JPH08134724A - Hollow carbon fiber and its production - Google Patents

Hollow carbon fiber and its production

Info

Publication number
JPH08134724A
JPH08134724A JP31137494A JP31137494A JPH08134724A JP H08134724 A JPH08134724 A JP H08134724A JP 31137494 A JP31137494 A JP 31137494A JP 31137494 A JP31137494 A JP 31137494A JP H08134724 A JPH08134724 A JP H08134724A
Authority
JP
Japan
Prior art keywords
hollow
fiber
carbon fiber
diameter
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31137494A
Other languages
Japanese (ja)
Inventor
Akio Nakano
晶夫 中野
Koichi Imai
宏一 今井
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP31137494A priority Critical patent/JPH08134724A/en
Publication of JPH08134724A publication Critical patent/JPH08134724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain hollow carbon fiber with small outer diameter and large inner diameter. CONSTITUTION: This hollow carbon fiber has an outer diameter of 0.05-3.0μm and inner diameter of >=0.03μm, and can be obtained by cutting vapor-grown carbon fiber followed by oxidizing the resultant fiber in pref. nitric acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は中空炭素繊維、特にその
中空部分の直径が0.03μm以上であるであり、いわ
ゆるナノチューブに較べてその中空孔に物質を注入しや
すく、また生産性の高い中空炭素繊維およびその製造法
に関する。
INDUSTRIAL APPLICABILITY The present invention has a hollow carbon fiber, in particular, a hollow portion having a diameter of 0.03 μm or more, which makes it easier to inject a substance into the hollow pores and has a high productivity as compared with a so-called nanotube. TECHNICAL FIELD The present invention relates to a hollow carbon fiber and a method for producing the same.

【0002】[0002]

【従来技術の技術およびその問題点】中空炭素繊維とし
ては従来ナノチューブが知られている。ナノチューブに
ついては例えば特開平5−125619に記載されてい
る。ところがナノチューブの中空孔は両端が閉じられて
おり,そのままでは内部に物質が入り得ない。空気の存
在下の溶融金属または溶融金属酸化物中との接触でそれ
らを挿入できたとの例も鉛や白金で報告されている(日
経サイエンス1993年3月号63頁,Nature:
362巻 520頁,522頁 (1993))。
2. Description of the Related Art Nanotubes are conventionally known as hollow carbon fibers. Nanotubes are described in, for example, Japanese Patent Laid-Open No. 5-125619. However, the hollow pores of the nanotube are closed at both ends, and substances cannot enter the interior as they are. An example in which they could be inserted by contact with molten metal or molten metal oxide in the presence of air was also reported for lead and platinum (Nikkei Science, March 1993, p. 63, Nature:
362, 520, 522 (1993)).

【0003】一方ナノチューブを酸素や炭酸ガス中で7
00℃以上に加熱することにより、キャップが取れて中
空孔が露出することも上記文献に記載されているが、そ
の露出した中空孔に他の液体を挿入することには失敗し
ている。ナノチューブの中空部に液体ネオンが入ること
は推定されているが未だ実現されていない。ナノチュー
ブの中空孔径は大きくてもせいぜい3nm(0.003
μm)であり、そこに物質を挿入するためには例えその
物質の分子の大きさが孔径より小さくてもその孔材質と
挿入物質と雰囲気によって決まる表面張力に打ち勝つ力
で挿入する必要があり、孔径が小さいと挿入力が大きく
なり得ないために容易ではなく、さらにその直径から見
て大きな分子は挿入できるとは考えがたい。かりにその
直径を押し広げることができても、ナノチューブの外径
自体がせいぜい10nmであり、10nm以上の、各種
の物質を挿入するのに十分の大きさを持った中空孔を設
ける事自体が寸法的に不可能である。したがって特殊な
条件で、特定の物しか現在までには挿入されていない。
On the other hand, the nanotubes are placed in oxygen or carbon dioxide gas
It is also described in the above-mentioned literature that the cap is removed and the hollow hole is exposed by heating at a temperature of 00 ° C. or higher, but it fails to insert another liquid into the exposed hollow hole. It is estimated that liquid neon enters the hollow part of the nanotube, but it has not been realized yet. Even if the hollow pore diameter of the nanotube is large, it is at most 3 nm (0.003
In order to insert a substance into it, it is necessary to insert it with a force that overcomes the surface tension determined by the pore material, the inserted substance and the atmosphere, even if the molecule size of the substance is smaller than the pore diameter. If the pore size is small, it is not easy because the insertion force cannot be increased, and it is hard to believe that a large molecule can be inserted because of its diameter. Even if the diameter can be expanded, the outer diameter of the nanotube itself is at most 10 nm, and it is necessary to provide a hollow hole with a size of 10 nm or more, which is large enough to insert various substances. Is impossible. Therefore, under special conditions, only specific objects have been inserted so far.

