JPH08130326A - Coupling method for semiconductor crystal using light transmitting conductive thin film - Google Patents

Coupling method for semiconductor crystal using light transmitting conductive thin film

Info

Publication number
JPH08130326A
JPH08130326A JP29777794A JP29777794A JPH08130326A JP H08130326 A JPH08130326 A JP H08130326A JP 29777794 A JP29777794 A JP 29777794A JP 29777794 A JP29777794 A JP 29777794A JP H08130326 A JPH08130326 A JP H08130326A
Authority
JP
Japan
Prior art keywords
thin film
substrate
crystal
layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29777794A
Other languages
Japanese (ja)
Other versions
JP2588849B2 (en
Inventor
Kokukin Ko
國欣 黄
Takuho Chin
澤澎 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29777794A priority Critical patent/JP2588849B2/en
Publication of JPH08130326A publication Critical patent/JPH08130326A/en
Application granted granted Critical
Publication of JP2588849B2 publication Critical patent/JP2588849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To allow a light-emitting diode to have a high light emission efficiency by placing one light transmission conductive thin film between a semiconductor crystal and a crystal that contains another semiconductor element as an adhesive between them and utilizing it for connecting the crystals. CONSTITUTION: First, a substrate is subjected to corrosion elimination in advance selectively by a general corrosion technique. A new substrate is a GaP transparent substrate 51 that is magnetized positive similarly and the surface is plated by a one-layer thin ITO light transmission thin film 52. Further, after the double hetero of it and an elimination substrate are pinched firmly, it is heated at 500 deg.C or less for approximately one hour, thus completing a crystal junction and hence enclosing one positive conductive GaP transparent substrate 51, one ITO light transmission thin film 52, one positive conductive AlGaAs bottom layer 53, one active AlGaAs middle layer 54 without any impurity, and one negative conductive AlGaAs upper layer 55.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一種の透光導電薄膜応
用の半導体結晶結合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor crystal bonding method applied to a kind of light transmitting conductive thin film.

【0002】[0002]

【従来の技術】発光ダイオードの領域では、発光ダイオ
ードの光度光度を高める方法として一般に透明の基板が
用いられる。600nmのアルミニウムガリウムヒ素
(AlGaAs)の赤色発光ダイオードを例にとると、
この類の発光ダイオードの構造は、ほぼ3種類に分けら
れる。図1中のダイオード構造は、正の導電性のガリウ
ムヒ素(GaAs)を基板11のモノヘテロとしてい
る。モノヘテロ構造は正の導電性を帯びた1層のAlG
aAs層を成長させ、さらに一層の負の導電性を帯びた
AlGaAs層13を成長させる。この種の発光ダイオ
ードの光度は500〜800mcdとされる。
2. Description of the Related Art In the area of light emitting diodes, a transparent substrate is generally used as a method of increasing the luminous intensity of the light emitting diode. Taking a 600 nm aluminum gallium arsenide (AlGaAs) red light emitting diode as an example,
The structure of this type of light emitting diode can be roughly divided into three types. The diode structure in FIG. 1 uses positive conductive gallium arsenide (GaAs) as the monohetero of the substrate 11. The monoheterostructure is a single layer of AlG with positive conductivity.
An aAs layer is grown, and a further negatively conductive AlGaAs layer 13 is grown. The luminous intensity of this type of light emitting diode is 500 to 800 mcd.

【0003】図2中の発光ダイオードはダブルヘテロ構
造である。ダブルヘテロ構造は、一つの正の導電性のA
lGaAs底層22、一つの不純物を含まない活性Al
GaAs中層23、及び一つの負の導電性のAlGaA
s上層24を包含する。その基板は正の導電性を帯びた
GaAs層21とされる。この類の発光ダイオードの発
光光度は約1.5cdである。
The light emitting diode shown in FIG. 2 has a double hetero structure. The double heterostructure has one positive conductive A
1 GaAs bottom layer 22, one impurity-free active Al
GaAs middle layer 23 and one negative conductive AlGaAs
s upper layer 24. The substrate is a GaAs layer 21 having a positive conductivity. The luminous intensity of a light emitting diode of this kind is about 1.5 cd.

