08139138A
Authority
JP
Japan
Prior art keywords
conductive particles
electrode
electrodes
electronic component
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6274659A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakatsu
務 坂津
Yoshihiro Yoshida
芳博 吉田
Toshiaki Iwabuchi
寿章 岩渕
Satoshi Kuwazaki
聡 桑崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6274659A priority Critical patent/JPH08139138A/en
Publication of JPH08139138A publication Critical patent/JPH08139138A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Abstract

PURPOSE: To obtain an highly reliable connection method of electronic device by forming an alloy between an electrode and a conductive particle. CONSTITUTION: A conductive particle 7 is provided between the electrode 6 of a semiconductor chip 5 and the electrode 3 of an electronic device 2. The conductive particle 7 is then pressed through combination of ultrasonic wave and heat thus bonding the electrode 6 of the semiconductor chip 5 and the electrode 3 of the electronic device 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI等の電子部品の
接続方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of connecting electronic parts such as LSI.

【0002】[0002]

【従来の技術】従来、電子部品を効率よく高精度に接続
する方法としては、LSIチップの電極に特別な工程に
よってソルダバンブを形成したフリップチップをフェー
スダウンで実装する装置「超音波フリップチップボンダ
ー UFB−2−1B」(超音波工業株式会社)に用い
られているような超音波を併用するものがある。しか
し、このフリップチップを用いた電子部品の接続方法に
は、フリップチップの形成に煩雑な工程が必要であると
いう問題点と、フリップチップの入手が困難で、高価で
あるという問題点がある。
2. Description of the Related Art Conventionally, as a method for efficiently and highly accurately connecting electronic components, a device for mounting face-down a flip chip having a solder bump formed on an electrode of an LSI chip by a special process, "Ultrasonic flip chip bonder UFB""-2-1B" (Ultrasonic Industry Co., Ltd.) is used in combination with ultrasonic waves. However, this method of connecting electronic components using a flip chip has a problem that a complicated process is required to form the flip chip and that the flip chip is difficult to obtain and expensive.

【0003】それに対して、LSIに特殊な工程を施す
必要のない導電性粒子を用いた電子部品の接続方法があ
る。この導電性粒子を用いた電子回路の接続方法には、
特開昭63−47943号公報、特開平3−28907
0号公報、及び、「導電性粒子と光硬化性樹脂を用いた
ベアチップフェイスダウンボンディング技術:ELAS
TIC」(シャープ、山村 他、HYBRIDS、19
92,vol.8,No.6 P.3〜P.8)に示さ
れたものがある。
On the other hand, there is a method of connecting electronic parts using conductive particles which does not require a special process on the LSI. The electronic circuit connection method using the conductive particles,
JP-A-63-47943, JP-A-3-28907
No. 0, and "Bare chip face-down bonding technology using conductive particles and photocurable resin: ELAS
TIC ”(Sharp, Yamamura et al., HYBRIDS, 19
92, vol. 8, No. 6 P. 3-P. There is one shown in 8).

【0004】特開昭63−47943号公報に示された
電子部品の接続方法は、以下に説明するとおりである。
電子部品の電極を接続する基板上の配線パターンの接続
領域にのみ接着剤を塗布する。そして、その基板上に導
電性粒子を絶縁性高分子により被覆したマイクロカプセ
ルを散布した後、接着剤が塗布された接続領域以外の不
要なマイクロカプセルを排除する。その後、電子部品を
位置合わせして、加熱加圧する。このとき、絶縁性高分
子が溶融し、電子部品の電極と導電性粒子とが圧接す
る。そして、絶縁性高分子が冷却し硬化して電子部品を
固定する。これにより、マイクロカプセルの層が、ほぼ
単層、又は多くても2〜3層程度となり、マイクロカプ
セルの導電性粒子の接触抵抗が削減される。
The method of connecting electronic components shown in Japanese Patent Laid-Open No. 63-47943 is as described below.
The adhesive is applied only to the connection area of the wiring pattern on the substrate that connects the electrodes of the electronic component. Then, after spraying the microcapsules in which the conductive particles are coated with the insulating polymer on the substrate, unnecessary microcapsules other than the connection region where the adhesive is applied are removed. Then, the electronic components are aligned and heated and pressurized. At this time, the insulating polymer melts, and the electrodes of the electronic component and the conductive particles come into pressure contact with each other. Then, the insulating polymer is cooled and hardened to fix the electronic component. As a result, the layer of the microcapsule becomes almost a single layer, or at most about 2-3 layers, and the contact resistance of the conductive particles of the microcapsule is reduced.

