JPH08115856A - Method for manufacturing activated carbon electrode for electrical double-layer capacitor - Google Patents

Method for manufacturing activated carbon electrode for electrical double-layer capacitor

Info

Publication number
JPH08115856A
JPH08115856A JP6248186A JP24818694A JPH08115856A JP H08115856 A JPH08115856 A JP H08115856A JP 6248186 A JP6248186 A JP 6248186A JP 24818694 A JP24818694 A JP 24818694A JP H08115856 A JPH08115856 A JP H08115856A
Authority
JP
Japan
Prior art keywords
activated carbon
base material
activation treatment
average particle
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6248186A
Other languages
Japanese (ja)
Inventor
Takushi Osaki
琢志 大崎
Akira Wakaizumi
章 若泉
Mitsuo Kogure
光男 木暮
Akihiro Nakamura
章寛 中村
Shinichi Marumo
信一 丸茂
Toshiya Miyagawa
俊哉 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP6248186A priority Critical patent/JPH08115856A/en
Priority to US08/523,622 priority patent/US5603867A/en
Publication of JPH08115856A publication Critical patent/JPH08115856A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: To provide an activated carbon electrode for achieving a high electrostatic capacity by setting the average particle diameter of an activated carbon base to a specific value or less when carbonating a forming body which is turned into a sheet shape by adding a binder to the activated carbon base for manufacturing a sheet-shaped activated carbon. CONSTITUTION: Primary activation treatment consisting of activation treatment by heat treatment in carbon dioxide gas atmosphere or steam atmosphere is performed to carbide which is obtained by performing carbonization treatment to carbon compound and the carbide is ground to an average particle diameter of approximately 10μm or less as an activated carbon base. Then, binder is added to the activated carbon base and is formed in a sheet shape as a forming body. After performing the activation treatment of the forming body, a similar activation treatment (secondary activation treatment) is performed again. A high electrostatic capacity can be achieved by the synergistic effect due to the particle diameter of the activated carbon base and due to the secondary activation treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
ーとして好適に用いられる活性炭電極の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an activated carbon electrode suitable for use as an electric double layer capacitor.

【0002】[0002]

【従来の技術】電気二重層コンデンサーは、パソコンな
どの電子機器のバックアップ用電源として実用化されて
おり、また自動車の補助バッテリーなどの瞬間大電流供
給用補助電源としても開発が行われている。この電気二
重層コンデンサーの電極は分極性電極と称され、大きな
静電容量を持つことが要求されている。そのために、分
極性電極の材料としては比表面積の大きい導電性の炭素
材料が使用され、特に賦活済みの活性炭が好ましい。賦
活済みの活性炭基材としては、粉末状のものと繊維状の
ものとがある。
2. Description of the Related Art Electric double layer capacitors have been put to practical use as a backup power source for electronic devices such as personal computers, and have also been developed as an auxiliary power source for supplying instantaneous large current such as an auxiliary battery for automobiles. The electrode of this electric double layer capacitor is called a polarizable electrode and is required to have a large capacitance. Therefore, a conductive carbon material having a large specific surface area is used as the material of the polarizable electrode, and activated carbon is particularly preferable. The activated carbon base material that has been activated includes powdery ones and fibrous ones.

【0003】活性炭の製造には、コークス、石炭、ヤシ
ガラ炭などの炭素質のものから、フェノール樹脂等の熱
硬化性樹脂など、様々な熱分解性炭素化合物が原料とし
て用いられる。図7はフェノール樹脂を原料とした活性
炭製造工程の概要である。この図に示す如く、まずフェ
ノール樹脂を硬化した後、乾留して炭素以外の成分を揮
発させる炭化工程を経て、賦活し、必要に応じて、粉
砕、整粒して粉末ないし粒状の活性炭基材を得る。ここ
で、賦活とは、通常、炭酸ガスまたは水蒸気雰囲気中で
の熱処理による活性化処理である。なお、炭素化合物原
料にアクリル繊維などを用いて、繊維形状を保ったま
ま、同様にして、炭化処理などの工程を経て繊維状活性
炭基材を得ることも知られている。
In the production of activated carbon, various pyrolyzable carbon compounds such as carbonaceous materials such as coke, coal and coconut husk charcoal to thermosetting resins such as phenol resin are used as raw materials. FIG. 7 is an outline of the activated carbon manufacturing process using phenol resin as a raw material. As shown in this figure, first, after the phenol resin is cured, it is activated by a carbonization step of dry distillation to evaporate components other than carbon, and activated, and if necessary, pulverized and sized to form a powder or granular activated carbon base material. To get Here, activation is usually activation treatment by heat treatment in a carbon dioxide gas or steam atmosphere. It is also known that an acrylic fiber or the like is used as a carbon compound raw material and a fibrous activated carbon base material is similarly obtained through a process such as carbonization while maintaining the fiber shape.

【0004】従来より、電気二重層コンデンサーの分極
性電極には、前記粉末ないし粒状の活性炭基材を硫酸溶
液と混合してペースト状として用いられているが、活性
炭粒子間の接触抵抗が大きく、大きな電流を流せなかっ
た。また、繊維状活性炭布の場合も、同様に、繊維間の
接触抵抗と単位体積当りの活性炭密度が小さく、大電流
を得ることができなかった。
Conventionally, for the polarizable electrode of an electric double layer capacitor, the powdery or granular activated carbon base material is mixed with a sulfuric acid solution and used as a paste, but the contact resistance between the activated carbon particles is large, I couldn't pass a big current. Also in the case of the fibrous activated carbon cloth, similarly, the contact resistance between fibers and the activated carbon density per unit volume were small, and a large current could not be obtained.