【0004】図3中の発光ダイオードの構造は、図2に
類似しており、一つの正の導電性のAlGaAs底層3
1、一つの不純物を含まない活性AlGaAs中層3
2、及び一つの負の導電性のAlGaAs上層31を包
含する。但し、基板は、正の導電性を帯びたAlGaA
s基板31に代えられる。この種のダイオードの発光の
光度は約3cdに達し、図3に示される構造は図2の構
造に比べ、発光ダイオードの光度が約2倍となってい
る。その主な原因は、透明基板を採用したことであり、
これにより発光ダイオードの発生する光が透明基板の方
向に進むとき、吸収されないためである。
The structure of the light emitting diode in FIG. 3 is similar to that of FIG.
1. Active AlGaAs middle layer 3 not containing one impurity
2 and one negative conductive AlGaAs upper layer 31. However, the substrate is AlGaAs having a positive conductivity.
Instead of the s substrate 31. The luminous intensity of light emission of this type of diode reaches about 3 cd, and the luminous intensity of the light emitting diode in the structure shown in FIG. 3 is about twice that of the structure in FIG. The main cause is the adoption of a transparent substrate,
This is because the light generated by the light emitting diode is not absorbed when traveling in the direction of the transparent substrate.

【0005】以上の図に示された従来の発光ダイオード
の構造中、各半導体層はいずれも液相結晶法で成長させ
られ、図3中のダイオード構造が最も良い発光効率を有
する。しかし非常に厚いAlGaAs基板を成長させる
のは非常に困難であり、そのためこの類のダイオードの
生産は半導体メーカーにとって大きな挑戦となってい
る。
[0005] In the structure of the conventional light emitting diode shown in the above figures, each semiconductor layer is grown by a liquid crystal method, and the diode structure in FIG. 3 has the best luminous efficiency. However, it is very difficult to grow very thick AlGaAs substrates, which makes the production of this type of diode a major challenge for semiconductor manufacturers.

【0006】高効率のその他の色の範囲の発光ダイオー
ド、例えば緑色から赤色の範囲(560〜630nm)
の高光度アルミニウムガリウムインジウムリン(AlG
aInP)発光ダイオードの生産においては、図4に示
されるように、この伝統的なダブルヘテロは一つの負の
導電性を帯びたAlGaInP底層43、一つの不純物
のない活性AlGaInP層44、及び正の導電性を帯
びたAlGaInP上層45を包含する。電極接触端4
7、41からの導電電流の流散を増加するために、ダブ
ルヘテロのAlGaInP上層45にあってはまた一層
の正の導電性を帯びた厚いウインド層46が成長してい
る。
High efficiency other color range light emitting diodes, eg green to red range (560-630 nm)
High brightness aluminum gallium indium phosphide (AlG
In the production of an (aInP) light emitting diode, as shown in FIG. 4, this traditional double hetero is composed of one negatively conductive AlGaInP bottom layer 43, one impurity-free active AlGaInP layer 44, and a positive An AlGaInP upper layer 45 having conductivity is included. Electrode contact end 4
In order to increase the diffusion of the conduction current from 7 and 41, a further positive conductive thick window layer 46 is grown on the double hetero-AlGaInP upper layer 45.

【0007】現在のAlGaInPダイオード中、一般
には負の導電性を帯びたガリウムヒ素(GaAs)を基
板としている。しかし大部分の基板へと発される光はお
とんどこの不透光の基板に吸収され、ダイオードの発光
効率は制限されてしまう。アメリカ合衆国HP社のF.
A.Kish等により提出されたGaAsを腐食し一つ
の透明な同様に負の導電性のガリウムリン(GaP)基
板と結合し、改良したダイオードでは、その中に使用さ
れる結晶結合技術は先にアメリカ合衆国のマサチューセ
ッツ州リンカーン実験室のZ.L.Liau等による研
究を発展させたものである。この種の改良式のダイオー
ドは、比較的良い発光度を有するとはいえ、二つの欠点
を有していた。一つの欠点は、結晶結合は相当高い温度
中、一般には830℃以上で進行されなければならない
こと。もう一つは、GaPとAlGaInPの接合面上
に、格子定数のミスマッチにより、容易に結晶の弯曲或
いは破裂を起こしやすいことである。
[0007] In the current AlGaInP diode, gallium arsenide (GaAs) having a negative conductivity is generally used as a substrate. However, most of the light emitted to the substrate is absorbed by the opaque substrate in most places, and the luminous efficiency of the diode is limited. F. of the United States HP
A. In an improved diode, proposed by Kish et al., Which eroded GaAs and combined it with a transparent, similarly negatively conductive gallium phosphide (GaP) substrate, the crystal bonding technique used therein was previously described by the United States. Z. of Lincoln Laboratory, Mass. L. It is an extension of the research by Liau et al. Although this type of improved diode has a relatively good luminous intensity, it has two disadvantages. One drawback is that crystal bonding must proceed at fairly high temperatures, generally above 830 ° C. The other is that the crystal curvature or rupture is easily caused on the bonding surface of GaP and AlGaInP due to the mismatch of lattice constants.