【0005】次に、特開平3−289070号公報に示
された電子部品の接続方法は、以下に説明するとおりで
ある。電気回路基体の電極を突出させ、この突出させた
電極に接着剤を塗布する。その後、接着剤を塗布した電
極に導電性粒子を固着する。そして、その電気回路基体
に接続させる電気回路基体を位置合わせした後、絶縁性
接着剤を用いて、圧接、接続する。これにより、高密度
に配列された電極端子を隣接する電極の電気的絶縁を保
ちながら、二つの電気回路基体を接続する。
Next, the method of connecting electronic components disclosed in Japanese Patent Laid-Open No. 3-289070 is as described below. The electrodes of the electric circuit substrate are projected, and an adhesive is applied to the projected electrodes. Then, the conductive particles are fixed to the electrode coated with the adhesive. Then, after the electric circuit substrate to be connected to the electric circuit substrate is aligned, it is pressed and connected using an insulating adhesive. As a result, the two electric circuit substrates are connected to each other while maintaining the electrical insulation between the electrode terminals arranged in high density and the adjacent electrodes.

【0006】さらに、「導電性粒子と光硬化性樹脂を用
いたベアチップフェイスダウンボンディング技術:EL
ASTIC」に示された電子部品の接続方法は、以下に
説明するとおりである。ウェハプロセス時に、光硬化樹
脂をウェハ全面に塗布した後、選択的に光を照射して、
電極に樹脂未硬化部分を形成する。この樹脂未硬化部分
に導電性粒子を固着させた後、ウェハをダイシングして
チップを形成する。このチップの電極と基板の電極とを
位置合わせして、チップ固定用の熱硬化併用の光硬化接
着剤を供給する。その後、チップと基板とを加圧し、光
を照射して光硬化接着剤を硬化して、チップと基板とを
圧接して固定する。
Furthermore, "Bare chip face-down bonding technology using conductive particles and photocurable resin: EL
The method of connecting the electronic components shown in "ASIC" is as described below. At the time of the wafer process, after applying a photo-curing resin on the entire surface of the wafer, selectively irradiating light,
An uncured resin portion is formed on the electrode. After fixing the conductive particles to the uncured portion of the resin, the wafer is diced to form chips. The electrode of this chip and the electrode of the substrate are aligned with each other, and a photo-curing adhesive that is used in combination with heat for fixing the chip is supplied. After that, the chip and the substrate are pressed, light is irradiated to cure the photo-curing adhesive, and the chip and the substrate are pressed and fixed.

【0007】[0007]

【発明が解決しようとする課題】ところが、前述の導電
性粒子を用いた電子部品の接続方法では、接着剤を使用
して導電性粒子と電極とが接続されているため、電極と
導電性粒子との接触部が圧接されているだけのメカニカ
ルコンタクトである。そのため、押圧力が弱まると接触
抵抗が大きくなりオープン不良となる危険性がある。そ
のため、接続信頼性に欠けるという問題点がある。
However, in the above-described method of connecting electronic parts using conductive particles, since the conductive particles and the electrodes are connected using an adhesive, the electrodes and the conductive particles are connected. It is a mechanical contact whose contact part with is only pressed. Therefore, when the pressing force is weakened, the contact resistance increases and there is a risk of open failure. Therefore, there is a problem that the connection reliability is poor.

【0008】本発明は、このような問題点に鑑みなされ
たものであり、電極と導電性粒子とによる合金を形成す
ることにより、接続信頼性の高い電子部品の接続方法を
提供することを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of connecting electronic parts having high connection reliability by forming an alloy of electrodes and conductive particles. I am trying.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
半導体チップの電極と電子部品の電極との間に導電性粒
子を介在させて超音波と熱とを併用して加圧することに
より前記半導体チップの電極と電子部品の電極とを接合
する。
According to the first aspect of the present invention,
The electrodes of the semiconductor chip and the electrodes of the electronic component are bonded by interposing conductive particles between the electrodes of the semiconductor chip and the electrodes of the electronic component and applying pressure by using ultrasonic waves and heat in combination.

【0010】請求項2記載の発明は、半導体チップ若し
くは電子部品の何れか一方の電極に粒径よりも薄い接着
剤層を用いて導電性粒子を固定する。
According to the second aspect of the present invention, the conductive particles are fixed to the electrode of either the semiconductor chip or the electronic component by using an adhesive layer having a smaller particle diameter.