【0004】さらにナノチューブは生産性が低く、しか
も純度も低くて工業用途としては他の炭素と分離して繊
維のみを取り出すための精製を行わなければならず、未
だに工業的には生産されていない。。
Further, since nanotubes have low productivity and low purity, they have to be purified for taking out only fibers by separating them from other carbons for industrial use, and have not been industrially produced yet. . .

【0005】また一方気相成長炭素繊維は一般に中空を
有することも知られている。気相成長炭素繊維はナノチ
ューブと同様に炭素格子面が繊維軸を中心とした年輪構
造を示し,力学的性質,導電性,摺動特性に優れている
ことが知られている。しかしこの場合もその中空孔径は
触媒として使用する金属の粒径によっても若干異なるが
約5nmであり、これも小さい。
On the other hand, it is also known that the vapor grown carbon fiber generally has a hollow. It is known that the vapor-grown carbon fiber has an annual ring structure in which the carbon lattice plane is centered on the fiber axis like the nanotube, and is excellent in mechanical properties, conductivity, and sliding properties. However, in this case as well, the diameter of the hollow pores is about 5 nm, which varies slightly depending on the particle diameter of the metal used as the catalyst, which is also small.

【0006】一方アクリル系炭素繊維において中空のも
のを得る方法も公知である。プレカーサーを耐炎化時間
を短くして、繊維の内層が耐炎化しないままで炭素化工
程に導入すると、内部に中空部を有する炭素繊維となる
ことが知られている。この方法は酸素の拡散や熱の伝導
の内外層差を利用するため,プレカーサの直径が大きい
場合にしか利用できず、直径が小さいとプレカーサの耐
炎化反応には利用しにくく,中空繊維の肉厚も厚いもの
しかできないという欠点を有する。またこの繊維はナノ
チューブや気相成長炭素繊維と違って繊維の構造が乱層
構造となっており、前記性質の劣っている。
On the other hand, a method for obtaining hollow acrylic carbon fibers is also known. It is known that when a precursor is introduced into the carbonization step without shortening the flameproofing time and the inner layer of the fiber is not flameproofed, it becomes a carbon fiber having a hollow portion inside. Since this method uses the difference between the inner and outer layers of oxygen diffusion and heat conduction, it can be used only when the diameter of the precursor is large. When the diameter is small, it is difficult to use it for the flameproofing reaction of the precursor, and the meat of the hollow fiber It also has the disadvantage that it can only be thick. Also, unlike the nanotubes and the vapor-grown carbon fibers, this fiber has a disordered layer structure, which is inferior to the above properties.

【0007】また炭素繊維用プレカーサを中空に形成し
てそれを炭素化する方法も考えられるが、内表面が耐炎
化反応時の酸素拡散の表面となったりならなかったりし
て、酸素拡散が不安定となり、良好な炭素繊維となり得
ない。
A method of forming a precursor for carbon fiber into a hollow and carbonizing it is also conceivable. However, the inner surface of the precursor does not become the surface of oxygen diffusion during the flameproofing reaction, so that the oxygen diffusion is unsuccessful. It becomes stable and cannot be a good carbon fiber.

【0008】炭素繊維の表面処理として各種の酸化特に
硝酸酸化により官能基を導入することは知られている。
本発明者らは気相成長炭素繊維の表面処理を研究してい
て、気相成長炭素繊維の表面処理として液相酸化特に硝
酸中での加熱による酸化は有効とは言いがたいが、この
処理により繊維の中空孔径の拡張が起こることを見い出
して本発明に到達した。
It is known to introduce functional groups by various types of oxidation, particularly nitric acid oxidation, as a surface treatment of carbon fibers.
The present inventors have been studying the surface treatment of vapor-grown carbon fibers, and it is difficult to say that liquid-phase oxidation, particularly oxidation by heating in nitric acid, is effective as the surface treatment of vapor-grown carbon fibers. It was found that the expansion of the hollow pore diameter of the fiber occurs due to the above-mentioned problems, and the present invention was reached.