【0008】[0008]

【発明が解決しようとする課題】本発明は、一種の新た
な結晶結合技術を提供し、もって従来の技術における困
難な点及び欠点を克服することを主旨とし、本発明中の
結合技術は透明基板を不透明基板に代えて用い、生産す
る発光ダイオードが高い発光効率を有するようにするこ
とを課題とする。
SUMMARY OF THE INVENTION The present invention aims at providing a kind of new crystal bonding technique, thereby overcoming the difficulties and disadvantages of the prior art, and the bonding technique in the present invention is transparent. An object of the present invention is to use a substrate in place of an opaque substrate so that a light-emitting diode to be produced has high luminous efficiency.

【0009】[0009]

【課題を解決するための手段】本発明の透光導電薄膜応
用の半導体結晶結合方法は以下のステップを包含するも
のとする: a.一個の半導体素子を含む第1結晶を準備する; b.第2半導体基板を準備する; c.該第2半導体基板上に一層の透光導電薄膜を形成す
る透光導電薄膜を形成する; d.該第2半導体基板と第1結晶をきつく挟み、透光導
電薄膜が第2半導体基板と第1結晶の間を介するように
する; e.きつく挟んだ2片の結晶を高温中で一段時間加熱
し、もって結晶を結合するQ
SUMMARY OF THE INVENTION A method for bonding a semiconductor crystal to a light-transmitting conductive thin film according to the present invention includes the following steps: a. Providing a first crystal including one semiconductor device; b. Providing a second semiconductor substrate; c. Forming a light-transmitting conductive thin film for forming one light-transmitting conductive thin film on the second semiconductor substrate; d. Sandwiching the second semiconductor substrate and the first crystal tightly so that the light-transmitting conductive thin film intervenes between the second semiconductor substrate and the first crystal; e. The two pieces of crystal sandwiched tightly are heated at high temperature for one step, and the crystals are bonded together.

【0010】さらに、上記透光導電薄膜は、ヨウ素すず
酸化物(ITO)、カドミウムすず酸化物(CTO)な
どの材料とする。
Further, the transparent conductive thin film is made of a material such as iodine tin oxide (ITO) or cadmium tin oxide (CTO).

【0011】[0011]

【作用】本発明は一種の半導体結晶結合技術に関し、こ
の技術は一つの透光導電薄膜を半導体結晶ともう一つの
半導体素子を含む結晶の間に置き、その間の接着剤と
し、もって結晶の結合に利用する。この結品結合技術
は、まず半導体素子を含む構造の基板を腐食し、べつに
一つの同じく導電性の基板を取り、並びに一つの透光導
電薄膜をめっきし、さらに半導体素子を含む構造の結晶
と該基板をきつく挟み、高温炉中である時間加熱し基板
を結合する。上述の透光導電薄膜をめっきして有する透
光導電薄膜の基板は例えば透明基板を採用し、ダイオー
ドの発光効率を高め、透光導電薄膜を加えて透明基板が
比較的低温で結合させられるようにする。薄膜層はまた
結合された結晶間の異なる結品格子定数の緩衝層となさ
れ、結晶結合界面の構造を改良する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a semiconductor crystal bonding technique, in which one translucent conductive thin film is placed between a semiconductor crystal and another crystal including a semiconductor element, and an adhesive is used therebetween to bond the crystals. Use for This conjugation technique involves first eroding the substrate of the structure containing the semiconductor element, taking another one of the same conductive substrate, plating one light-transmitting conductive thin film, and forming a crystal of the structure containing the semiconductor element. The substrate is tightly sandwiched and heated in a high-temperature furnace for a certain time to bond the substrates. The transparent conductive thin film substrate having the above-described transparent conductive thin film plated thereon is, for example, a transparent substrate, which enhances the luminous efficiency of the diode and adds the transparent conductive thin film so that the transparent substrate can be bonded at a relatively low temperature. To The thin film layer is also provided as a buffer layer with different crystal lattice constants between the bonded crystals, improving the structure of the crystal bonding interface.