【0011】請求項3記載の発明は、導電性粒子の粒径
を半導体チップ又は電子部品の電極の大きさに対して1
/3から1.5倍の大きさとする。
According to a third aspect of the invention, the particle size of the conductive particles is set to 1 with respect to the size of the electrodes of the semiconductor chip or the electronic component.
/ 3 to 1.5 times the size.

【0012】請求項4記載の発明は、導電性粒子を弾性
体とする。
According to a fourth aspect of the invention, the conductive particles are elastic bodies.

【0013】請求項5記載の発明は、半導体チップ側及
び電子部品側のそれぞれから振動方向の異なる超音波を
加振する。
According to a fifth aspect of the present invention, ultrasonic waves having different vibration directions are applied from the semiconductor chip side and the electronic component side, respectively.

【0014】[0014]

【作用】請求項1記載の発明においては、半導体チップ
の電極と電子部品の電極との間に導電性粒子を介在させ
て超音波と熱とを併用して加圧することにより、導電性
粒子と電極との接点において拡散が生じて合金形成が行
なわれるため、接続信頼性が向上する。
According to the first aspect of the present invention, conductive particles are interposed between the electrode of the semiconductor chip and the electrode of the electronic component, and the ultrasonic wave and the heat are used in combination to apply pressure to the conductive particles. Since diffusion occurs at the contact point with the electrode to form an alloy, the connection reliability is improved.

【0015】請求項2記載の発明においては、導電性粒
子が一方の電極に固定されているため、位置合わせ作業
が容易に行なえ、接着剤層により導電性粒子が固定され
ていない電極側の接点では超音波エネルギーが集中して
超音波接合効率が上がる。
According to the second aspect of the invention, since the conductive particles are fixed to one of the electrodes, the alignment work can be easily performed, and the contact on the electrode side where the conductive particles are not fixed by the adhesive layer. Then, ultrasonic energy is concentrated and ultrasonic welding efficiency is increased.

【0016】請求項3記載の発明においては、導電性粒
子の粒径を半導体チップ又は電子部品の電極の大きさに
対して1/3から1.5倍の大きさとすることにより、
導電粒子と電極との接点に形成された合金結合の面積を
広くとることができるため、抵抗が低く抑えられる。
According to the third aspect of the present invention, the particle size of the conductive particles is set to 1/3 to 1.5 times the size of the electrode of the semiconductor chip or the electronic component.
Since the area of the alloy bond formed at the contact point between the conductive particles and the electrode can be increased, the resistance can be suppressed low.

【0017】請求項4記載の発明においては、導電性粒
子を弾性体とすることにより、接続時の加圧による垂直
方向の荷重で粒子がつぶれるため、超音波接合効率及び
歩留まりが向上し、さらに、実装後の熱歪みが許容され
る。
In the invention according to claim 4, since the conductive particles are made of an elastic body, the particles are crushed by a load in the vertical direction due to the pressure at the time of connection, so that the ultrasonic bonding efficiency and the yield are improved. , Thermal strain after mounting is allowed.

【0018】請求項5記載の発明においては、半導体チ
ップ側及び電子部品側のそれぞれから振動方向の異なる
超音波を加振することにより、導電性粒子と電極とが一
方向のみの相対振動でなく、導電性粒子と電極との界面
の平面内で多方向の相対振動となるため、半導体側及び
基板側の両方で超音波接合効率が向上される。
According to the invention of claim 5, by applying ultrasonic waves having different vibration directions from the semiconductor chip side and the electronic component side respectively, the conductive particles and the electrodes are not subjected to relative vibration in only one direction. Since relative vibrations in multiple directions occur in the plane of the interface between the conductive particles and the electrodes, ultrasonic bonding efficiency is improved on both the semiconductor side and the substrate side.

【0019】[0019]