【0009】すなわち本発明の目的は中空孔径が大き
く、その為に中空孔に物質を挿入し易い細い炭素繊維お
よびその製造方法を提供することである。
That is, an object of the present invention is to provide a thin carbon fiber having a large hollow hole diameter, which facilitates insertion of a substance into the hollow hole, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明は直径が0.05
〜3.0μmであり,0.03μm以上の直径の中空孔
を有することを特徴とする炭素繊維であり、また直径が
0.05〜3.0μmの気相成長炭素繊維を切断し、液
相酸化することを特徴とする中空炭素繊維の製造方法で
ある。液相酸化としては硝酸中で加熱する方法が好まし
い。中空孔の直径は、壁の厚さ分が必要であるから、大
きくても繊維直径より約1nm小さい値を越えることが
できないことは勿論である。
The present invention has a diameter of 0.05.
To 3.0 μm and having hollow holes with a diameter of 0.03 μm or more, the carbon fiber having a diameter of 0.05 to 3.0 μm is cut to obtain a liquid phase. A method for producing a hollow carbon fiber, which is characterized by oxidizing. As the liquid-phase oxidation, a method of heating in nitric acid is preferable. It is needless to say that the diameter of the hollow hole cannot exceed a value smaller than the fiber diameter by about 1 nm even if it is large because the wall thickness is required for the wall thickness.

【0011】気相成長炭素繊維は公知のものが使用でき
る。基板に金属微粒子を担持させてそこで有機化合物を
熱分解させて基板に繊維を生やす基板法、有機遷移金属
化合物と有機化合物とを気相で熱分解させて浮遊状態で
繊維を得る流動法いずれの気相成長炭素繊維も使用可能
である。それらの繊維はさらに加熱処理により黒鉛化度
を高められていてもよい。400〜700℃で金属カル
ボニルと一酸化炭素から得られる繊維は偏平であるため
に中空繊維とはなり得ず、また構造的にも炭素格子面が
繊維軸と垂直に繊維軸方向に積層していて物註が全く異
なっていて、使用できる繊維からは除外される。
Known vapor-grown carbon fibers can be used. Any of a substrate method in which metal fine particles are supported on a substrate and an organic compound is thermally decomposed therein to grow fibers on the substrate, and a flow method in which an organic transition metal compound and an organic compound are thermally decomposed in a gas phase to obtain fibers in a floating state. Vapor grown carbon fibers can also be used. The fibers may be further heat-treated to increase the degree of graphitization. The fibers obtained from metal carbonyl and carbon monoxide at 400 to 700 ° C. cannot be hollow fibers because they are flat, and structurally the carbon lattice planes are laminated in the fiber axis direction perpendicular to the fiber axis. However, it is excluded from the fibers that can be used.

【0012】繊維は予め切断される。酸化反応は実質的
に切断面から進むので、切断されずに両端が円くて炭素
格子面の断層が露出していない繊維では反応が起こらな
いか、非常に遅く、使用は不適当である。切断方法には
限定はないが、特開平6−184854明細書に記載さ
れた高せん断力により攪乱する方法(但しそこに記載さ
れた微粒子は必ずしも使用しなくてもよい)が長さ方向
の破断が主体で繊維形状自体が破壊された微粉末を発生
することが少なくて好ましい。繊維形状の保持にこだわ
らなければボールミルその他の周知の粉砕機が使用でき
る。
The fibers are precut. Since the oxidation reaction progresses substantially from the cut surface, the reaction does not occur or is very slow in a fiber which is not cut and has rounded ends and the carbon lattice plane fault is not exposed, and is not suitable for use. The cutting method is not limited, but the method of disturbing by high shearing force described in JP-A-6-184854 (however, the fine particles described therein may not necessarily be used) is broken in the longitudinal direction. However, it is preferable that the fine powder in which the fiber shape itself is destroyed is mainly generated, and that it is less. If it is not necessary to keep the fiber shape, a ball mill or other known crusher can be used.