【0012】[0012]

【実施例】本発明は、一種の結晶結合技術を提供し、図
2に示される従来の発光ダイオードの発光効率を改良
し、その主な目的は、不透明な半導体基板を透明な基板
に変えることにある。基板を容易に結合し、並びに基板
とダブルヘテロ間の異なる結晶格子の界面を緩衝するた
めに、結合される基板上に一層の透光導電薄膜をめっき
し、これを緩衝層とする。
The present invention provides a kind of crystal bonding technique to improve the luminous efficiency of the conventional light emitting diode shown in FIG. 2, the main purpose of which is to change an opaque semiconductor substrate into a transparent substrate. It is in. In order to bond the substrates easily as well as to buffer the interface of different crystal lattices between the substrate and the double hetero, a layer of transparent conductive thin film is plated on the substrates to be bonded, which serves as a buffer layer.

【0013】本発明の技術は一種の簡単で高効率の生産
方式を提供し、もって高い発光効率を有する発光ダイオ
ードを製造する。
[0013] The technique of the present invention provides a kind of simple and efficient production method, thereby producing a light emitting diode having high luminous efficiency.

【0014】一片のITO透光薄膜をめっきした負の導
電型GaP透明基板ともう一片の負の導電型のGaP基
板を、500℃の下で、ある時間加熱して結合させ完成
したものは、図6中に示されるように、この結合の基板
は非常に良好な電流−電圧線性反応を有する。図7はも
う一つの結合基板の電流−電圧線性反応特性図であり、
この結合基板は700℃の温度下である時間経過して加
熱結合させ製造される。その電流と電圧も非常によい線
性反応を有する。必ず注意すべきことは、結合界面中の
透光導電薄膜は、良好な透光性と導電性を有さねばなら
ないことで、類似特性を有するその他の材料には、カド
ミウムすず酸化物(CTO:Cadmium−Tin−
Oxide)薄膜も同様の効果を出すことができる。こ
の一つの基板結合技術の利用により発光ダイオードの光
度を高めることができる。
One piece of a negative-conductivity-type GaP transparent substrate plated with an ITO translucent thin film and another piece of a negative-conductivity-type GaP substrate are heated at 500 ° C. for a certain period of time to be bonded to each other. As shown in FIG. 6, the substrate of this bond has a very good current-voltage linear response. FIG. 7 is a current-voltage linear reaction characteristic diagram of another combined substrate,
This bonded substrate is manufactured by heat bonding at a temperature of 700 ° C. for a certain period of time. Its current and voltage also have a very good linear response. It should be noted that the light-transmitting conductive thin film at the bonding interface must have good light-transmitting and conductive properties, and other materials having similar properties include cadmium tin oxide (CTO: Cadmium-Tin-
Oxide) thin film can provide the same effect. The luminous intensity of the light emitting diode can be increased by using this one substrate bonding technique.

【0015】本発明により製造する発光ダイオードの発
光強度は大体図3に示される従来の発光ダイオードと同
じである。しかし、非常に厚いAlGaAs基板を成長
させる難しさがない。
The emission intensity of the light emitting diode manufactured according to the present invention is approximately the same as that of the conventional light emitting diode shown in FIG. However, there is no difficulty in growing a very thick AlGaAs substrate.

【0016】図2に示すように、従来の発光ダイオード
中のダブルヘテロは一つの正の導電性の基板を有し、基
板上にまず一層の正の導電性のAlGaAsを成長し、
その上にさらに一層の不純物のない開、活性AlGaA
s層を成長し、最後に一つの負の導電性のAlGaAs
を成長する。
As shown in FIG. 2, the double hetero in the conventional light emitting diode has one positive conductive substrate, on which a layer of positive conductive AlGaAs is first grown,
Open, active AlGaAs without further impurities on it
s layer is grown and finally one negative conductive AlGaAs
To grow.