【実施例】請求項1及び3記載の発明の一実施例を図1
ないし図3に基づいて説明する。図1に示すように、ヒ
ーター1上には電子部品である基板2が載置されてい
る。この基板2には電極3が形成されている。また、円
筒形の吸着コレット4により上方向(矢印y方向)に吸
引されて、半導体チップであるLSI5がホールドされ
ている。このLSI5には電極6が形成されている。そ
して、前記電極3と電極6とにより導電性粒子7が挟持
されている。この導電性粒子7は、マスク等を利用して
配置されている。前記電極3,6及び前記導電性粒子7
は、ほぼ同一の大きさである。つまり、前記導電性粒子
7の粒径は、前記電極3,6の大きさに対して1/3か
ら1.5倍の範囲内の大きさである。このとき、図3に
示すように、前記基板2と前記LSI5とが位置合わせ
されて、前記電極6と前記電極3との間で前記導電性粒
子7が圧接されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the invention described in claims 1 and 3 is shown in FIG.
Or, it demonstrates based on FIG. As shown in FIG. 1, a substrate 2, which is an electronic component, is placed on the heater 1. An electrode 3 is formed on the substrate 2. The cylindrical suction collet 4 is sucked in the upward direction (arrow y direction) to hold the LSI 5 which is a semiconductor chip. Electrodes 6 are formed on the LSI 5. The conductive particles 7 are sandwiched between the electrodes 3 and 6. The conductive particles 7 are arranged using a mask or the like. The electrodes 3, 6 and the conductive particles 7
Are approximately the same size. That is, the particle size of the conductive particles 7 is within the range of 1/3 to 1.5 times the size of the electrodes 3 and 6. At this time, as shown in FIG. 3, the substrate 2 and the LSI 5 are aligned with each other, and the conductive particles 7 are pressed against each other between the electrode 6 and the electrode 3.

【0020】ここで、導電性粒子の粒径を半導体チップ
又は電子部品の電極の大きさに対して1/3から1.5
倍の大きさとしたことについて説明する。通常使用され
るLSIは、電極が100μm四方の大きさであり、電
極のライン幅とスペース幅とが同等にデザインされてい
る。また、通常使用される導電性粒子は、市販の異方性
導電膜等でよく使用されているように、粒径が10μm
のものである。そこで、通常使用される導電性粒子より
も1レベル大きい導電性粒子を最小のものとした。この
1レベル大きい導電性粒子の粒径が30μm(約1/
3)である。しかし、電極のライン幅とスペース幅とが
同等にデザインされているため、電極の大きさに対して
導電性粒子の粒径が2倍以上あり、その導電性粒子が一
列に並んだとき、粒子同士が接触するおそれがある。そ
こで、粒径の上限値を電極の大きさの2倍よりも小さな
値、例えば、中間値1.5倍に限定した。そして、これ
は、電極の大きさに対して従来使用されていた導電性粒
子よりも粒径の大きい導電性粒子を用いることを表わし
ている。
Here, the particle size of the conductive particles is 1/3 to 1.5 with respect to the size of the electrode of the semiconductor chip or the electronic component.
The reason why the size is doubled will be described. In a commonly used LSI, the electrodes have a size of 100 μm square, and the line width and the space width of the electrodes are designed to be equal. In addition, the conductive particles that are usually used have a particle size of 10 μm, as is often used in commercially available anisotropic conductive films and the like.
belongs to. Therefore, the conductive particles that are one level larger than the conductive particles that are normally used are made the minimum. The particle size of the conductive particles that is one level larger is 30 μm (about 1 /
3). However, since the line width and the space width of the electrode are designed to be equal, the particle size of the conductive particles is more than twice the size of the electrode, and when the conductive particles are arranged in a line, There is a risk of mutual contact. Therefore, the upper limit of the particle size is limited to a value smaller than twice the size of the electrode, for example, an intermediate value of 1.5 times. And, this means that the conductive particles having a larger particle size than the conventionally used conductive particles are used for the size of the electrode.

【0021】このように導電性粒子7を電極3と電極6
との間で圧接した後、吸着コレット4を通じて水平方向
(x方向)の超音波を電極3,6及び導電性粒子7に加
振する。このとき、同時にヒーター1により電極3,6
及び導電性粒子7を加熱する。これにより、導電性粒子
7と各電極3,6との接点において、拡散が生じて合金
形成が進み、接合部8が形成されて接合が完成する。こ
の時、図2に示すように、導電性粒子7と各電極3,6
との接点に合金接合部分9が形成される。そのため、接
続信頼性が向上する。また、導電性粒子7の粒径を電極
3,6の大きさとほぼ同一の大きさとする。これによ
り、導電性粒子7と各電極3,6との接点に形成された
合金接合部分9の面積を広くとることができる。そのた
め、抵抗が低く抑えられる。
In this way, the conductive particles 7 are applied to the electrode 3 and the electrode 6.
After pressure-contacting between them, ultrasonic waves in the horizontal direction (x direction) are applied to the electrodes 3 and 6 and the conductive particles 7 through the adsorption collet 4. At this time, at the same time, the electrodes 3 and 6 are simultaneously heated by the heater 1.
And, the conductive particles 7 are heated. As a result, diffusion occurs at the contact points between the conductive particles 7 and each of the electrodes 3 and 6, alloy formation proceeds, and the joint portion 8 is formed to complete the joint. At this time, as shown in FIG. 2, the conductive particles 7 and the electrodes 3, 6
An alloy joint portion 9 is formed at the contact point with. Therefore, the connection reliability is improved. The particle size of the conductive particles 7 is set to be substantially the same as the size of the electrodes 3 and 6. Thereby, the area of the alloy joint portion 9 formed at the contact point between the conductive particles 7 and each of the electrodes 3 and 6 can be increased. Therefore, the resistance can be suppressed low.