【0013】切断された繊維は液相酸化される。気相酸
化では繊維の表面が反応して繊維外径が小さくなる。酸
化剤としては過酸化水素、クロム酸塩、過マンガン酸塩
などの無機酸化剤の水溶液、アセチルパーオキサイドや
ベンゾイルパーオキサイドなどの有機酸化剤の有機溶
媒、燐酸や硫酸などの強酸性酸化剤も使用できるが、好
ましいのは無機の強酸化剤,特に硝酸である。硝酸は5
0%以上、特に65%以上の濃度のものが好ましい。反
応温度も高い程よく、通常は系の沸点近くで行われる。
特に温度が高い時は反応容器の上部に還流冷却器を設け
るのが好ましい。反応容器には攪拌器を備えて、繊維を
液全体に分散さて反応させるのが好ましい。
The cut fibers undergo liquid phase oxidation. In gas phase oxidation, the fiber surface reacts and the fiber outer diameter becomes smaller. As the oxidizing agent, an aqueous solution of an inorganic oxidizing agent such as hydrogen peroxide, chromate or permanganate, an organic solvent of an organic oxidizing agent such as acetyl peroxide or benzoyl peroxide, or a strongly acidic oxidizing agent such as phosphoric acid or sulfuric acid may be used. Although usable, strong inorganic oxidants, especially nitric acid, are preferred. Nitric acid is 5
A concentration of 0% or more, particularly 65% or more is preferable. The higher the reaction temperature, the better, and it is usually carried out near the boiling point of the system.
Especially when the temperature is high, it is preferable to provide a reflux condenser above the reaction vessel. The reaction vessel is preferably equipped with a stirrer to disperse the fibers throughout the liquid and react.

【0014】反応の進行とともに繊維の外形には変化が
ないのにも拘わらず切断面から奥に中空部の直径の拡大
が進行していく。その理由は明らかではないが、繊維表
面と中空内面では炭素の構造が異なり、反応性もしくは
酸化剤の浸透性が相異するものと考えられる。気相成長
炭素繊維は前記金属カルボニルと一酸化炭素から低温で
得られるものを除いて、炭素格子面が繊維軸方向を軸と
して年輪状に配置していることが知られているが、内層
は年輪構造がくずれているか、その内層と外層の何らか
の緻密性が異なるか、または内層はその輪の直径が小さ
いので構造に無理があるために反応性が高いのではない
かと考えられる。
Although the outer shape of the fiber does not change with the progress of the reaction, the diameter of the hollow portion increases from the cut surface to the back. Although the reason is not clear, it is considered that the carbon structure is different between the fiber surface and the hollow inner surface, and the reactivity or the permeability of the oxidizing agent is different. Vapor grown carbon fibers are known to have carbon lattice planes arranged in an annual ring shape around the fiber axis, except for those obtained from metal carbonyl and carbon monoxide at low temperatures, but the inner layer is It is considered that the annual ring structure is collapsed, the inner layer and the outer layer are different in some degree of compaction, or the inner layer has a small diameter of its annulus, so that the structure is unreasonable and the reactivity is high.

【0015】処理された繊維は適宜濾過、洗浄、乾燥し
て各用途に使用される。本願の中空繊維は肉厚が薄いの
で、必要によりプレスなどにより中空部分を押しつぶし
て、帯状にして使用することも可能である。また破砕し
て極薄の黒鉛または炭素フレークとしても使用できる。
The treated fiber is appropriately filtered, washed and dried before it is used for various purposes. Since the hollow fiber of the present application has a small wall thickness, the hollow portion can be crushed by a press or the like to be used in a band shape if necessary. It can also be crushed and used as ultra-thin graphite or carbon flakes.