【0017】本発明は、図5に示すように、従来のダイ
オードと同様、まず一般の腐食技術を用いて選択式にそ
の基板を予め腐食除去する。新たな基板は同様に正の導
電性を帯びたGaP透明基板51であり、その表面は一
層の薄いITO透光薄膜52でめっきされる。さらにそ
れと除去基板のダブルヘテロをきつく挟んだ後窒素ガス
或いは水素ガスの高温炉中で、500℃の温度下で約1
時間加熱し、結晶の接合を完成する。これにより本発明
の構造は、一つの正の導電性を帯びたGaP透明基板5
1、一つのITO透光薄膜52、一つの正の導電性を帯
びたAlGaAs底層53、一つの不純物無しの活性A
lGaAs中層54、及び一つの負の導電性を帯びたA
lGaAs上層55を包含する。
According to the present invention, as shown in FIG. 5, as in the case of the conventional diode, the substrate is first selectively corroded and removed by using a general corrosive technique. The new substrate is also a GaP transparent substrate 51 having a positive conductivity, and the surface thereof is plated with a thinner ITO light transmitting thin film 52. After tightly sandwiching the double hetero with the substrate to be removed, it is placed in a high temperature furnace of nitrogen gas or hydrogen gas at a temperature of 500 ° C. for about 1 hour.
Heat for an hour to complete crystal bonding. Thus, the structure of the present invention is a single GaP transparent substrate 5 having a positive conductivity.
1. One ITO translucent thin film 52, one positive conductive AlGaAs bottom layer 53, one active impurity-free A
lGaAs middle layer 54, and one negatively conductive A
Includes 1 GaAs overlayer 55.

【0018】現在ある結晶結合技術に比べ、本発明の技
術は比較的低い温度で、比較的短い時間で結合すること
ができる。Z.L.Liauが研究した技術では、一般
に830℃の温度下で進行し、ほぼ2時間を要する。本
発明では一層の透光導電薄膜を加えた後、結品の結合を
約500℃中で進行でき、僅かに1時間を要すれば完成
し、不純物の拡散或いは超結晶格子及び量子井戸構造層
と層間元素の相互拡散を免れることができ、素子の劣化
を防ぐ。本発明の技術は、容易に生産が行えるほか、透
光導電薄膜を緩衝層として異なる材料の間の結晶構造の
違いに応じることができる。なぜなら、透光導電薄膜自
身は非結晶層であり、異なる材料の異なる結晶格子定数
及び熱膨張係数は緩衝されて、結合後の結晶も弯曲しに
くく、故にこの技術は比較的大きな結品を結合すること
ができる。
Compared to the existing crystal bonding technology, the technology of the present invention can bond at a relatively low temperature in a relatively short time. Z. L. The technique studied by Liau generally proceeds at a temperature of 830 ° C. and takes about 2 hours. In the present invention, after one layer of the light-transmitting conductive thin film is added, the product can be bonded at about 500 ° C. and completed in only one hour, the diffusion of impurities or the supercrystal lattice and the quantum well structure layer are completed. Inter-diffusion of element and interlayer element can be avoided, and deterioration of the element is prevented. The technique of the present invention can be easily manufactured and can respond to a difference in crystal structure between different materials using a light-transmitting conductive thin film as a buffer layer. Because the light-transmitting conductive thin film itself is an amorphous layer, the different crystal lattice constants and thermal expansion coefficients of different materials are buffered, and the crystal after bonding is also less likely to bend. can do.

【0019】本発明の技術は同様に、図4中のAlGa
InPを含有する従来の発光ダイオードに応用すること
ができ、まず、負の導電性のGaAs基板を腐食除去
し、更にITO透光薄膜をめっきして有する負の導電性
のGaP基板をかわりに結合し、もって図8中の発光ダ
イオードを完成する。ダブルヘテロの材料が異なっても
同様の結合技術を使用することができる。図8の構造は
下から上に、電極接触端81、一つの負の導電性のGa
P基板82、一つのITO透光導電薄膜83、一つの負
の導電性のAlGaInP底層84、一つの不純物のな
い活性AlGaInP層85、及び一つの正の導電性の
AlGaInP上層86、及び一つの正の導電性のウイ
ンド層87、もう一つの電極接触端88を有する。
The technique of the present invention similarly applies to AlGa in FIG.
It can be applied to the conventional light emitting diode containing InP. First, the negative conductive GaAs substrate is corroded and removed, and then the negative conductive GaP substrate having the ITO light-transmitting thin film plated is bonded instead. Then, the light emitting diode shown in FIG. 8 is completed. Similar bonding techniques can be used for different double hetero materials. The structure of FIG. 8 is, from bottom to top, electrode contact end 81, one negatively conductive Ga.
P substrate 82, one ITO transparent conductive thin film 83, one negative conductive AlGaInP bottom layer 84, one impurity-free active AlGaInP layer 85, one positive conductive AlGaInP upper layer 86, and one positive conductive AlGaInP upper layer 86. Conductive window layer 87, and another electrode contact end 88.