【0022】請求項2記載の発明の一実施例を図4ない
し図6に基づいて説明する。前述の実施例において説明
した部分と同一部分については、同一符号を用いて表わ
し、その説明は省略する。図4に示すように、LSI5
上に導電性粒子7の粒径よりも薄く層状に接着剤として
紫外線硬化樹脂10を塗布した後、導電性粒子7を電極
6に押圧しながら紫外線硬化樹脂10を硬化させる。こ
れにより、図6に示すように、導電性粒子7と電極6と
がメカニカルコンタクトされた状態になる。このLSI
5を前述の実施例と同様に吸着コレット4によりホール
ドさせ、導電性粒子7をヒーター1上の基板2の電極3
に圧接させる。このときの基板2、LSI5、及び、導
電性粒子7の様子を図5に示す。
An embodiment of the invention described in claim 2 will be described with reference to FIGS. 4 to 6. The same parts as those described in the above-mentioned embodiment are denoted by the same reference numerals, and the description thereof will be omitted. As shown in FIG.
After the ultraviolet curable resin 10 is applied as an adhesive on the upper side in a layer thickness smaller than the particle size of the conductive particles 7, the ultraviolet curable resin 10 is cured while pressing the conductive particles 7 against the electrodes 6. As a result, as shown in FIG. 6, the conductive particles 7 and the electrodes 6 are brought into mechanical contact with each other. This LSI
5 is held by the adsorption collet 4 in the same manner as in the above-mentioned embodiment, and the conductive particles 7 are placed on the electrode 3 of the substrate 2 on the heater 1.
Press against. The state of the substrate 2, the LSI 5, and the conductive particles 7 at this time is shown in FIG.

【0023】このように、導電性粒子7を紫外線硬化樹
脂10により電極6に固定した後、電極3と導電性粒子
7とを圧接させて、電極3と電極6と導電性粒子7とに
超音波と熱とを加える。これにより、導電性粒子7と電
極3との接点に超音波エネルギーが集中して合金形成が
行なわれる。そのため、接続信頼性が向上する。また、
導電性粒子7と各電極3,6との位置合わせ作業が容易
に行なえる。さらに、導電性粒子7と電極3との接点に
おいて、超音波接合効率が上がる。そのうえ、導電性粒
子7と電極6とのメカニカルコンタクトが不十分な箇所
が合っても、超音波エネルギーにより合金形成が行なわ
れて十分なコンタクトが得られる。
After fixing the conductive particles 7 to the electrode 6 with the ultraviolet curable resin 10 as described above, the electrode 3 and the conductive particle 7 are brought into pressure contact with each other so that the electrode 3, the electrode 6 and the conductive particle 7 are superposed. Add sound waves and heat. As a result, ultrasonic energy is concentrated on the contact points between the conductive particles 7 and the electrodes 3 to form an alloy. Therefore, the connection reliability is improved. Also,
Positioning work of the conductive particles 7 and the electrodes 3 and 6 can be easily performed. Further, the ultrasonic bonding efficiency is increased at the contact point between the conductive particles 7 and the electrode 3. Moreover, even if the mechanical contact between the conductive particles 7 and the electrode 6 is insufficient, an alloy is formed by ultrasonic energy to obtain a sufficient contact.

