JPH0797572A - Ir light-exciting emitter - Google Patents

Ir light-exciting emitter

Info

Publication number
JPH0797572A
JPH0797572A JP18792594A JP18792594A JPH0797572A JP H0797572 A JPH0797572 A JP H0797572A JP 18792594 A JP18792594 A JP 18792594A JP 18792594 A JP18792594 A JP 18792594A JP H0797572 A JPH0797572 A JP H0797572A
Authority
JP
Japan
Prior art keywords
light
rare earth
infrared
crystal
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18792594A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Etsuji Kimura
悦治 木村
Michihiro Tanaka
道広 田中
Yasuhiro Hanaue
康宏 花上
Uko Ou
宇湖 王
Shinobu Nagahama
忍 永濱
Shigeto Sawanobori
成人 沢登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Sumita Optical Glass Inc
Original Assignee
Mitsubishi Materials Corp
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Sumita Optical Glass Inc filed Critical Mitsubishi Materials Corp
Priority to JP18792594A priority Critical patent/JPH0797572A/en
Publication of JPH0797572A publication Critical patent/JPH0797572A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an IR light-exiting emitter comprising a barium-rare earth element chloride having a specific structure, excellent in transparency and upconversion luminous efficacy, and useful for a laser oscillation element for converting IR laser light into visible laser light. CONSTITUTION:This emitter of the formula (R1 is rare earth element; R2 is rare earth element excluding the R1; 0.01<x<=1; 1<z<4). The emitter is obtained by heating the oxide power of the element of R1 and R2 in the formula and barium chloride powder together with graphite fine powder in vacuum, furthermore heating the heated product under the flow of chlorine gas to perfectly chlorinate the oxides of R1 and R2, separating off the non-reacted graphite, and gradually cooling the residue to room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外励起によって可視
光を発光する発光体に関し、特に赤外レーザ光を可視光
レーザに変換するレーザ発振素子として好適な透明質結
晶を含む赤外励起発光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminant which emits visible light by infrared excitation, and in particular, infrared excitation including a transparent crystal suitable as a laser oscillation element for converting infrared laser light into visible light laser. Regarding the illuminant.

【0002】[0002]

【従来技術】現在、光通信の光源として半導体レーザが
実用化されているが、光通信で用いる半導体レーザは石
英ファイバでの光損失が少ない波長1.33μm 、1.
55μm を発振するように構成されている。またデジタ
ルオーデイオやレーザプリンタなどでも波長780nm程
度の半導体レーザが広く利用されている。他方、波長7
80nm以上の赤外光は目に見えないため、レーザ光を可
視光領域で利用できるように短波長のレーザ発振素子の
開発が進められている。例えば、高密度光メモリー、デ
ィスプレーなどではコンパクトな可視光レーザ光源が望
まれている。ところが現在実用化されている半導体レー
ザの波長は650nm程度の赤色レーザ光であり、これよ
り波長の短い緑色や青色のレーザ光を発振する発光素子
は実用化されていない。因みに、高調波発生器(SH
G)を使用して周波数を倍増し、短波長のレーザ光を得
る試みもあり、これによれば波長850nmの赤外レーザ
光を波長425nmの青色光に変換できるが、温度制御が
難しく、コストも高いので実用的なコンパクトレーザは
実現されていない。
2. Description of the Related Art Currently, a semiconductor laser is put into practical use as a light source for optical communication. However, a semiconductor laser used for optical communication has a wavelength of 1.33 μm, which causes less optical loss in a quartz fiber.
It is configured to oscillate 55 μm. Semiconductor lasers having a wavelength of about 780 nm are also widely used in digital audio and laser printers. On the other hand, wavelength 7
Since infrared light having a wavelength of 80 nm or more is invisible, development of a short-wavelength laser oscillating device is underway so that the laser light can be used in the visible light region. For example, a compact visible light laser light source is desired for high-density optical memories and displays. However, the wavelength of the semiconductor laser currently in practical use is red laser light having a wavelength of about 650 nm, and a light emitting element that oscillates green or blue laser light having a shorter wavelength than this is not in practical use. By the way, the harmonic generator (SH
There is also an attempt to double the frequency by using G) to obtain a short wavelength laser light. According to this, it is possible to convert an infrared laser light with a wavelength of 850 nm into blue light with a wavelength of 425 nm, but it is difficult to control the temperature and the cost is low. Since it is expensive, a practical compact laser has not been realized.