【0005】そこで、図7に示すように、活性炭基材
に、更にバインダーを加えて成形し、加えたバインダー
を同様に炭化して焼結し、板状の成形体とする方法が考
えられる。バインダーには、炭化後、基材と同じ炭素質
となる熱分解性炭素化合物が選択されるが、この場合、
原料と同じフェノール樹脂が好ましい。基材に繊維状活
性炭を用いた場合も、バインダーで繊維間を埋め込み、
同様に炭化して焼結すれば、密度の大きい板状となり、
分極性電極としての使用が期待できる。
Therefore, as shown in FIG. 7, a method is conceivable in which a binder is further added to the activated carbon base material to be molded, and the added binder is similarly carbonized and sintered to form a plate-shaped molded body. For the binder, a thermally decomposable carbon compound that becomes carbonaceous after carbonization is selected, but in this case,
The same phenolic resin as the raw material is preferable. Even when fibrous activated carbon is used as the base material, the space between the fibers is embedded with a binder,
Similarly, if carbonized and sintered, it becomes a plate with high density,
It can be expected to be used as a polarizable electrode.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記の
ような従来の活性炭基材にバインダーを加えて炭化・焼
結して得た電気二重層コンデンサー用の活性炭分極性電
極は、その重量当りの静電容量が、しばしば基材よりも
低くなるという不都合があった。その原因については、
上記従来の方法においては、加えたバインダーが炭化し
て生成した炭素質成分が、賦活されていないのみなら
ず、該炭素質成分によって基材の活性が何らかの理由で
阻害されるのではないかと推察した。
However, an activated carbon polarizable electrode for an electric double layer capacitor obtained by adding a binder to the conventional activated carbon base material and carbonizing / sintering it as described above has a static per unit weight. There is the disadvantage that the capacitance is often lower than that of the substrate. For the cause,
In the above-mentioned conventional method, the carbonaceous component produced by carbonization of the added binder is not only not activated, but it is speculated that the activity of the base material may be hindered by the carbonaceous component for some reason. did.

【0007】本発明は前記事情に鑑みてなされたもの
で、高い静電容量を実現できる活性炭電極が得られるよ
うにした電気二重層コンデンサー用活性炭電極の製造方
法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method for producing an activated carbon electrode for an electric double layer capacitor, which is capable of obtaining an activated carbon electrode capable of realizing a high electrostatic capacity.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明の電気二重層コンデンサー用活性炭電極の製
造方法は、炭素化合物を炭化処理して得た炭化物を活性
化処理を施した後に粉砕して活性炭基材とし、該活性炭
基材にバインダーを加え板状に成形して成形体とし、該
成形体を炭化処理して板状活性炭を製造する方法におい
て、前記活性炭基材の平均粒径が10μm以下であるこ
とを特徴とするものである。また、炭素化合物を炭化処
理して得た炭化物に一次活性化処理を施した後に粉砕し
て平均粒径が10μm以下の活性炭基材とし、該活性炭
基材にバインダーを加え板状に成形して成形体とし、該
成形体を炭化処理した後に再度二次活性化処理を施すこ
とがより望ましい。上記一次および二次活性化処理とし
て、炭酸ガス雰囲気中または水蒸気雰囲気中のいずれか
での熱処理による賦活処理を行なうことができる。ある
いは上記一次および二次活性化処理として、空気中での
酸化処理を行なうとより効果的である。この空気中での
酸化処理は熱処理によって行なうことができる。また二
次活性化処理として空気中での酸化処理を行なった際に
は、付加処理として不活性ガス中での熱処理を行なうの
が好ましい。
In order to solve the above-mentioned problems, the method for producing an activated carbon electrode for an electric double layer capacitor of the present invention is a method in which a carbon compound obtained by carbonizing a carbon compound is subjected to an activation treatment. In the method for producing a plate-like activated carbon by crushing to obtain an activated carbon base material, adding a binder to the activated carbon base material to form a plate-shaped product, and carbonizing the formed product, the average particle size of the activated carbon base material. The diameter is 10 μm or less. In addition, a carbide obtained by carbonizing a carbon compound is subjected to a primary activation treatment and then pulverized to obtain an activated carbon base material having an average particle size of 10 μm or less, and a binder is added to the activated carbon base material to form a plate shape. It is more desirable that the formed body is carbonized and then subjected to the secondary activation treatment again. As the primary and secondary activation treatments, activation treatment by heat treatment in either a carbon dioxide gas atmosphere or a steam atmosphere can be performed. Alternatively, it is more effective to perform oxidation treatment in air as the above-mentioned primary and secondary activation treatments. This oxidation treatment in air can be performed by heat treatment. Further, when the oxidation treatment in air is performed as the secondary activation treatment, it is preferable to perform the heat treatment in an inert gas as the additional treatment.

【0009】[0009]