【0020】[0020]

【発明の効果】本発明の技術では、まずダブルヘテロに
成長させる基板を伝統的な腐食技術で除去し、その後、
一層の透光導電薄膜を新たな透明基板の上にめっきし、
さらにダブルヘテロの新基板をきつく挟み一体として高
温炉中で1段時間加熱した後、結晶は互いに結合し高効
率の発光ダイオードが完成する。本発明中、透光導電薄
膜は非常に良好な導電性及び透光性を有し、また大部分
の青色から赤色の光を通過させる。またこの薄膜は非結
晶系層とされるため、格子の違いの緩衝作用を有し、故
に2種の異なる材料の間の異なる結晶体構造を互いに結
合させる緩衝層とされる。本発明中の結晶体結合技術は
比較的低温の下で進行され、これにより生産製造が比較
的容易である。一層の緩衝層薄膜を加えたことでダイオ
ードの構造がさらに強固となり、同時にまた有効な発光
効率を有する。
According to the technique of the present invention, the substrate to be grown to double hetero is first removed by the traditional corrosion technique, and then,
Plating a layer of translucent conductive thin film on a new transparent substrate,
Furthermore, after heating the new double hetero substrate tightly and integrally in a high-temperature furnace for one step, the crystals are bonded to each other to complete a highly efficient light emitting diode. In the present invention, the light-transmitting conductive thin film has very good conductivity and light-transmitting properties, and transmits most of blue to red light. Further, since this thin film is an amorphous layer, it has a buffering effect due to the difference in lattice, and therefore serves as a buffering layer for bonding different crystalline structures between two different materials to each other. The crystal bonding technique in the present invention proceeds at relatively low temperatures, which makes production and manufacture relatively easy. By adding one buffer layer thin film, the structure of the diode is further strengthened, and at the same time, effective luminous efficiency is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のAlGaAsモノヘテロを有する発光ダ
イオードの断面図である。
FIG. 1 is a cross-sectional view of a conventional light emitting diode having an AlGaAs monohetero.

【図2】従来のAlGaAsダブルヘテロを有する発光
ダイオードの断面図である。
FIG. 2 is a cross-sectional view of a conventional light emitting diode having an AlGaAs double heterostructure.

【図3】従来のAlGaAsダブルヘテロ及びAlGa
As基板を有する発光ダイオードの断面図である。
FIG. 3 shows a conventional AlGaAs double heterostructure and AlGa
It is sectional drawing of the light emitting diode which has an As substrate.

【図4】従来のAlGaInPダブルヘテロ及び結合さ
れるGaP基板を有する発光ダイオードの断面図であ
る。
FIG. 4 is a cross-sectional view of a conventional light emitting diode having an AlGaInP double heterostructure and a coupled GaP substrate.

【図5】本発明の発光ダイオードであり、一つのAlG
aAsダブルヘテロ及び一層のITO薄膜を有する結合
基板GaPの断面図である。
FIG. 5 shows a light emitting diode of the present invention, wherein one AlG
FIG. 4 is a cross-sectional view of a coupling substrate GaP having an aAs double heterostructure and a single ITO thin film.

【図6】本発明の技術をもって2片のGaP基板片をI
TO薄膜で50℃で結合し一定時間処理した後の電流電
圧特性図である。
FIG. 6 shows that two GaP substrate pieces are I
FIG. 4 is a current-voltage characteristic diagram after bonding at 50 ° C. with a TO thin film and processing for a predetermined time.