【0003】そこで、アップコンバージョン現象を利用
して赤外半導体レーザ光を青・緑色光に変換するアップ
コンバージョンレーザの開発が期待されている。この種
の発光素子として、これまでに、YLiF4 :Erなど
のフッ化物単結晶あるいはZBLAN ガラスに代表される重
金属フッ化物ガラスなどの材料を用いてアップコンバー
ジョンレーザの発振に成功したことが報告されている
(Wilfried Lenth 他、Optics & Photonics News, 3,
[3], 8-15(1992) )が、発振強度は十分ではなく実用化
に遠い。レーザ発振強度を十分に強くするためにはより
光変換効率の優れた材料が要求され、このような要求に
応えるためにいくつかのガラス材料が開発されている
(特開平3-295828,特開平4- 12035,特開平4-328191な
ど)。
Therefore, it is expected to develop an up-conversion laser that converts infrared semiconductor laser light into blue / green light by utilizing the up-conversion phenomenon. As a light emitting device of this kind, it has been reported so far that the up conversion laser was successfully oscillated using a material such as a YLiF 4 : Er fluoride single crystal or a heavy metal fluoride glass typified by ZBLAN glass. (Wilfried Lenth et al., Optics & Photonics News, 3,
[3], 8-15 (1992)), but the oscillation strength is not sufficient and it is far from practical use. In order to sufficiently increase the laser oscillation intensity, a material having a higher light conversion efficiency is required, and several glass materials have been developed to meet such requirements (Japanese Patent Laid-Open No. 3-295828, Japanese Patent Laid-Open No. 3-295828). 4-12035, JP-A-4-328191, etc.).

【0004】しかしながら、これらのガラス材料は発光
源であるEr3+などの希土類イオンの濃度を高めること
が本質的に難しいために光路長の短いコンパクトな発光
素子を得ることができない。また、仮に高濃度で希土類
イオンを含有させたとしても濃度消光と呼ばれる現象の
ために逆に発光効率が低下することが知られている。さ
らに、これらガラス材料は一般的に多成分であるので、
均質な組成の発光体を得るのが難しいという製造技術上
の問題もある。
However, since it is essentially difficult to increase the concentration of rare earth ions such as Er 3+ , which is a light emitting source, with these glass materials, a compact light emitting device having a short optical path length cannot be obtained. Further, it is known that even if a rare earth ion is contained at a high concentration, the luminous efficiency is lowered due to a phenomenon called concentration quenching. Furthermore, since these glass materials are generally multi-component,
There is also a problem in manufacturing technology that it is difficult to obtain a luminescent material having a uniform composition.

【0005】また、上記ガラス材料はフッ化物ないし酸
化物であり、これらのガラス材料よりも塩化物のほうが
アップコンバージョンの発光効率が良いと指摘されてい
るものの(田部他,セラミックス,26(1991) 144)、塩
化物材料で、十分な発光強度を有し、レーザ光源用の光
変換素子として利用できる透明な発光体は現在得られて
いない。
Further, the above-mentioned glass materials are fluorides or oxides, and it is pointed out that chlorides have higher luminous efficiency of up-conversion than these glass materials (Tabe et al., Ceramics, 26 (1991)). 144), a transparent illuminant made of a chloride material, which has a sufficient emission intensity and can be used as a light conversion element for a laser light source, has not yet been obtained.

【0006】[0006]

【発明の解決課題】本発明は、従来の上記問題を解決し
たレーザ光源用の光変換素子として利用できる透明な赤
外励起発光体を提供することを目的とする。一般に、多
結晶の固体材料は結晶粒界において光が散乱されるため
に透明にはならず、レーザ発振用素子として用いること
ができない。透明固体を得るためには単結晶化またはガ
ラス化させる必要がある。但し、通常の希土類塩化物は
ガラス化し難く、発光源となる希土類元素の濃度を高め
ることができないため発光効率の高い塩化物ガラスを得
ることは難しい。そこで本発明は希土類塩化物結晶につ
いて検討を進め、塩化バリウムと塩化希土の複合塩化物
において、良好な透明性を有し、しかもこの透明体はア
ップコンバージョンの発光効率に優れ、赤外レーザ光を
青・緑色の可視光レーザに変換する光変換素子として利
用できる化合物を見出した。本発明はかかる知見に基づ
き従来の課題を解決したものである。そこで本発明は希
土類塩化物結晶について検討を進め、塩化Baを母体と
した希土類含有塩化物は、良好な透明性を有し、しかも
この透明体はアップコンバージョンの発光効率に優れ、
赤外レーザ光を青・緑色の可視光レーザに変換する光変
換素子として利用できることを見出した。本発明はかか
る知見に基づき従来の課題を解決したものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a transparent infrared-excited luminescent material which can be used as a light conversion element for a laser light source, which solves the above-mentioned conventional problems. In general, a polycrystalline solid material is not transparent because light is scattered at crystal grain boundaries and cannot be used as a laser oscillation element. In order to obtain a transparent solid, it is necessary to single crystallize or vitrify it. However, ordinary rare earth chlorides are difficult to vitrify, and it is difficult to obtain a chloride glass having a high luminous efficiency because the concentration of the rare earth element as a light emitting source cannot be increased. Therefore, the present invention advances the study on rare earth chloride crystals, and has good transparency in the complex chloride of barium chloride and rare earth chloride, and this transparent body is excellent in the luminous efficiency of up-conversion and infrared laser light. We have found a compound that can be used as a light conversion element for converting a blue to green visible laser. The present invention has solved the conventional problems based on such knowledge. Therefore, the present invention has advanced the study on rare earth chloride crystals, and the rare earth-containing chloride having Ba chloride as a matrix has good transparency, and this transparent body is excellent in the luminous efficiency of up-conversion.
It was found that it can be used as a light conversion element for converting infrared laser light into blue / green visible light laser. The present invention has solved the conventional problems based on such knowledge.

