JPH08132542A - Gear - Google Patents

Gear

Info

Publication number
JPH08132542A
JPH08132542A JP27202794A JP27202794A JPH08132542A JP H08132542 A JPH08132542 A JP H08132542A JP 27202794 A JP27202794 A JP 27202794A JP 27202794 A JP27202794 A JP 27202794A JP H08132542 A JPH08132542 A JP H08132542A
Authority
JP
Japan
Prior art keywords
resin material
gear
material flow
resin
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27202794A
Other languages
Japanese (ja)
Inventor
Umitomo Oota
海委 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP27202794A priority Critical patent/JPH08132542A/en
Publication of JPH08132542A publication Critical patent/JPH08132542A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2015/00Gear wheels or similar articles with grooves or projections, e.g. control knobs
    • B29L2015/003Gears

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To stably produce a highly precise gear by reducing the difference in resin flow time and pressure generated during injection molding by providing a high- molecular resin material flow-restricting mechanism having not constant groove depth and width and continuously or intermittently changed in them inside a tooth from part. CONSTITUTION: A gear 1 is produced by the injection molding of a high-molecular resin material. In both surfaces of the gear 1, high-molecular resin material flow prescribing mechanisms 9 reducing the difference in filling time and pressure generated during injection molding are provided inside the tooth form part close to teeth. The depth dimension of the groove of the flow-restricting mechanism 9 in each of zones is set so as to form a continuously or intermittently changing corrugated shape. Since the flow-restricting mechanisms 9 change in shape continuously or intermittently in relation to the positions of respective gates, the internal pressure of the resin flowing from the respective gates rises at a point of time when the resin reaches the high- molecular resin material flow-restricting mechanisms 9 and the resin flows to an unfilled part low in pressure. At a point of time when the filling with the resin is completed over the entire peripheries of the restricting mechanisms 9 and the internal pressure thereof becomes uniform, the resin grows toward a tooth outer shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子樹脂材料を用い
射出成形される歯車に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear that is injection molded using a polymer resin material.

【0002】[0002]

【従来の技術】従来の射出成形される歯車1において
は、図3及び図4に示すように歯車両面に形成されてい
る高分子樹脂材料流動規制機構3の溝形状は深さ,幅共
に全周に渡って同一寸法同一形状となっていた。
2. Description of the Related Art In a conventional injection-molded gear 1, as shown in FIGS. 3 and 4, the groove shape of a polymer resin material flow regulating mechanism 3 formed on both surfaces of the gear has the same depth and width. It had the same size and shape over the circumference.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の方法で
は各ゲート部2から流動してきた樹脂材料が歯車最外形
の歯形部10に到達する時間差が各ゲートからの距離に
より発生し、図5に示す様に成形後の歯車外形状が真円
11にならず多角形12になってしまう。また各ゲート
からの距離によって歯車最外形部に射出圧力の差が発生
し前述と同じく歯車外形状が多角形12に成る。
However, according to the conventional method, a time difference in which the resin material flowing from each gate portion 2 reaches the tooth profile portion 10 of the outermost gear of the gear is generated due to the distance from each gate, and as shown in FIG. As shown, the outer shape of the gear after forming does not become a perfect circle 11 but becomes a polygon 12. Further, a difference in injection pressure is generated in the outermost portion of the gear depending on the distance from each gate, and the outer shape of the gear is polygonal 12 as described above.

【0004】つまり、JGMA(日本歯車工業会規格)
による両歯面噛み合い試験を行うと図6に示すように歯
車1の1回転中にゲート数と同数のゲートビツ13が記
録される。結果的にJGMAの全噛み合い精度の結果1
4に悪影響を及ぼす。
That is, JGMA (Japan Gear Manufacturers Association standard)
As shown in FIG. 6, when the tooth flank engagement test is performed, the same number of gate bits 13 as the number of gates is recorded during one rotation of the gear 1. As a result, the result of total meshing accuracy of JGMA 1
Adversely affects 4.

【0005】本発明は、このような問題に鑑みてなされ
たものであり、その目的とするところは射出成形中に発
生する樹脂流動時間及び圧力の差を減少させJGMA規
格4級以上の射出成形される高精度歯車を安定して提供
する事にある。
The present invention has been made in view of the above problems, and an object thereof is to reduce the difference between the resin flow time and the pressure generated during the injection molding and to perform injection molding of JGMA standard grade 4 or higher. It is to stably provide high precision gears.