【作用】本発明者らは、試行錯誤を繰り返しながら鋭意
考究した結果、図7に示した従来の活性炭電極の製造工
程において、活性炭基材の平均粒径が10μm以下であ
ると高い静電容量を実現できる活性炭電極が得られ、1
0μmを越えると静電容量が著しく低下することを見い
出した。すなわち、本発明の電気二重層コンデンサー用
活性炭電極の製造方法によれば、活性炭基材の平均粒径
を10μm以下とすることによって、その活性炭基材に
バインダーを添加して成形・炭化した場合に、基材の活
性が損なわれず、これに起因する静電容量の低下が抑制
される。また、炭素化合物を炭化処理して得た炭化物を
1次活性化処理を施した後に粉砕して平均粒径が10μ
m以下の活性炭基材とし、該活性炭基材にバインダーを
加え板状に成形して成形体とし、該成形体を炭化処理し
た後に2次活性化処理を施すと、活性炭基材の粒径によ
る効果と2次活性化処理による効果との相乗効果によ
り、高い静電容量を得ることができる。活性化処理は、
炭酸ガスまたは水蒸気雰囲気中での熱処理によって行な
うことができる。あるいは、活性化処理として空気中で
の酸化処理を行なうと、静電容量のレベルをさらに高め
ることができる。
The inventors of the present invention have conducted extensive studies through repeated trial and error, and as a result, in the manufacturing process of the conventional activated carbon electrode shown in FIG. 7, if the average particle size of the activated carbon base material is 10 μm or less, high capacitance is obtained. An activated carbon electrode that can realize
It has been found that when the thickness exceeds 0 μm, the electrostatic capacity significantly decreases. That is, according to the method for producing an activated carbon electrode for an electric double layer capacitor of the present invention, when the average particle diameter of the activated carbon base material is set to 10 μm or less, a binder is added to the activated carbon base material to form and carbonize. The activity of the base material is not impaired, and the decrease in electrostatic capacitance resulting from this is suppressed. Further, the carbide obtained by carbonizing the carbon compound is subjected to primary activation treatment and then pulverized to obtain an average particle diameter of 10 μm.
When the activated carbon base material having a particle size of m or less is added, a binder is added to the activated carbon base material to form a plate, and the formed body is carbonized and then subjected to a secondary activation treatment. A high electrostatic capacitance can be obtained by the synergistic effect of the effect and the effect of the secondary activation treatment. The activation process is
It can be performed by heat treatment in a carbon dioxide gas or steam atmosphere. Alternatively, if the oxidation treatment is performed in air as the activation treatment, the level of capacitance can be further increased.

【0010】[0010]

【実施例】以下、本発明を詳しく説明する。まず、本発
明の製造方法の第1の実施例として、図7に示す製造工
程において、賦活された炭化物を粉砕して活性炭基材を
得る際に、平均粒径が10μm以下となるように整粒し
て、板状活性炭(活性炭電極)を製造した。本実施例に
おける実験例(実験例1〜6)として、粉砕時間変える
ことによって活性炭基材の粒径を種々に変化させた。ま
た比較のために、比較例1として原料に粉末状のフェノ
ール樹脂を用い、粉砕を行わないで活性炭電極を製造し
た。
The present invention will be described in detail below. First, as a first embodiment of the production method of the present invention, in the production process shown in FIG. 7, when activated carbon is crushed to obtain an activated carbon base material, the average particle diameter is adjusted to 10 μm or less. Granules were produced to produce plate-like activated carbon (activated carbon electrode). As experimental examples (Experimental Examples 1 to 6) in this example, the particle size of the activated carbon base material was variously changed by changing the pulverization time. For comparison, as Comparative Example 1, a powdery phenolic resin was used as a raw material, and an activated carbon electrode was manufactured without crushing.

【0011】(実験例1)ノボラック型フェノール樹脂
を160℃で硬化した後、約2mm角に粉砕した。これ
を窒素ガス中、900℃で30分間熱処理して炭化し
た。引続き、炭酸ガス中、900℃で1.5時間熱処理
して賦活した。次に、振動ボールミルで30時間粉砕し
て活性炭基材を得た。レーザー散乱光式粒度測定器(マ
イクロトラック)による粒度測定の結果、平均粒径は
0.7μmであった。この得られた活性炭粉末100部
に、フェノール樹脂15部、エタノール8部、およびク
レオソート20部からなるバインダー47部を加えて混
練し、圧力500kg/cm2でプレスして、50×5
0×1mmの板状の成形体とした。
(Experimental Example 1) A novolac type phenol resin was cured at 160 ° C. and then pulverized into about 2 mm square. This was heat-treated in nitrogen gas at 900 ° C. for 30 minutes for carbonization. Then, it was activated by heat treatment in carbon dioxide gas at 900 ° C. for 1.5 hours. Next, it was ground for 30 hours with a vibrating ball mill to obtain an activated carbon base material. As a result of particle size measurement by a laser scattered light particle sizer (Microtrac), the average particle size was 0.7 μm. To 100 parts of the obtained activated carbon powder, 47 parts of a binder consisting of 15 parts of phenol resin, 8 parts of ethanol and 20 parts of creosote was added and kneaded, and pressed at a pressure of 500 kg / cm 2 to obtain 50 × 5.
A 0 × 1 mm plate-shaped molded body was prepared.

【0012】得られた成形体を、窒素ガス中で、昇温速
度100℃/hで900℃に昇温し、30分間保持して
炭化処理して板状活性炭(活性炭電極)を得た。炭化処
理後の板状活性炭には、ソリやクラックは認められず、
成形性は良好であった。この板状活性炭から14mmφ
(厚さ1mm)の円板を2枚切り出し、真空中で30w
t%硫酸溶液を含浸させて図2に示す測定用セルを作製
し、静電容量を求めた。図2において、符号1は活性炭
電極、2はガスケット、3は集電極、4はセパレータを
それぞれ示す。静電容量Cは一般に、充電後、一定電流
Iで放電し、電圧V1からV2まで低下する時間△tを測
定し、下式(i)によって求めることができる。 C=I×△t/(V1−V2)……(i) ここでは、900mVで24時間充電後4mA/cm2
で放電し、引続き、2時間充電後400mA/cm2
放電した。そして、いずれも、V1=540mV、V2
360mVとして、それぞれ4mA/cm2の時50.
8F/cm3、400mA/cm2の時22.1F/cm
3を得た。
The obtained molded body was heated to 900 ° C. at a heating rate of 100 ° C./h in nitrogen gas and held for 30 minutes for carbonization treatment to obtain a plate-like activated carbon (activated carbon electrode). No warping or cracks were observed in the plate-like activated carbon after carbonization treatment,
The moldability was good. 14mmφ from this plate-like activated carbon
Cut out 2 (thickness 1mm) discs, 30w in vacuum
A t% sulfuric acid solution was impregnated into the measurement cell shown in FIG. 2 to determine the capacitance. In FIG. 2, reference numeral 1 is an activated carbon electrode, 2 is a gasket, 3 is a collecting electrode, and 4 is a separator. Generally, the electrostatic capacitance C can be obtained by the following equation (i) by measuring the time Δt for discharging from the voltage V 1 to V 2 after discharging with a constant current I after charging. C = I × Δt / (V 1 −V 2 ) ... (i) Here, after charging at 900 mV for 24 hours, 4 mA / cm 2
, And subsequently, after being charged for 2 hours, it was discharged at 400 mA / cm 2 . And in each case, V 1 = 540 mV, V 2 =
When 360 mV and 4 mA / cm 2 respectively, 50.
8F / cm 3, at the time of 400mA / cm 2 22.1F / cm
Got three .