【図7】本発明の技術をもって2片のGaP基板片をI
TO薄膜で70℃で結合し一定時間処理した後の電流電
圧特性図である。
FIG. 7 shows that two GaP substrate pieces are I
FIG. 4 is a current-voltage characteristic diagram after bonding at 70 ° C. with a TO thin film and processing for a predetermined time.

【図8】本発明の発光ダイオードで、一つのAlGaI
nPダブルヘテロ及び一層のITO薄膜を有する結合基
板GaPの断面図である。
FIG. 8 shows a light emitting diode according to the present invention, wherein one AlGaI
It is sectional drawing of the coupling substrate GaP which has a nP double hetero and one layer of ITO thin film.

【符号の説明】[Explanation of symbols]

51・・・正の導電性を帯びたGaP透明基板 52・・・ITO透光薄膜 53・・・正の導電性を帯びたAlGaAs底層 54・・・活性AlGaAs中層 55・・・負の導電性を帯びたAlGaAs上層 81・・・電極接触端 82・・・負の導電性のGaP基板 83・・・ITO透光導電薄膜 84・・・負の導電性のAlGaInP底層 85・・・活性AlGaInP層 86・・・正の導電性のAlGaInP上層 87・・・正の導電性のウインド層 88・・・電極接触端 51: Positive conductive GaP transparent substrate 52: ITO translucent thin film 53: Positive conductive AlGaAs bottom layer 54: Active AlGaAs middle layer 55: Negative conductivity AlGaAs upper layer 81 with electrode contact end 82 Negative conductive GaP substrate 83 ITO light transmitting conductive thin film 84 Negative conductive AlGaInP bottom layer 85 Active AlGaInP layer 86 ... positive conductive AlGaInP upper layer 87 ... positive conductive window layer 88 ... electrode contact end

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 a.一個の半導体素子を含む第1結晶を
準備する; b.第2半導体基板を準備する; c.該第2半導体基板上に一層の透光導電薄膜を形成す
る透光導電薄膜を形成する; d.該第2半導体基板と第1結晶をきつく挟み、透光導
電薄膜が第2半導体基板と第1結晶の間を介するように
する; e.きつく挟んだ2片の結晶を高温中で一段時間加熱
し、もって結晶を結合する; 以上のステップを含む、透光導電薄膜応用の半導体結晶
結合方法。
1. A method comprising: a. Providing a first crystal including one semiconductor device; b. Providing a second semiconductor substrate; c. Forming a light-transmitting conductive thin film for forming one light-transmitting conductive thin film on the second semiconductor substrate; d. Sandwiching the second semiconductor substrate and the first crystal tightly so that the light-transmitting conductive thin film intervenes between the second semiconductor substrate and the first crystal; e. The two pieces of tightly sandwiched crystals are heated at a high temperature for one step, thereby bonding the crystals. A method of bonding a semiconductor crystal using a light transmitting conductive thin film, including the above steps.
【請求項2】 透光導電薄膜は、ヨウ素すず酸化物(I
TO)、カドミウムすず酸化物(CTO)などの材料と
する、請求項1に記載の透光導電薄膜応用の半導体結晶
結合方法。
2. The light-transmitting conductive thin film comprises an iodine tin oxide (I)
2. The method according to claim 1, wherein the material is a material such as TO) or cadmium tin oxide (CTO).
JP29777794A 1994-10-26 1994-10-26 Semiconductor crystal bonding method applied to light transmitting conductive thin film Expired - Lifetime JP2588849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29777794A JP2588849B2 (en) 1994-10-26 1994-10-26 Semiconductor crystal bonding method applied to light transmitting conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29777794A JP2588849B2 (en) 1994-10-26 1994-10-26 Semiconductor crystal bonding method applied to light transmitting conductive thin film

Publications (2)

Publication Number Publication Date
JPH08130326A true JPH08130326A (en) 1996-05-21
JP2588849B2 JP2588849B2 (en) 1997-03-12

Family

ID=17851049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29777794A Expired - Lifetime JP2588849B2 (en) 1994-10-26 1994-10-26 Semiconductor crystal bonding method applied to light transmitting conductive thin film

Country Status (1)