【0006】[0006]

【課題を解決するための手段】この目的を達成する本発
明の構成は次の如くである。歯形形状内側に溝深さ,幅
が一定でなく、連続または断続的に変化する高分子樹脂
材料流動規制機構を1つあるいは複数以上設けた事を特
徴とする歯車。また、この機構の溝断面形状が半円形
状、三角形状または台形状であることを特徴とする。
The structure of the present invention which achieves this object is as follows. A gear having one or a plurality of polymer resin material flow control mechanisms, in which the groove depth and width are not constant inside the tooth profile, and which continuously or intermittently change. Further, the groove cross-sectional shape of this mechanism is semicircular, triangular or trapezoidal.

【0007】[0007]

【実施例】以下に本発明を図面を用いて詳しく説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0008】図1,図2は本発明を実施した高分子樹脂
材料流動規制機構を備え射出成形される歯車の概観図を
示す。
1 and 2 are schematic views of a gear having a flow control mechanism for polymer resin material embodying the present invention and injection molded.

【0009】ホモポリマー又はコポリマーのポリアセタ
ールなどの高分子材料を基材とし、それを射出成形する
ことにより製造された歯車1より形成されている。この
歯車1においてゲート2の数は少なくとも1点以上であ
る。図7は、歯車1の両面において、歯に直近する歯形
部内側に射出成形工程中に発生する充填時間差及び圧力
差を減少させる高分子材料流動規制機構9を備えてお
り、6点ゲート方式にて射出成形した歯車1において1
ゲート当りが充填を担当する領域4を示す。また、各ゲ
ートが充填を担当する中心角60゜の扇状領域4におい
て、高分子樹脂材料流動規制機構部9を少なくとも3つ
以上分割する。ここではA〜Dゾーンと4分割し、各々
のゾーンでの高分子樹脂材料流動規制機構9の溝深さ寸
法を連続または断続的に変化させ波状に成るようにす
る。図7において高分子樹脂材料流動規制機構の溝深さ
は歯車中心と各ゲートを通る直線上にあるAゾーン5が
最も深くBゾーン6,Cゾーン7と浅くなって行きDゾ
ーン8が最も浅くなっている。尚、高分子樹脂材料流動
規制機構の溝深さが深いというのは歯車の肉厚が薄い事
である。
The gear 1 is formed by using a polymer material such as a homopolymer or a copolymer polyacetal as a base material and injection-molding the base material. In this gear 1, the number of gates 2 is at least one or more. FIG. 7 shows a six-point gate system in which both sides of the gear 1 are provided with a polymer material flow regulation mechanism 9 for reducing the filling time difference and the pressure difference generated during the injection molding process inside the tooth profile portion closest to the tooth. In injection-molded gear 1
The area 4 where the gate contact is in charge of filling is shown. Further, at least three or more polymer resin material flow restricting mechanisms 9 are divided in the fan-shaped region 4 having a central angle of 60 ° in which each gate is in charge of filling. Here, it is divided into four zones A to D, and the groove depth dimension of the polymer resin material flow regulating mechanism 9 in each zone is changed continuously or intermittently so as to have a wavy shape. In FIG. 7, the groove depth of the flow control mechanism of the polymer resin material is the deepest in the A zone 5 on the straight line passing through the center of the gear and each gate, and the shallowest in the B zone 6 and the C zone 7, and the shallowest in the D zone 8. Has become. The deep groove depth of the polymer resin material flow regulation mechanism means that the gear is thin.

【0010】高分子樹脂材料流動規制機構9が各ゲート
位置と関係して連続または断続した形状変化をする事に
より各ゲート2から流動した樹脂が高分子樹脂材料流動
規制機構9に到達した時点で内圧が上昇し、樹脂は圧力
の低い未充填部へ流動する。そして高分子樹脂材料流動
規制機構9全周に渡って充填し内圧が均一になった時点
で全周の樹脂が同時に歯外形に向かって成長する。この
様なメカニズムにより歯先部10について各ゲートから
の距離に関係なく樹脂材料の充填時間差及び圧力差は無
くなる。
When the resin flowing from each gate 2 reaches the polymeric resin material flow regulating mechanism 9 by the continuous or intermittent shape change of the polymeric resin material flow regulating mechanism 9 in relation to each gate position. The internal pressure rises, and the resin flows to the unfilled part where the pressure is low. Then, when the polymeric resin material flow regulation mechanism 9 is filled over the entire circumference and the internal pressure becomes uniform, the resin on the entire circumference simultaneously grows toward the outer shape of the tooth. With such a mechanism, the filling time difference and the pressure difference of the resin material in the tip portion 10 are eliminated regardless of the distance from each gate.