【0007】[0007]

【発明の構成】本発明によれば以下の構成からなる赤外
励起発光体が提供される。 (1) 一般式 R1 x R2 (1-x) BaCl3+2z ここで、R1 は希土類元素、0.01<x≦1、R2 は
R1 以外の希土類元素、1<z<4で表わされる赤外励
起発光体。 (2) 上記一般式において、実質的にz=2であり、
希土類イオンの吸収波長域を除いた400〜1500n
mの波長域における透過率が70%以上である透明質の
上記(1) の赤外励起発光体。 (3)上記一般式において、R1がEr,Tm,Ho,
NdまたはPrから選択される1種または2種以上の希
土類元素である上記(1) の赤外励起発光体。 (4)上記一般式において、R2 がYb,Gd,Y,L
u,CeまたはLaから選択される1種または2種以上
の希土類元素である上記(1) の赤外励起発光体。 (5) 上記一般式において、R1がEr、Tmまたは
Hoであり、x=1である上記(1) の赤外励起発光体。 (6) 上記一般式において、R1がEr、Tmまたは
Hoであり、R2 がYbまたはGdであって、R1 とR
2 の合計量が1である上記(1)の赤外励起発光体。 (7) 上記一般式において、R1がErおよびTmで
あり、R2 がYbまたはGdであって、R1 とR2 の合
計量が1である上記(1) の赤外励起発光体。
According to the present invention, an infrared-excited luminescent material having the following constitution is provided. (1) General formula R1 x R2 (1-x) Ba z Cl 3 + 2z where, R1 is a rare earth element, 0.01 <x ≦ 1, R2 is a rare earth element other than R1, represented by 1 <z <4 Infrared excited luminescent material. (2) In the above general formula, substantially z = 2,
400-1500n excluding the absorption wavelength range of rare earth ions
The infrared-excited luminescent material according to (1) above, which has a transmittance of 70% or more in the wavelength range of m. (3) In the above general formula, R1 is Er, Tm, Ho,
The infrared-excited luminescent material according to (1) above, which is one or more rare earth elements selected from Nd or Pr. (4) In the above general formula, R2 is Yb, Gd, Y, L
The infrared-excited luminescent material according to (1) above, which is one or more rare earth elements selected from u, Ce or La. (5) The infrared-excited luminescent material as described in (1) above, wherein R1 is Er, Tm or Ho in the general formula, and x = 1. (6) In the above general formula, R1 is Er, Tm or Ho, R2 is Yb or Gd, and R1 and R
The infrared-excited luminescent material according to (1) above, wherein the total amount of 2 is 1. (7) The infrared-excited luminescent material according to (1) above, wherein in the general formula, R1 is Er and Tm, R2 is Yb or Gd, and the total amount of R1 and R2 is 1.