【0016】[0016]

【発明の効果】本発明により得られる中空炭素繊維は、
外径が小さい割には内径が大きく、当然中空孔部には物
質が入り易い。したがって繊維の導電性や摺動性を利用
して樹脂と混合する時も、重量的に少ない添加量で目的
が達せられ、また表面積が増大するので(中空部にもの
が入らない時は内壁は表面として作用しない)、たとえ
ば触媒作用のごとく、繊維自身の表面が触媒として機能
したり触媒を担持させて使用したりする用途にも有用で
ある。繊維のアスペクト比が小さい時には微少ラシヒリ
ングとして充填塔に使用できる。また中空孔に薬剤を混
合した高分子をいれるか、薬剤を入れて中空孔の両端を
高分子で覆って薬剤除放カプセルとして利用したり(繊
維の長さにより除放性を調節できる)することもでき
る。
The hollow carbon fiber obtained by the present invention is
Although the outer diameter is small, the inner diameter is large, and naturally the substance easily enters the hollow holes. Therefore, even when it is mixed with the resin by utilizing the conductivity and slidability of the fiber, the purpose can be achieved with a small addition amount in weight, and the surface area increases (the inner wall should be It does not act as a surface), for example, as in the case of catalysis, it is also useful for applications in which the surface of the fiber itself functions as a catalyst or is used by supporting a catalyst. When the fiber aspect ratio is small, it can be used as a minute Raschig ring in a packed tower. Alternatively, a polymer mixed with a drug may be added to the hollow hole, or a drug may be added to cover both ends of the hole and used as a drug release capsule (the release property can be controlled by the length of the fiber). You can also

【0017】[0017]

【実施例1】流動気相法により得られた直径約1μmの
炭素繊維を高速気流中衝撃処理装置((株)奈良機械製
作所製ハイブリダイザーNHS−1)を使用して回転数
8000rpm、滞在時間2分間で処理した。ついで還
流冷却器と攪拌器を付したガラスフラスコ中に沸騰した
67%硝酸で75時間酸化処理した。図1に示すように
繊維の切断面から中空部分が見える。その内径は約0.
2μmまたはそれ以上である。繊維やその破片の重なっ
て見える部分ではそれらが半透明になっている部分のあ
ることが判る。繊維の外径は約1μmで変化はない。
Example 1 A carbon fiber having a diameter of about 1 μm obtained by a fluidized gas phase method was used with a high-speed impact treatment device (Hybridizer NHS-1 manufactured by Nara Machinery Co., Ltd.) at a rotation speed of 8000 rpm and a residence time. It was processed for 2 minutes. Then, the glass flask equipped with a reflux condenser and a stirrer was subjected to an oxidation treatment with boiling 67% nitric acid for 75 hours. As shown in FIG. 1, the hollow portion can be seen from the cut surface of the fiber. Its inner diameter is about 0.
2 μm or more. It can be seen that there are some translucent areas where the fibers and their fragments appear to overlap. The outer diameter of the fiber is about 1 μm and does not change.

【0018】[0018]

【実施例2】流動気相法により得られた直径約0.8μ
mの炭素繊維を高速気流中衝撃処理装置((株)奈良機
械製作所製ハイブリダイザーNHS−1)を使用して回
転数7000rpm、滞在時間2分間で処理した。つい
で還流冷却器と攪拌器を付したガラスフラスコ中に沸騰
した72%硝酸で100時間酸化処理した。図2に示す
ように繊維の切断面から中空部分が見える。
Example 2 Diameter 0.8 μm obtained by fluidized gas phase method
m carbon fiber was treated at a rotation speed of 7,000 rpm for a residence time of 2 minutes using a high-speed air current impact treatment device (Hybridizer NHS-1 manufactured by Nara Machinery Co., Ltd.). Then, it was subjected to an oxidation treatment with boiling 72% nitric acid in a glass flask equipped with a reflux condenser and a stirrer for 100 hours. As shown in FIG. 2, the hollow portion can be seen from the cut surface of the fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において得られた中空炭素繊維の走査
型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of the hollow carbon fiber obtained in Example 1.

【図2】実施例2において得られた中空炭素繊維の走査
型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of the hollow carbon fiber obtained in Example 2.