【0011】図8及び図9は歯車の両面に設けた高分子
樹脂材料流動規制機構9の設置数が歯車の大きさ及び厚
みの違いによって複数以上設けて有ることを示す。この
様に高分子樹脂材料流動規制機構9を複数設けることに
より歯車の大きさ,厚さ及びゲート数に違いが有っても
前述した射出成形工程中に発生する充填時間差及び圧力
差をより均一化,減少化出来るものである。
FIG. 8 and FIG. 9 show that a plurality of polymer resin material flow regulating mechanisms 9 provided on both sides of the gear are installed depending on the size and thickness of the gear. By providing a plurality of polymer resin material flow control mechanisms 9 as described above, even if there are differences in the size, thickness and number of gates of the gear, the filling time difference and pressure difference generated during the injection molding process described above can be made more uniform. It can be reduced or increased.

【0012】図10,図11及び図12は歯車の両面に
設けた高分子樹脂材料流動規制機構9の溝断面形状が半
円形状だけでなく三角形状及び台形状を成している例で
ある。
FIG. 10, FIG. 11 and FIG. 12 show examples in which the cross section of the groove of the polymer resin material flow restricting mechanism 9 provided on both sides of the gear is not only semicircular but also triangular and trapezoidal. .

【0013】図10は高分子樹脂材料流動規制機構9の
溝断面形状が半円形状を成している事により樹脂材料が
高分子樹脂材料流動規制機構9を通過する時の流動抵抗
を最小にする事が出来、射出成形工程中に発生する圧力
を発生段階から抑えられる。図11は高分子樹脂材料流
動規制機構9の溝断面形状が三角形状を成している事に
より射出成形金型の作製を容易にする事が出来、コスト
メリットが有る。図12は高分子樹脂材料流動規制機構
9の溝断面形状が台形状を成している事により充填時間
差及び圧力差を金型の追加修正等にて調整する事が出来
る。
FIG. 10 shows that the cross-sectional shape of the groove of the polymeric resin material flow regulating mechanism 9 is semi-circular so that the flow resistance when the resin material passes through the polymeric resin material flow regulating mechanism 9 is minimized. The pressure generated during the injection molding process can be suppressed from the generation stage. In FIG. 11, since the groove cross-sectional shape of the polymer resin material flow regulation mechanism 9 is triangular, it is possible to facilitate the production of an injection molding die, and there is a cost advantage. In FIG. 12, since the groove cross-sectional shape of the polymer resin material flow control mechanism 9 is trapezoidal, the filling time difference and the pressure difference can be adjusted by additional correction of the mold or the like.

【0014】これらの方法にて得られた射出成形される
歯車では、歯外形上において各ゲートから流動する樹脂
の歯型部10に達する時間差が均一化され充填完了時に
歯外形形状が真円11に近くなる。また、保圧工程完了
時においても各ゲートから影響される圧力の差が小さく
できる。結果的にJGMAの両歯面噛み合い試験におけ
る全噛み合い精度14が減少し歯車精度は向上される。
In the injection-molded gear obtained by these methods, the time difference of the resin flowing from each gate to the tooth mold portion 10 on the tooth outer shape is made uniform, and the tooth outer shape becomes a perfect circle 11 when the filling is completed. Get closer to. Further, even when the pressure-holding process is completed, the difference in pressure affected by each gate can be reduced. As a result, the total meshing accuracy 14 in the JGMA double tooth surface meshing test is reduced and the gear accuracy is improved.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば射
出成形される歯車の歯形部内側に溝深さ,幅が一定でな
く、連続または断続的形状の高分子樹脂材料流動規制機
構を歯車両面に設けたことにより射出成形時の充填時間
差及び圧力差を減少でき、歯車の歯外形を安定的に所望
の形状として得ることがでる。この為、目的とする高精
度の全歯噛み合い結果(JGMA)の得られる射出成形
される歯車を提供することができる。
As described above, according to the present invention, a flow control mechanism for a polymer resin material having a groove depth and a width which are not constant and which is continuous or intermittent is provided inside the tooth profile of an injection molded gear. By providing the gears on both sides, it is possible to reduce the filling time difference and the pressure difference at the time of injection molding, and it is possible to stably obtain the tooth profile of the gear to have a desired shape. Therefore, it is possible to provide a gear to be injection-molded, which can obtain a desired result of highly accurate meshing of all teeth (JGMA).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による射出成形される歯車の歯
形部内側に高分子樹脂材料流動規制機構を用いた歯車の
平面図。
FIG. 1 is a plan view of a gear using a polymer resin material flow regulation mechanism inside a tooth profile of a gear to be injection-molded according to an embodiment of the present invention.