【0024】請求項4記載の発明の一実施例を図7に基
づいて説明する。本実施例では、導電性粒子7として、
弾性体である弾性導電粒子11を用いる。そして、弾性
導電粒子11を電極3と電極6とにより圧接した後、電
極3と電極6と弾性導電粒子11とに超音波と熱とを加
える。これにより、吸着コレット4にホールドされたL
SI5の電極6とヒーター1上に載置された基板2の電
極3とにより圧接された弾性導電粒子11は、垂直方向
(Y方向)に押圧され、潰されて水平方向へ広がる。そ
して、弾性導電粒子11の反発力により、弾性導電粒子
11と各電極3,6との接点には、安定した押圧力が加
わる。そのため、超音波接合効率及び歩留まりが向上す
る。さらに、実装後の熱歪みも許容される。
An embodiment of the invention described in claim 4 will be described with reference to FIG. In this example, as the conductive particles 7,
The elastic conductive particles 11 that are elastic bodies are used. Then, after the elastic conductive particles 11 are pressed against each other by the electrodes 3 and 6, ultrasonic waves and heat are applied to the electrodes 3, 6 and the elastic conductive particles 11. As a result, L held in the suction collet 4
The elastic conductive particles 11 pressed by the electrode 6 of SI5 and the electrode 3 of the substrate 2 placed on the heater 1 are pressed in the vertical direction (Y direction), crushed, and spread in the horizontal direction. Then, due to the repulsive force of the elastic conductive particles 11, a stable pressing force is applied to the contact points between the elastic conductive particles 11 and the electrodes 3 and 6. Therefore, ultrasonic bonding efficiency and yield are improved. Furthermore, thermal strain after mounting is also allowed.

【0025】請求項5記載の発明の一実施例を図8に基
づいて説明する。本実施例では、導電性粒子7を電極3
と電極6とにより圧接した後、一定の水平方向(X方
向)の超音波をLSI5側から電極3,6及び導電性粒
子7に加振するとともに、異なる水平方向(Z方向)の
超音波を基板2側から電極3,6及び導電性粒子7に加
振する。このとき、同時にヒーター1により電極3,6
及び導電性粒子7を加熱する。これにより、導電性粒子
7と各電極3,6とが一方向のみの相対振動でなく、導
電性粒子7と各電極3,6との接点において、多方向の
相対振動となるため、導電性粒子7と各電極3,6との
接点における超音波接合効率が向上される。
An embodiment of the invention described in claim 5 will be described with reference to FIG. In this embodiment, the conductive particles 7 are connected to the electrode 3
After pressure contact with the electrode 6 and the electrode 6, a constant horizontal direction (X direction) ultrasonic wave is applied to the electrodes 3 and 6 and the conductive particles 7 from the LSI 5 side, and a different horizontal direction (Z direction) ultrasonic wave is generated. The electrodes 3 and 6 and the conductive particles 7 are vibrated from the substrate 2 side. At this time, at the same time, the electrodes 3 and 6 are simultaneously heated by the heater 1.
And, the conductive particles 7 are heated. As a result, the conductive particles 7 and the electrodes 3 and 6 do not have relative vibrations in only one direction, but have multidirectional relative vibrations at the contact points between the conductive particles 7 and the electrodes 3 and 6. The ultrasonic bonding efficiency at the contact point between the particle 7 and each electrode 3, 6 is improved.

【0026】[0026]

【発明の効果】請求項1記載の発明は、半導体チップの
電極と電子部品の電極との間に導電性粒子を介在させて
超音波と熱とを併用して加圧することにより、導電性粒
子と電極との接点において拡散が生じて合金形成が行な
われるため、接続信頼性を向上させることができる。
According to the first aspect of the present invention, the conductive particles are interposed between the electrode of the semiconductor chip and the electrode of the electronic component, and the conductive particles are pressurized by using ultrasonic waves and heat in combination. Since diffusion occurs at the contact between the electrode and the electrode to form an alloy, the connection reliability can be improved.

【0027】請求項2記載の発明は、導電性粒子が一方
の電極に固定してあるため、位置合わせ作業を容易に行
なうことができ、接着剤層により導電性粒子が固定され
ていない電極側の接点では超音波エネルギーが集中して
超音波接合効率を上げることができて、さらに、接着剤
層により導電性粒子が固定されている電極側の接点でも
合金形成が期待される。
According to the second aspect of the present invention, since the conductive particles are fixed to one of the electrodes, the alignment work can be easily performed, and the conductive particles are not fixed by the adhesive layer on the electrode side. At the contact point, ultrasonic energy can be concentrated to improve the ultrasonic bonding efficiency, and further, alloy formation is expected at the contact point on the electrode side where the conductive particles are fixed by the adhesive layer.

【0028】請求項3記載の発明は、導電性粒子の粒径
を半導体チップ又は電子部品の電極の大きさに対して1
/3から1.5倍の大きさとすることにより、導電粒子
と電極との接点に形成された合金結合の面積を広くとる
ことができるため、抵抗を低く抑えることができる。
According to a third aspect of the invention, the particle size of the conductive particles is set to 1 with respect to the size of the electrodes of the semiconductor chip or the electronic component.
By setting the size from ⅓ to 1.5 times, the area of the alloy bond formed at the contact point between the conductive particles and the electrode can be widened, so that the resistance can be suppressed low.