【0013】(実験例2〜6)振動ボールミルでの粉砕
時間を変えた以外は実験例1と同様にして、種々の平均
粒径の活性炭基材を製造した。得られた活性炭基材に、
実験例1と同じ組成のバインダーを、活性炭基材の平均
粒径に応じて加え、実験例1同様にしてプレス成形した
ところ、いずれも成形性は良好であった。得られた板状
活性炭について、実験例1と同様にして、放電試験を行
い、静電容量を求めた。各実験例における粉砕時間、平
均粒径、およびバインダーの添加量の条件と、得られた
静電容量の結果を実験例1の結果とあわせて表1に示
す。
(Experimental Examples 2 to 6) Activated carbon base materials having various average particle diameters were manufactured in the same manner as in Experimental Example 1 except that the grinding time in the vibrating ball mill was changed. On the obtained activated carbon base material,
When a binder having the same composition as in Experimental Example 1 was added according to the average particle size of the activated carbon base material and press-molded in the same manner as in Experimental Example 1, the moldability was good. The obtained plate-like activated carbon was subjected to a discharge test in the same manner as in Experimental Example 1 to determine the capacitance. Table 1 shows the conditions of the crushing time, the average particle size, and the amount of the binder added in each experimental example, and the results of the obtained capacitance together with the result of the experimental example 1.

【0014】(比較例1)原料として平均粒径約27μ
mの粉末フェノール樹脂を用い、粉砕をしない以外は実
験例1と同様にして、活性炭基材を得、平均粒径を測定
したところ、19.0μmであった。バインダーの添加
量を40.8部とした以外は、実験例1と同様にして板
状活性炭を得、放電試験を行って静電容量を求めた。そ
の結果を表1に示す。
(Comparative Example 1) As a raw material, the average particle size is about 27 μm.
An activated carbon base material was obtained in the same manner as in Experimental Example 1 except that the powdered phenolic resin of m was not pulverized, and the average particle size was measured to be 19.0 μm. A plate-like activated carbon was obtained in the same manner as in Experimental Example 1 except that the amount of the binder added was changed to 40.8 parts, and a discharge test was performed to determine the capacitance. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果より、活性炭基材の平均粒径と
静電容量との関係をグラフに表したものを図3に示す。
この図から明らかなように、平均粒径10μm以下では
高い静電容量が維持されるが、10μmを越えると静電
容量が著しく低下することが認められる。なお、比較例
1のように原料に粉末のフェノール樹脂を用いると粉砕
が不要であるが、平均粒径が10μm以上となり、高い
静電容量が得られない。
From the results in Table 1, a graph showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacity is shown in FIG.
As is clear from this figure, when the average particle size is 10 μm or less, a high capacitance is maintained, but when it exceeds 10 μm, the capacitance is remarkably reduced. When powdered phenolic resin is used as the raw material as in Comparative Example 1, pulverization is unnecessary, but the average particle size is 10 μm or more, and high capacitance cannot be obtained.

【0017】次に、本発明の第2の実施例として、図1
に示すように、活性炭基材を成形し、得られた成形体を
炭化した後に、再度2次活性化処理を施して板状活性炭
を製造し、活性炭基材の粒径と静電容量との関係を調べ
た。尚、本実施例において、1次活性化および2次活性
化として炭酸ガス中での熱処理を行った。また比較例2
として、原料に粉末状のフェノール樹脂を用いた場合に
ついても同様に調べた。
Next, as a second embodiment of the present invention, FIG.
As shown in Fig. 1, after the activated carbon base material is molded and the obtained molded body is carbonized, the secondary activation treatment is performed again to produce a plate-shaped activated carbon. I investigated the relationship. In this example, heat treatment in carbon dioxide was performed as the primary activation and the secondary activation. Comparative Example 2
As the above, the same investigation was carried out when a powdered phenolic resin was used as a raw material.

【0018】(実験例7)活性炭基材を板状に成形し、
炭化する工程までは実験例1と同様にして行い、得られ
た炭化処理品を、再び、炭酸ガス中で、800℃で10
時間熱処理して2次賦活した。ただし、バインダーの添
加量は47.2部とした。実験例1と同様にして静電容
量を求めた。その結果を表2に示す。
(Experimental Example 7) An activated carbon substrate was formed into a plate shape,
The steps up to the carbonization step are performed in the same manner as in Experimental Example 1, and the carbonized product obtained is again treated in carbon dioxide gas at 800 ° C. for 10
It was heat-treated for a time to be secondarily activated. However, the amount of binder added was 47.2 parts. The capacitance was determined in the same manner as in Experimental Example 1. The results are shown in Table 2.