【図2】本発明実施例による本発明の連続または断続的
に深さ,幅が波形状をした高分子樹脂材料流動規制機構
の側断面図。
FIG. 2 is a side cross-sectional view of a polymeric resin material flow regulating mechanism according to an embodiment of the present invention, in which the depth and width have a wavy shape continuously or intermittently.

【図3】従来の高分子樹脂材料流動規制機構を設け射出
成形される歯車を示す平面図。
FIG. 3 is a plan view showing a gear that is injection-molded with a conventional polymer resin material flow regulating mechanism.

【図4】従来の高分子樹脂材料流動規制機構を設け射出
成形される歯車を示す側断面図。
FIG. 4 is a side sectional view showing a gear that is provided with a conventional polymer resin material flow regulation mechanism and is injection molded.

【図5】従来の技術により、歯外形がゲート数と同じ数
の多角形になる説明図。
FIG. 5 is an explanatory diagram of a tooth outer shape having the same number of polygons as the number of gates according to a conventional technique.

【図6】従来の技術による射出成形される歯車のJGM
Aでの全噛み合い試験の結果及びゲート数と同数の山が
発生するモデルの説明図。
FIG. 6 JGM of injection molded gear according to prior art
Explanatory drawing of the model in which the same number of mountains as the number of gates and the result of the all meshing test in A are generated.

【図7】本発明の実施例による射出成形される歯車の1
ゲート当りが担当する充填領域及び高分子樹脂材料流動
規制機構の溝深さ,幅が連続または断続的に変化するモ
デル説明図。
FIG. 7 is one of injection-molded gears according to an embodiment of the present invention.
Model explanatory drawing in which the groove depth and width of the filling region and the polymer resin material flow regulation mechanism in charge of the gate contact change continuously or intermittently.

【図8】本発明の実施例による高分子樹脂材料流動規制
機構を場合により複数以上設けてある平面モデル説明
図。
FIG. 8 is an explanatory view of a plane model in which a plurality of polymer resin material flow control mechanisms according to an embodiment of the present invention are provided in some cases.

【図9】本発明の実施例による高分子樹脂材料流動規制
機構を場合により複数以上設けてある図8の側断面モデ
ル説明図。
9 is a side cross-sectional model explanatory view of FIG. 8 in which a plurality of polymer resin material flow restricting mechanisms according to an embodiment of the present invention are optionally provided.

【図10】本発明の実施例による高分子樹脂材料流動規
制機構溝断面形状が半円形状を成している側断面部分詳
細図。
FIG. 10 is a detailed view of a side cross-section part where the cross-sectional shape of the polymer resin material flow regulation mechanism groove according to the embodiment of the present invention is semicircular.

【図11】本発明の実施例による高分子樹脂材料流動規
制機構溝断面形状が三角形状を成している側断面部分詳
細図。
FIG. 11 is a detailed view of a side cross-section part in which the cross-sectional shape of the polymer resin material flow control mechanism groove according to the embodiment of the present invention is triangular.

【図12】本発明の実施例による高分子樹脂材料流動規
制機構溝断面形状が台形状を成している側断面部分詳細
図。
FIG. 12 is a detailed view of a side cross-section part in which the cross-sectional shape of the polymer resin material flow control mechanism groove according to the embodiment of the present invention is trapezoidal.

【符号の説明】[Explanation of symbols]

1 歯車 2 ゲート 3 従来の樹脂材料流動規制機構 4 1ゲート当りの充填担当領域 5 樹脂材料流動規制機構Aゾーン 6 樹脂材料流動規制機構Bゾーン 7 樹脂材料流動規制機構Cゾーン 8 樹脂材料流動規制機構Dゾーン 9 波形状樹脂材料流動規制機構 10 歯先部 11 歯外形真円形状 12 歯外形多角形状 13 ゲートビツ 14 噛み合い試験結果 1 Gear 2 Gate 3 Conventional Resin Material Flow Control Mechanism 4 Filling Area per Gate 5 Resin Material Flow Control Mechanism A Zone 6 Resin Material Flow Control Mechanism B Zone 7 Resin Material Flow Control Mechanism C Zone 8 Resin Material Flow Control Mechanism D zone 9 Wave shape resin material flow regulation mechanism 10 Tooth tip part 11 Tooth outer shape circular shape 12 Tooth outer shape polygonal shape 13 Gate bit 14 Meshing test result