【手続補正書】[Procedure amendment]

【提出日】平成7年6月28日[Submission date] June 28, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は中空繊維、特にその中空
部分の直径が0.03μm以上である中空炭素繊維であ
り、いわゆるナノチューブに比べてその中空孔に物質を
注入し易く、また生産性の高い中空繊維およびその製造
法に関し、またその繊維の中空項に第2物質が注入され
た繊維組成物や複合材料に関する。
BACKGROUND OF THE INVENTION The present invention relates to a hollow fiber, particularly a hollow carbon fiber having a hollow portion having a diameter of 0.03 μm or more. It is easier to inject a substance into the hollow pores as compared with a so-called nanotube, and the productivity is high. And a method for producing the same, and a fiber composition and a composite material in which a second substance is injected into the hollow section of the fiber.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直径が0.05〜3.0μmであり,0.
03μm以上の直径の中空孔を有することを特徴とする
中空炭素繊維。
1. A diameter of 0.05 to 3.0 μm,
A hollow carbon fiber having hollow holes with a diameter of 03 μm or more.
【請求項2】直径が0.05〜3.0μmの気相成長炭
素繊維を切断し、液相酸化することを特徴とする中空炭
素繊維の製造方法。
2. A method for producing a hollow carbon fiber, which comprises cutting a vapor grown carbon fiber having a diameter of 0.05 to 3.0 μm and subjecting it to liquid phase oxidation.
【請求項3】液相酸化を硝酸中で加熱することにより行
う請求項2記載の中空炭素繊維の製造方法。
3. The method for producing a hollow carbon fiber according to claim 2, wherein the liquid-phase oxidation is performed by heating in nitric acid.
JP31137494A 1994-11-10 1994-11-10 Hollow carbon fiber and its production Pending JPH08134724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31137494A JPH08134724A (en) 1994-11-10 1994-11-10 Hollow carbon fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31137494A JPH08134724A (en) 1994-11-10 1994-11-10 Hollow carbon fiber and its production

Publications (1)

Publication Number Publication Date
JPH08134724A true JPH08134724A (en) 1996-05-28

Family

ID=18016415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31137494A Pending JPH08134724A (en) 1994-11-10 1994-11-10 Hollow carbon fiber and its production

Country Status (1)

Country Link
JP (1) JPH08134724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214408B2 (en) 2003-08-28 2007-05-08 Canon Kabushiki Kaisha Method of producing carbon fiber aggregate
JP2009215690A (en) * 2009-02-05 2009-09-24 Yuichiro Nishina Quartz-clad-carbon nanotube fiber bundle
KR20160115496A (en) * 2015-03-27 2016-10-06 한국과학기술연구원 One-pot synthesis of n-doped carbon nano-rings from carbon fibers or its composite materials and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214408B2 (en) 2003-08-28 2007-05-08 Canon Kabushiki Kaisha Method of producing carbon fiber aggregate
JP2009215690A (en) * 2009-02-05 2009-09-24 Yuichiro Nishina Quartz-clad-carbon nanotube fiber bundle
KR20160115496A (en) * 2015-03-27 2016-10-06 한국과학기술연구원 One-pot synthesis of n-doped carbon nano-rings from carbon fibers or its composite materials and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7537682B2 (en) Methods for purifying carbon materials
Huang et al. 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing
Chen et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD
KR100792267B1 (en) Laser pyrolysis method for producing carbon nano-spheres
JP7131543B2 (en) Method for producing surface-treated carbon nanostructure
EP2407423A1 (en) Porous carbon and process for producing same
JP2014507365A (en) Porous graphene material, production method thereof, and application as electrode material
Huang et al. The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation
CN105562050B (en) A kind of porous class graphene-structured doping carbon material and the preparation method and application thereof
US20030059364A1 (en) Method for poduction of nanostructures
Hussain et al. Growth and plasma functionalization of carbon nanotubes
US6733737B1 (en) Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites
Delpeux et al. An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity
JPH08134724A (en) Hollow carbon fiber and its production
KR20210128176A (en) Method for Preparing Graphene-Carbon Nanotube Composite
KR101005115B1 (en) Carbonized cellulose fiber with the graphite-like surface nano-layer and synthesis method thereof
JP2981023B2 (en) Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber
Arenillas et al. Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale
Popovska et al. Processing of porous carbon with tunable pore structure by the carbide-derived carbon method
JP4719875B2 (en) Expanded carbon fiber-containing composite material and method for producing the same
Kim et al. Longitudinal alignment effect of graphene oxide nanoribbon on properties of polyimide-based carbon fibers
JP3285284B2 (en) Method for producing vapor grown carbon fiber
KR102483223B1 (en) Method for manufacturing graphene oxide based on chemical exfoliation
JP3723844B2 (en) Method for producing carbon material from polyvinyl alcohol
KR102529546B1 (en) Producing method of graphene using organic compound having low molecular weight