【0019】(実験例8〜12)振動ボールミルでの粉
砕時間を変えた以外は実験例7と同様にして、種々の平
均粒径の活性炭基材を製造し、粒径に応じた量のバイン
ダーを添加して、プレス成形した。得られた板状活性炭
について、実験例1と同様にして静電容量を求めた。各
実験例における粉砕時間、平均粒径、およびバインダー
の添加量の条件と、得られた静電容量の結果を表2に示
す。
(Experimental Examples 8 to 12) Activated carbon base materials having various average particle diameters were produced in the same manner as in Experimental Example 7 except that the crushing time in the vibrating ball mill was changed, and the binder was used in an amount corresponding to the particle diameter. Was added and press-molded. The capacitance of the obtained plate-like activated carbon was determined in the same manner as in Experimental Example 1. Table 2 shows the conditions of the grinding time, the average particle size, the amount of the binder added, and the obtained electrostatic capacity in each experimental example.

【0020】(比較例2)原料として平均粒径約27μ
mの粉末フェノール樹脂を用い、粉砕をしない以外は実
験例7と同様にして、活性炭基材を得、平均粒径を測定
したところ、19.0μmであった。バインダーの添加
量を40.8部として、実験例7と同様にして板状活性
炭を得、実験例1と同様にして放電試験を行って静電容
量を求めた。その結果を表2に示す。
(Comparative Example 2) As a raw material, the average particle size is about 27 μm.
An activated carbon base material was obtained in the same manner as in Experimental Example 7 except that the powdered phenolic resin of m was not pulverized, and the average particle size was measured. As a result, it was 19.0 μm. A plate-like activated carbon was obtained in the same manner as in Experimental Example 7 with the added amount of the binder being 40.8 parts, and a discharge test was performed in the same manner as in Experimental Example 1 to determine the capacitance. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表2の結果より、活性炭基材の平均粒径と
静電容量との関係をグラフに表したものを図4に示す。
この図から明らかなように、平均粒径10μm以下では
高い静電容量が維持されるが、10μmを越えると静電
容量が著しく低下することが認められる。なお、比較例
2のように原料に粉末のフェノール樹脂を用いると粉砕
が不要であるが、平均粒径が10μm以上となり、高い
静電容量が得られない。
From the results shown in Table 2, a graph showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacity is shown in FIG.
As is clear from this figure, when the average particle size is 10 μm or less, a high capacitance is maintained, but when it exceeds 10 μm, the capacitance is remarkably reduced. When powdered phenolic resin is used as the raw material as in Comparative Example 2, pulverization is unnecessary, but the average particle diameter is 10 μm or more, and high capacitance cannot be obtained.

【0023】次に、本発明の第3の実施例として、図1
に示す工程において、1次活性化処理および2次活性化
処理として水蒸気中の熱処理を行って板状活性炭を製造
し、活性炭基材の粒径と静電容量との関係を調べた。ま
た比較例3として、原料に粉末状のフェノール樹脂を用
いた場合についても同様に調べた。
Next, as a third embodiment of the present invention, FIG.
In the step shown in (1), heat treatment in steam was performed as the primary activation treatment and the secondary activation treatment to produce plate-like activated carbon, and the relationship between the particle size of the activated carbon base material and the capacitance was investigated. Further, as Comparative Example 3, the same investigation was carried out in the case where a powdery phenol resin was used as a raw material.

【0024】(実験例13)図1に示す工程において、
1次活性化処理として、水蒸気雰囲気中で800℃、3
時間の熱処理を行って、平均粒径が0.8μmの活性基
材を得、2次活性化処理として、水蒸気中で800℃、
10時間の熱処理を行った以外は実験例7と同様にして
板状活性炭を製造した。ただし、バインダーの添加量は
46.8部とした。実験例1と同様にして静電容量を求
めた。その結果を表3に示す。
Experimental Example 13 In the process shown in FIG.
As a primary activation treatment, 800 ° C in a steam atmosphere, 3
Heat treatment is performed for an hour to obtain an active substrate having an average particle size of 0.8 μm, and the secondary activation treatment is 800 ° C. in steam.
A plate-like activated carbon was produced in the same manner as in Experimental Example 7 except that the heat treatment was performed for 10 hours. However, the addition amount of the binder was 46.8 parts. The capacitance was determined in the same manner as in Experimental Example 1. Table 3 shows the results.

【0025】(実験例14〜18)振動ボールミルでの
粉砕時間を変えた以外は実験例13と同様にして、種々
の平均粒径の活性炭基材を製造し、粒径に応じた量のバ
インダーを添加して、プレス成形し、板状活性炭を得
た。実験例1と同様にして静電容量を求めた。各実験例
における粉砕時間、平均粒径、およびバインダーの添加
量の条件と、得られた静電容量の結果を表3に示す。
(Experimental Examples 14 to 18) Activated carbon base materials having various average particle sizes were produced in the same manner as in Experimental Example 13 except that the crushing time in the vibrating ball mill was changed, and the amount of the binder was adjusted according to the particle size. Was added and press-molded to obtain plate-like activated carbon. The capacitance was determined in the same manner as in Experimental Example 1. Table 3 shows the conditions of the crushing time, the average particle size, and the amount of the binder added in each experimental example, and the obtained electrostatic capacity results.

【0026】(比較例3)原料として平均粒径約27μ
mの粉末フェノール樹脂を用い、粉砕をしない以外は実
験例13と同様にして、活性炭基材を得、平均粒径を測
定したところ、18.5μmであった。またバインダー
の添加量を40.2部として、実験例13と同様にして
板状活性炭を得、実験例1と同様にして放電試験を行っ
て静電容量を求めた。その結果を表3に示す。
(Comparative Example 3) As a raw material, the average particle size is about 27 μm.
An activated carbon base material was obtained in the same manner as in Experimental Example 13 except that the powdered phenolic resin of m was not pulverized, and the average particle size was measured to be 18.5 μm. Further, with the addition amount of the binder being 40.2 parts, a plate-like activated carbon was obtained in the same manner as in Experimental Example 13, and a discharge test was performed in the same manner as in Experimental Example 1 to determine the capacitance. Table 3 shows the results.