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高分子樹脂材料を用いた射出成形される
歯車において、歯形形状内側に溝深さ及び幅が一定でな
く、連続または断続的に変化する高分子樹脂材料流動規
制機構を1つあるいは複数以上設けた事を特徴とする歯
車。
1. A gear for injection molding using a polymer resin material, wherein one grooved polymer resin material flow regulating mechanism is provided in which the groove depth and width are not constant inside the tooth profile and which changes continuously or intermittently. Alternatively, a gear that is characterized in that a plurality of them are provided.
【請求項2】 前記高分子樹脂材料流動規制機構の溝断
面形状が半円形状であることを特徴とする請求項1記載
の歯車。
2. The gear according to claim 1, wherein the cross section of the groove of the polymer resin material flow regulating mechanism is semicircular.
【請求項3】 前記高分子樹脂材料流動規制機構部の溝
断面形状が三角形状であることを特徴とする請求項1記
載の歯車。
3. The gear according to claim 1, wherein the cross-sectional shape of the groove of the polymer resin material flow regulating mechanism is triangular.
【請求項4】 前記高分子樹脂材料流動規制機構部の溝
断面形状が台形状であることを特徴とする請求項1記載
の歯車。
4. The gear according to claim 1, wherein the cross-sectional shape of the groove of the polymer resin material flow regulating mechanism is trapezoidal.
JP27202794A 1994-11-07 1994-11-07 Gear Pending JPH08132542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27202794A JPH08132542A (en) 1994-11-07 1994-11-07 Gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27202794A JPH08132542A (en) 1994-11-07 1994-11-07 Gear

Publications (1)

Publication Number Publication Date
JPH08132542A true JPH08132542A (en) 1996-05-28

Family

ID=17508112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27202794A Pending JPH08132542A (en) 1994-11-07 1994-11-07 Gear

Country Status (1)

Country Link
JP (1) JPH08132542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484152A1 (en) * 2003-06-02 2004-12-08 Enplas Corporation Injection molded resin gear and injection molded resin rotating body
JP2009040013A (en) * 2007-08-10 2009-02-26 Enplas Corp Means for transmission of rotation and mold for injection molding of means for transmission of rotation
JP2009154463A (en) * 2007-12-27 2009-07-16 Enplas Corp Method for molding injection molded resin gear and injection molded resin gear
US8028598B2 (en) 2007-05-09 2011-10-04 Enplas Corporation Injection-molded gear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484152A1 (en) * 2003-06-02 2004-12-08 Enplas Corporation Injection molded resin gear and injection molded resin rotating body
US7406891B2 (en) 2003-06-02 2008-08-05 Enplas Corporation Injection molded resin gear and injection molded resin rotating body
US8028598B2 (en) 2007-05-09 2011-10-04 Enplas Corporation Injection-molded gear
JP2009040013A (en) * 2007-08-10 2009-02-26 Enplas Corp Means for transmission of rotation and mold for injection molding of means for transmission of rotation
JP2009154463A (en) * 2007-12-27 2009-07-16 Enplas Corp Method for molding injection molded resin gear and injection molded resin gear

Similar Documents

Publication Publication Date Title
JP3315135B2 (en) Method and apparatus for manufacturing volume flow control valve
US7406891B2 (en) Injection molded resin gear and injection molded resin rotating body
JP5005422B2 (en) Injection molding gear
JP3910022B2 (en) Cyclic resin molded product
JPH08132542A (en) Gear
JPS60229726A (en) Die for extrusion of sheet
JP3387218B2 (en) Disc-shaped plastic molded parts
JPH0244701B2 (en)
JP5517345B2 (en) Manufacturing method of resin molded products
JPH0554805B2 (en)
JP2006240038A (en) Mold, molding method, and molded product
US6936213B1 (en) Adjustment of relative positions of machine components
JP2003191288A (en) Plastic molded article
JPH09166199A (en) Injection molded gear
JP2011031470A (en) Resin molding
JP3763449B2 (en) Plastic molded product
JPS6013623Y2 (en) injection mold
CN115076333A (en) Injection-molded body
JP2000141381A (en) Disc-shaped plastic molded product
JPH05131502A (en) Resin molding method
JPH09177944A (en) Injection-molded gear
JP3766559B2 (en) Synthetic resin molded gear
JPH0625320Y2 (en) Ended toothed belt manufacturing equipment
JPH0566219B2 (en)
JPH0525862Y2 (en)