Country Link
JP (1) JP2588849B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218312A (en) * 2008-03-10 2009-09-24 Toshiba Corp Semiconductor light emitting device and method of manufacturing the same
US7732831B2 (en) 2004-03-29 2010-06-08 Showa Denko K.K. Compound semiconductor light-emitting device with AlGaInP light-emitting layer formed within
US7842966B2 (en) 2005-07-06 2010-11-30 Showa Denko K.K. Compound semiconductor light-emitting diode and method for fabrication thereof
KR20210112882A (en) * 2020-03-06 2021-09-15 웨이브로드 주식회사 Light emitting device and method of manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915619B2 (en) 2005-12-22 2011-03-29 Showa Denko K.K. Light-emitting diode and method for fabrication thereof
WO2007083829A1 (en) 2006-01-23 2007-07-26 Showa Denko K.K. Light-emitting diode and method for fabrication thereof
WO2007091704A1 (en) 2006-02-08 2007-08-16 Showa Denko K.K. Light-emitting diode and fabrication method thereof
US8097892B2 (en) 2006-02-14 2012-01-17 Showa Denko K.K. Light-emitting diode
JP4892445B2 (en) * 2007-10-01 2012-03-07 昭和電工株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2010192701A (en) 2009-02-18 2010-09-02 Showa Denko Kk Light emitting diode, light emitting diode lamp, and method of manufacturing the light emitting diode
JP5957358B2 (en) 2012-10-16 2016-07-27 昭和電工株式会社 Light emitting diode, light emitting diode lamp, and lighting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732831B2 (en) 2004-03-29 2010-06-08 Showa Denko K.K. Compound semiconductor light-emitting device with AlGaInP light-emitting layer formed within
US7790481B2 (en) 2004-03-29 2010-09-07 Showa Denko K.K. Compound semiconductor light-emitting device and production method thereof
US7842966B2 (en) 2005-07-06 2010-11-30 Showa Denko K.K. Compound semiconductor light-emitting diode and method for fabrication thereof
US8399277B2 (en) 2005-07-06 2013-03-19 Show A Denko K.K. Compound semiconductor light-emitting diode and method for fabrication thereof
JP2009218312A (en) * 2008-03-10 2009-09-24 Toshiba Corp Semiconductor light emitting device and method of manufacturing the same
JP4594993B2 (en) * 2008-03-10 2010-12-08 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
KR20210112882A (en) * 2020-03-06 2021-09-15 웨이브로드 주식회사 Light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2588849B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
JP3230638B2 (en) Light emitting diode manufacturing method
US5502316A (en) Wafer bonding of light emitting diode layers
US8361822B2 (en) Light-emitting device and method for producing light emitting device
JP2002158373A (en) Light emitting diode and method of manufacturing the same
JP2588849B2 (en) Semiconductor crystal bonding method applied to light transmitting conductive thin film
JPH11505066A (en) Integrated heterostructure of group II-VI semiconductor material including epitaxial ohmic contact and method of manufacturing the same
US6984851B2 (en) Group-III nitride semiconductor light-emitting diode, light-emitting diode lamp, light source, electrode for group-III nitride semiconductor light-emitting diode, and method for producing the electrode
JP2006066518A (en) Semiconductor light-emitting element and method of manufacturing the same
JP2005159297A (en) Semiconductor light emitting element, its manufacturing method, and semiconductor device
JP2001007399A (en) Semiconductor light emitting element
JP2007027448A (en) Semiconductor light emitting device, lighting device using same, and method of manufacturing same
JP3507716B2 (en) Method for manufacturing semiconductor light emitting device
JP2004235581A (en) Process for fabricating light emitting element
JP2000286412A (en) Structure of semiconductor device and its manufacture
JP2000332302A (en) Semiconductor light emitting element
JP3633018B2 (en) Semiconductor light emitting device
JP2004146652A (en) Method of manufacturing semiconductor light emitting device
JP2004297056A (en) Semiconductor light emitting device, its manufacturing method and light emitting diode
TW311287B (en) Semiconductor chip by applying light transmissible conductive thin film
JP2001210869A (en) Light emitting element array and manufacturing method therefor
JP4286983B2 (en) AlGaInP light emitting diode
CN114156383B (en) Semiconductor device and method for manufacturing the same
JP2004281825A (en) Method of manufacturing light emitting diode
JP3557571B2 (en) Light-emitting element laminated structure, light-emitting element, lamp and light source
JP2002083997A (en) Semiconductor luminous element and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term