【0027】[0027]

【表3】 [Table 3]

【0028】表3の結果より、活性炭基材の平均粒径と
静電容量との関係をグラフに表したものを図5に示す。
この図から明らかなように、平均粒径10μm以下では
高い静電容量が維持されるが、10μmを越えると静電
容量が著しく低下することが認められる。また図4と図
5とを比較すると、1次賦活および2次賦活を炭酸ガス
中で行った場合(図4)の結果と、1次賦活および2次
賦活を水蒸気中で行った場合(図5)の結果との間に大
きな差は認められなかった。なお、比較例2のように原
料に粉末のフェノール樹脂を用いると粉砕が不要である
が、平均粒径が10μm以上となり、高い静電容量が得
られない。
From the results shown in Table 3, a graph showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacity is shown in FIG.
As is clear from this figure, when the average particle size is 10 μm or less, a high capacitance is maintained, but when it exceeds 10 μm, the capacitance is remarkably reduced. Further, comparing FIG. 4 and FIG. 5, the results of the case where primary activation and secondary activation are carried out in carbon dioxide gas (FIG. 4) and the case where primary activation and secondary activation are carried out in water vapor (FIG. No significant difference was observed with the result of 5). When powdered phenolic resin is used as the raw material as in Comparative Example 2, pulverization is unnecessary, but the average particle diameter is 10 μm or more, and high capacitance cannot be obtained.

【0029】次に、本発明の第4の実施例として、図1
に示す工程において、1次活性化処理として空気中での
酸化熱処理を行い、2次活性化処理として空気中での酸
化熱処理を行った後、窒素雰囲気での熱処理を行って板
状活性炭を製造し、活性炭基材の粒径と静電容量との関
係を調べた。また比較例4として、原料に粉末状のフェ
ノール樹脂を用いた場合についても同様に調べた。
Next, as a fourth embodiment of the present invention, FIG.
In the process shown in (1), the oxidative heat treatment in air is performed as the primary activation treatment, the oxidative heat treatment in the air is performed as the secondary activation treatment, and then the heat treatment is performed in the nitrogen atmosphere to produce the plate-like activated carbon. Then, the relationship between the particle size of the activated carbon base material and the electrostatic capacity was investigated. Further, as Comparative Example 4, the same investigation was carried out in the case where a powdery phenolic resin was used as a raw material.

【0030】(実験例19)図1に示す工程において、
1次活性化処理として、空気中で350℃、1時間の酸
化熱処理を行って、平均粒径が0.8μmの活性基材を
得、2次活性化処理として、空気中で350℃、1時間
の酸化熱処理に引続き窒素中900℃、0.5時間の熱
処理を行った以外は実験例7と同様にして板状活性炭を
製造した。ただし、バインダーの添加量は47.4部と
した。実験例1と同様にして静電容量を求めた。その結
果を表4に示す。
Experimental Example 19 In the process shown in FIG.
As a primary activation treatment, an oxidative heat treatment is performed in air at 350 ° C. for 1 hour to obtain an active base material having an average particle diameter of 0.8 μm. A plate-like activated carbon was produced in the same manner as in Experimental Example 7, except that the heat treatment was carried out at 900 ° C. for 0.5 hours in nitrogen subsequently to the heat treatment for an hour. However, the amount of binder added was 47.4 parts. The capacitance was determined in the same manner as in Experimental Example 1. The results are shown in Table 4.

【0031】(実験例20〜24)振動ボールミルでの
粉砕時間を変えた以外は実験例19と同様にして、種々
の平均粒径の活性炭基材を製造し、粒径に応じた量のバ
インダーを添加して、プレス成形し、板状活性炭を得
た。実験例1と同様にして静電容量を求めた。各実験例
における粉砕時間、平均粒径、およびバインダーの添加
量の条件と、得られた静電容量の結果を表4に示す。
(Experimental Examples 20 to 24) Activated carbon base materials having various average particle sizes were produced in the same manner as in Experimental Example 19 except that the crushing time in the vibrating ball mill was changed, and the binder was used in an amount corresponding to the particle size. Was added and press-molded to obtain plate-like activated carbon. The capacitance was determined in the same manner as in Experimental Example 1. Table 4 shows the conditions of the crushing time, the average particle size, the amount of the binder added, and the obtained electrostatic capacity in each experimental example.

【0032】(比較例4)原料として平均粒径約27μ
mの粉末フェノール樹脂を用い、粉砕をしない以外は実
験例19と同様にして、活性炭基材を得、平均粒径を測
定したところ、18.0μmであった。またバインダー
の添加量を41.0部として、実験例19と同様にして
板状活性炭を得、実験例1と同様にして放電試験を行っ
て静電容量を求めた。その結果を表4に示す。
(Comparative Example 4) As a raw material, the average particle size is about 27 μm.
An activated carbon base material was obtained in the same manner as in Experimental Example 19 except that the powdered phenolic resin of m was not pulverized, and the average particle size was measured, and it was 18.0 μm. Further, with the addition amount of the binder being 41.0 parts, a plate-like activated carbon was obtained in the same manner as in Experimental Example 19, and a discharge test was performed in the same manner as in Experimental Example 1 to determine the capacitance. The results are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】表4の結果より、活性炭基材の平均粒径と
静電容量との関係をグラフに表したものを図6に示す。
この図から明らかなように、平均粒径10μm以下では
高い静電容量が維持されるが、10μmを越えると静電
容量が著しく低下することが認められる。また図4また
は図5と図6とを比較すると、1次活性化処理および2
次活性化処理として炭酸ガス中賦活または水蒸気中賦活
を行った場合(図4または図5)よりも、1次活性化処
理および2次活性化処理として空気中での酸化熱処理を
行った場合(図6)の方が、得られる静電容量のレベル
が高いことが認められた。
From the results of Table 4, a graph showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacity is shown in FIG.
As is clear from this figure, when the average particle size is 10 μm or less, a high capacitance is maintained, but when it exceeds 10 μm, the capacitance is remarkably reduced. In addition, comparing FIG. 4 or FIG. 5 with FIG.
When the oxidation heat treatment in air is performed as the primary activation treatment and the secondary activation treatment as compared with the case where activation in carbon dioxide gas or water vapor is performed as the secondary activation treatment (FIG. 4 or 5) ( It was confirmed that the obtained capacitance level was higher in FIG. 6).