【0029】請求項4記載の発明は、導電性粒子を弾性
体とすることにより、接続時の加圧による垂直方向の荷
重で粒子がつぶれるため、超音波接合効率及び歩留まり
を向上させることができ、実装後の熱歪みを許容するこ
とができる。
In the invention according to claim 4, since the conductive particles are made of an elastic body, the particles are crushed by a load in the vertical direction due to the pressure applied at the time of connection, so that the ultrasonic bonding efficiency and the yield can be improved. The thermal strain after mounting can be tolerated.

【0030】請求項5記載の発明は、半導体チップ側及
び電子部品側のそれぞれから振動方向の異なる超音波を
加振することにより、導電性粒子と電極とが一方向のみ
の相対振動でなく、導電性粒子と電極との界面の平面内
で多方向の相対振動となるため、半導体側及び基板側の
両方で超音波接合効率を向上させることができる。
According to a fifth aspect of the present invention, by applying ultrasonic waves having different vibration directions from the semiconductor chip side and the electronic component side, respectively, the conductive particles and the electrodes are not subjected to relative vibration in only one direction, Since multi-directional relative vibration occurs in the plane of the interface between the conductive particles and the electrode, ultrasonic bonding efficiency can be improved on both the semiconductor side and the substrate side.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1及び3記載の発明の一実施例を示す電
子部品の接続方法を用いた接続装置の側面図である。
FIG. 1 is a side view of a connection device using a method for connecting electronic components, showing an embodiment of the invention described in claims 1 and 3. FIG.

【図2】その電子部品の接続方法により接続された電子
部品の接続部分の側面図である。
FIG. 2 is a side view of a connecting portion of electronic components connected by the electronic component connecting method.

【図3】その電子部品の接続方法による接続工程中の電
子部品の接続部分の側面図である。
FIG. 3 is a side view of a connecting portion of the electronic component during a connecting step according to the method of connecting the electronic component.

【図4】請求項2記載の発明の一実施例を示す電子部品
の接続方法による接続工程中の一工程における電子部品
の側面図である。
FIG. 4 is a side view of the electronic component in one step of the connecting steps by the method of connecting electronic components according to the second embodiment of the invention.

【図5】その電子部品の接続方法による接続工程中の他
の工程における電子部品の接続部分の側面図である。
FIG. 5 is a side view of a connecting portion of an electronic component in another step of the connecting steps according to the electronic component connecting method.

【図6】その時の導電性粒子とLSIの電極との接点の
側面図である。
FIG. 6 is a side view of a contact point between conductive particles and an electrode of an LSI at that time.

【図7】請求項4記載の発明の一実施例を示す電子部品
の接続方法による接続工程中の電子部品の接続部分の側
面図である。
FIG. 7 is a side view of a connecting portion of an electronic component during a connecting step by a method of connecting an electronic component, showing an embodiment of the invention described in claim 4;

【図8】請求項5記載の発明の一実施例を示す電子部品
の接続方法による接続工程中の電子部品の接続部分の側
面図である。
FIG. 8 is a side view of a connecting portion of an electronic component during a connecting step by a method of connecting an electronic component showing an embodiment of the invention according to claim 5;

【符号の説明】[Explanation of symbols]