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、炭
素化合物を炭化処理して得た炭化物を活性化処理を施し
た後に粉砕して活性炭基材とし、該活性炭基材にバイン
ダーを加え板状に成形して成形体とし、該成形体を炭化
処理して板状活性炭を製造する方法において、活性炭基
材の平均粒径を10μm以下とすることによって、高い
静電容量を実現できる電気二重層コンデンサー用の活性
炭電極を得ることができる。
As described above, according to the present invention, a carbonized product obtained by carbonizing a carbon compound is subjected to activation treatment and then crushed to obtain an activated carbon base material, and a binder is added to the activated carbon base material. In a method for producing a plate-shaped activated carbon by forming the plate-shaped into a molded body and carbonizing the molded body, it is possible to realize high capacitance by setting the average particle diameter of the activated carbon base material to 10 μm or less. An activated carbon electrode for a double layer capacitor can be obtained.

【0036】また、炭素化合物を炭化処理して得た炭化
物を活性化処理を施した後に粉砕して平均粒径が10μ
m以下の活性炭基材とし、該活性炭基材にバインダーを
加え板状に成形して成形体とし、該成形体を炭化処理し
た後に再度活性化処理を施すと、活性炭基材の粒径によ
る効果と2次活性化処理による効果との相乗効果によ
り、高い静電容量を得ることができる。活性化処理とし
て空気中での酸化処理を行なうと、静電容量のレベルを
さらに高めることができる。
The carbide obtained by carbonizing the carbon compound is activated and then pulverized to obtain an average particle diameter of 10 μm.
When an activated carbon base material having a particle size of m or less is added, and a binder is added to the activated carbon base material to form a molded body, and the molded body is carbonized and then activated again, the effect of the particle size of the activated carbon base material is obtained. A high electrostatic capacitance can be obtained by the synergistic effect of the above and the effect of the secondary activation treatment. When the oxidation treatment in air is performed as the activation treatment, the level of capacitance can be further increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の活性炭電極の製造方法の一例を示す
工程図である。
FIG. 1 is a process drawing showing an example of a method for manufacturing an activated carbon electrode of the present invention.

【図2】 本発明の実施例において作製した活性炭電極
の断面図である。
FIG. 2 is a cross-sectional view of an activated carbon electrode produced in an example of the present invention.

【図3】 本発明の第1の実施例の結果を示し、活性炭
基材の平均粒径と活性炭電極の静電容量との関係を示す
グラフである。
FIG. 3 is a graph showing the results of the first example of the present invention and showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacity of the activated carbon electrode.

【図4】 本発明の第2の実施例の結果を示し、活性炭
基材の平均粒径と活性炭電極の静電容量との関係を示す
グラフである。
FIG. 4 is a graph showing the results of the second example of the present invention and showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacitance of the activated carbon electrode.

【図5】 本発明の第3の実施例の結果を示し、活性炭
基材の平均粒径と活性炭電極の静電容量との関係を示す
グラフである。
FIG. 5 is a graph showing the results of the third example of the present invention and showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacitance of the activated carbon electrode.

【図6】 本発明の第4の実施例の結果を示し、活性炭
基材の平均粒径と活性炭電極の静電容量との関係を示す
グラフである。
FIG. 6 is a graph showing the results of Example 4 of the present invention and showing the relationship between the average particle size of the activated carbon base material and the electrostatic capacitance of the activated carbon electrode.

【図7】 従来の活性炭および活性炭電極の製造工程を
説明する図である。
FIG. 7 is a diagram illustrating a conventional manufacturing process of activated carbon and an activated carbon electrode.

【符号の説明】[Explanation of symbols]

1……活性炭電極、2……ガスケット、3……集電極、
4……セパレータ。
1 ... Activated carbon electrode, 2 ... Gasket, 3 ... Collection electrode,
4 ... Separator.

フロントページの続き (72)発明者 中村 章寛 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社山梨研究所内 (72)発明者 丸茂 信一 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社山梨研究所内 (72)発明者 宮川 俊哉 山梨県北巨摩郡高根町下黒沢3054−3 日 本酸素株式会社山梨研究所内Front Page Continuation (72) Inventor Akihiro Nakamura 3054-3 Shimokurosawa Shimokurosawa, Takane-cho, Kitakoma-gun, Yamanashi Prefecture Yamanashi Research Institute (72) Inventor Shinichi Marumo 3054-3 Shimokurosawa, Takane-cho, Kitakoma-gun Yamanashi Nihon Oxygen Yamanashi Laboratory Co., Ltd. (72) Inventor Toshiya Miyagawa 3054-3 Shimokurosawa Shimokurosawa, Takane-cho, Kitakoma-gun, Yamanashi Nihon Oxygen Co., Ltd. Yamanashi Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素化合物を炭化処理して得た炭化物を
活性化処理を施した後に粉砕して活性炭基材とし、該活
性炭基材にバインダーを加え板状に成形して成形体と
し、該成形体を炭化処理して板状活性炭を製造する方法
において、前記活性炭基材の平均粒径が10μm以下で
あることを特徴とする電気二重層コンデンサー用活性炭
電極の製造方法。
1. A carbonized product obtained by carbonizing a carbon compound is subjected to activation treatment and then pulverized to obtain an activated carbon base material, and a binder is added to the activated carbon base material to form a plate-like body, A method for producing a plate-like activated carbon by carbonizing a formed body, wherein the activated carbon base material has an average particle size of 10 μm or less, and a method for producing an activated carbon electrode for an electric double layer capacitor.
【請求項2】 炭素化合物を炭化処理して得た炭化物を
活性化処理を施した後に粉砕して平均粒径が10μm以
下の活性炭基材とし、該活性炭基材にバインダーを加え
板状に成形して成形体とし、該成形体を炭化処理した後
に再度活性化処理を施すことを特徴とする電気二重層コ
ンデンサー用活性炭電極の製造方法。
2. A carbonized product obtained by carbonizing a carbon compound is subjected to activation treatment and then pulverized to obtain an activated carbon base material having an average particle size of 10 μm or less, and a binder is added to the activated carbon base material to form a plate shape. A method for producing an activated carbon electrode for an electric double layer capacitor, which comprises subjecting the formed body to a carbonization treatment, and then subjecting the formed body to a carbonization treatment and then an activation treatment again.
【請求項3】 上記活性化処理として、炭酸ガス雰囲
気中または水蒸気雰囲気中のいずれかでの熱処理による
賦活処理を行なうことを特徴とする請求項2記載の電気
二重層コンデンサー用活性炭電極の製造方法。
3. The method for producing an activated carbon electrode for an electric double layer capacitor according to claim 2, wherein the activation treatment is an activation treatment by heat treatment in either a carbon dioxide gas atmosphere or a steam atmosphere. .
【請求項4】 上記活性化処理として、空気中での酸化
処理を行なうことを特徴とする請求項2記載の電気二重
層コンデンサー用活性炭電極の製造方法。
4. The method for producing an activated carbon electrode for an electric double layer capacitor according to claim 2, wherein the activation treatment is an oxidation treatment in air.
JP6248186A 1994-09-09 1994-10-13 Method for manufacturing activated carbon electrode for electrical double-layer capacitor Withdrawn JPH08115856A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6248186A JPH08115856A (en) 1994-10-13 1994-10-13 Method for manufacturing activated carbon electrode for electrical double-layer capacitor
US08/523,622 US5603867A (en) 1994-09-09 1995-09-05 Method of production for active carbon electrode for use as electrical double layer condenser and active carbon electrode obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6248186A JPH08115856A (en) 1994-10-13 1994-10-13 Method for manufacturing activated carbon electrode for electrical double-layer capacitor

Publications (1)

Publication Number Publication Date
JPH08115856A true JPH08115856A (en) 1996-05-07

Family

ID=17174489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6248186A Withdrawn JPH08115856A (en) 1994-09-09 1994-10-13 Method for manufacturing activated carbon electrode for electrical double-layer capacitor

Country Status (1)

Country Link
JP (1) JPH08115856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007387A (en) * 2006-06-30 2008-01-17 Kansai Coke & Chem Co Ltd Method and apparatus for highly purifying activated carbon
CN105776205A (en) * 2016-03-31 2016-07-20 神华集团有限责任公司 Preparation method of coal-based activated carbon for flue gas internal circulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007387A (en) * 2006-06-30 2008-01-17 Kansai Coke & Chem Co Ltd Method and apparatus for highly purifying activated carbon
CN105776205A (en) * 2016-03-31 2016-07-20 神华集团有限责任公司 Preparation method of coal-based activated carbon for flue gas internal circulation

Similar Documents

Publication Publication Date Title
KR0143178B1 (en) Polarizanble electrode
JPH08119614A (en) Activated carbon, its production and electrode for electric-double-layer capacitor
JPH03201517A (en) Electric double layer capacitor
TW550615B (en) Polarizable electrode and method for manufacturing the same and electric double layer capacitor using the same
US5603867A (en) Method of production for active carbon electrode for use as electrical double layer condenser and active carbon electrode obtained thereby
JPH0883736A (en) Active carbon electrode of electronic double-layer capacitor and manufacture thereof
JPH09289142A (en) Active carbon electrode, manufacture thereof and electric double layer capacitor
US4896249A (en) Electric double layer capacitor
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
KR101381710B1 (en) Method for manufacturing active carbon for electrode using cokes and method for manufacturing active carbon composition for electrode
JPH08115856A (en) Method for manufacturing activated carbon electrode for electrical double-layer capacitor
JP3602933B2 (en) Activated carbon substrate
JP3330235B2 (en) Carbon material for electric double layer capacitor and method for producing the same
JP3930739B2 (en) Activated carbon for electric double layer capacitor and manufacturing method thereof
US20040072688A1 (en) Alkaline activating charcoal for electrode of electric double layer capacitor
JPH0888150A (en) Manufacture of activated-carbon electrode for electric double layer capacitor, and activated carbon electrode
JP2000344507A (en) Powdery activated carbon, activated carbon sheet and electric double layer capacitor
JP3417206B2 (en) Activated carbon material for electric double layer capacitors
JPH0897101A (en) Electrode material
JPH0936004A (en) Manufacture of active-carbon electrode and electric double layer capacitor
JPH07335501A (en) Carbonaceous porous body and electric double layer capacitor electrode using carbonaceous porous body
JP2001139696A (en) Method for producing conductive resin molding and separator for fuel cell
JPH09293648A (en) Manufacture of polarized electrode
JPH08138979A (en) Manufacture of active carbon electrode for electric double layer capacitor
JP3488957B2 (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115