2 電子部品 3 電子部品の電極 5 半導体チップ 6 半導体チップの電極 7 導電性粒子 10 接着剤 11 弾性体 2 Electronic Components 3 Electrodes for Electronic Components 5 Semiconductor Chips 6 Electrodes for Semiconductor Chips 7 Conductive Particles 10 Adhesives 11 Elastic Body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑崎 聡 東京都大田区中馬込1丁目3番6号 株式 会社リコ−内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Kuwazaki 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Riko Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体チップの電極と電子部品の電極と
の間に導電性粒子を介在させて超音波と熱とを併用して
加圧することにより前記半導体チップの電極と電子部品
の電極とを接合したことを特徴とする電子部品の接続方
法。
1. An electrode of a semiconductor chip and an electrode of an electronic component are produced by interposing conductive particles between the electrode of the semiconductor chip and the electrode of an electronic component to apply pressure by using ultrasonic waves and heat in combination. A method for connecting electronic parts, which is characterized by being joined.
【請求項2】 半導体チップ又は電子部品の何れか一方
の電極に粒径よりも薄い接着剤層を用いて導電性粒子を
固定したことを特徴とする請求項1記載の電子部品の接
続方法。
2. The method of connecting electronic components according to claim 1, wherein the conductive particles are fixed to one of the electrodes of the semiconductor chip or the electronic component by using an adhesive layer having a particle diameter smaller than the particle diameter.
【請求項3】 導電性粒子の粒径は半導体チップ又は電
子部品の電極の大きさに対して1/3から1.5倍の大
きさであることを特徴とする請求項1又は2記載の電子
部品の接続方法。
3. The particle size of the conductive particles is 1/3 to 1.5 times as large as the size of the electrode of the semiconductor chip or the electronic component. How to connect electronic components.
【請求項4】 導電性粒子は弾性体であることを特徴と
する請求項1,2又は3記載の電子部品の接続方法。
4. The method for connecting electronic components according to claim 1, wherein the conductive particles are elastic bodies.
【請求項5】 半導体チップ側及び電子部品側のそれぞ
れから振動方向の異なる超音波を加振したことを特徴と
する請求項1,2,3又は4記載の電子部品の接続方
法。
5. The method for connecting electronic components according to claim 1, wherein ultrasonic waves having different vibration directions are applied from the semiconductor chip side and the electronic component side, respectively.
JP6274659A 1994-11-09 1994-11-09 Connection method of electronic device Pending JPH08139138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274659A JPH08139138A (en) 1994-11-09 1994-11-09 Connection method of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274659A JPH08139138A (en) 1994-11-09 1994-11-09 Connection method of electronic device

Publications (1)

Publication Number Publication Date
JPH08139138A true JPH08139138A (en) 1996-05-31

Family

ID=17544774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274659A Pending JPH08139138A (en) 1994-11-09 1994-11-09 Connection method of electronic device

Country Status (1)

Country Link
JP (1) JPH08139138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718604B1 (en) 1999-06-22 2004-04-13 Murata Manufacturing Co., Ltd. Mounting method for electronic device elements
JP2009060147A (en) * 2008-12-15 2009-03-19 Panasonic Corp Component mounting method
JP2009071330A (en) * 2008-12-15 2009-04-02 Panasonic Corp Component mounting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718604B1 (en) 1999-06-22 2004-04-13 Murata Manufacturing Co., Ltd. Mounting method for electronic device elements
JP2009060147A (en) * 2008-12-15 2009-03-19 Panasonic Corp Component mounting method
JP2009071330A (en) * 2008-12-15 2009-04-02 Panasonic Corp Component mounting device
JP4613998B2 (en) * 2008-12-15 2011-01-19 パナソニック株式会社 Component mounting apparatus and component mounting method
JP4720901B2 (en) * 2008-12-15 2011-07-13 パナソニック株式会社 Component mounting method

Similar Documents

Publication Publication Date Title
JP2833326B2 (en) Electronic component mounted connector and method of manufacturing the same
JP3225062B2 (en) Thermosetting resin sheet and semiconductor element mounting method using the same
JP3914431B2 (en) Manufacturing method of semiconductor device
JP2001015553A (en) Manufacture of semiconductor device
JPH1126922A (en) Method for mounting chip
JP3269390B2 (en) Semiconductor device
JP2002118147A (en) Method of mounting semiconductor chip to printed circuit board, and mounting sheet used for embodying the method
KR20040014166A (en) Method of connecting circuit devices and corresponding assembly of circuit device
JPH08139138A (en) Connection method of electronic device
US20020072151A1 (en) Method of producing mounting structure and mounting structure produced by the same
JP2002026071A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
JP4195541B2 (en) Method of mounting a semiconductor chip on a printed circuit board and mounting sheet used for carrying out the method
JP4441090B2 (en) Method of mounting a semiconductor chip on a printed wiring board
JP3419398B2 (en) Method for manufacturing semiconductor device
JP2002353601A (en) Electronic component mounted body and method for mounting electronic component
JP2959215B2 (en) Electronic component and its mounting method
JP4295517B2 (en) Semiconductor chip mounting structure and semiconductor chip mounting method
JP2002289644A (en) Method for joining semiconductor element and joining apparatus
JP2004128259A (en) Joint structure and electronic equipment equipped with the same
JPH1140607A (en) Manufacture of semiconductor device and sealing member
JPH0737934A (en) Mounting method for flip chip
JP2002076208A (en) Packaging structure of semiconductor device and display of structure and its manufacturing method
JPH0714966A (en) Multi-terminal composite lead frame and manufacture thereof
JPH10125730A (en) Mounted structure and manufacturing method thereof
JPH07263490A (en) Flip chip and microbonding method