【0008】[0008]

【具体的な説明】本発明は次の一般式で表わされる複合
塩化物からなる赤外励起発光体である。 R1 x R2 (1-x) BaCl3+2z (R1 は希土類元素、0.01<x≦1、R2 はR1 以
外の希土類元素、1<z<4) 上記化合物は原料粉末を加熱融解し、冷却させ、必要に
応じて再溶融することにより得られる。この化合物は、
X線回折によればBaCl2 およびRECl3(REは
希土類元素)とは異なる独自の回折ピークを有し、従っ
て、これらの単純な複合物ではなく、特に実質的にz=
2の化合物は良好な透明性を有する結晶質の化合物であ
る。
DETAILED DESCRIPTION The present invention is an infrared-excited luminescent material comprising a complex chloride represented by the following general formula. R1 x R2 (1-x) Ba z Cl 3 + 2z (R1 is a rare earth element, 0.01 <x ≦ 1, R2 is a rare earth element other than R1, 1 <z <4) the compound heated to melt the raw material powder It is obtained by cooling, cooling, and remelting if necessary. This compound is
X-ray diffraction has unique diffraction peaks different from BaCl 2 and RECl 3 (RE is a rare earth element) and is therefore not a simple composite of these, in particular substantially z =
Compound 2 is a crystalline compound with good transparency.

【0009】本発明に係る透明質の上記希土類含有塩化
Ba発光体について、その代表的な化合物であるErB
2 Cl7 の結晶解析結果によれば、本化合物はBa2
原子と1原子の希土類元素に対して7原子の塩素が配位
したREBa2 Cl7 (REは希土類元素)の一般式で
表される結晶質の化合物であり、その結晶学的特徴は空
間群P21 /aの単斜晶系に属する結晶である。従来、
このような希土類含有塩化Ba結晶について、その結晶
構造および赤外励起などの光学的特性は知られていな
い。
ErB, which is a typical compound of the transparent rare earth element-containing Ba chloride light-emitting material according to the present invention.
According to the result of crystal analysis of a 2 Cl 7 , this compound is Ba 2
A crystalline compound represented by the general formula of REBa 2 Cl 7 (RE is a rare earth element) in which 7 atoms of chlorine are coordinated with one atom and one atom of the rare earth element, and its crystallographic characteristics are the space group. It is a crystal belonging to the P2 1 / a monoclinic system. Conventionally,
Regarding such rare earth-containing Ba chloride crystal, its crystal structure and optical characteristics such as infrared excitation are not known.

【0010】上記一般式において、R1 の希土類元素は
発光源であり、代表的にはEr,Tm,Hoが挙げら
れ、この他にNd,Pr,Dyなどが含まれる。これら
の希土類元素は赤外光が照射されたときに、そのイオン
のエネルギー準位が基底準位から励起準位へと段階的に
遷移し、この遷移エネルギーによって発光する。代表的
なErイオンおよびTmイオンは400nm〜550nmの
波長域でいくつかの発光ピークを有し、特に青色から緑
色の波長で強い発光ピークが得られる。なお、R1は1
種に限らず、2種以上含有しても良い。このR1を2種
以上含有する化合物は入射する励起光の波長に応じて各
々の希土類元素が発光源となり、これに対応した発光ス
ペクトルを生じる。
In the above general formula, the rare earth element of R1 is a light emitting source, and typical examples thereof include Er, Tm and Ho, and Nd, Pr and Dy are also included. When these infrared rays are irradiated with these rare earth elements, the energy level of the ions makes a stepwise transition from the ground level to the excited level, and the transition energy causes light emission. Typical Er ions and Tm ions have some emission peaks in the wavelength range of 400 nm to 550 nm, and particularly strong emission peaks are obtained in the blue to green wavelengths. Note that R1 is 1
Not limited to the species, two or more species may be contained. In the compound containing two or more kinds of R1, each rare earth element becomes a light emitting source according to the wavelength of incident excitation light, and an emission spectrum corresponding to this is generated.

【0011】発光源であるR1の量比は0.01<x≦
1である。x<0.01の範囲ではErまたはTmなど
の発光源の含有量が少なく、実用に適う発光強度を得る
ことができない。発光源の希土類元素R1 は単独でも発
光するので、発光補助物質であるR2 は必ずしも含有し
なくてもよい。本発明は発光補助物質R2 を含有しない
R1 単独の化合物(上記一般式においてx=1)もその
範囲に含む。
The amount ratio of R1 which is a light emitting source is 0.01 <x ≦
It is 1. In the range of x <0.01, the content of the light emitting source such as Er or Tm is small and it is not possible to obtain the emission intensity suitable for practical use. Since the rare earth element R1 of the light emitting source emits light by itself, it is not always necessary to contain R2 which is a light emission auxiliary substance. The present invention also includes in its scope a compound of R1 alone (x = 1 in the above general formula) which does not contain the luminescent auxiliary substance R2.

【0012】R2 で示されるR1 以外の希土類元素は発
光補助物質であり、代表的にはY,Gd,Yb,Lu,
La,Euなどが用いられる。これらの希土類元素を単
独で含有するものは赤外光を照射しても発光せず、従っ
て、上記R1 と共に用いられる。R2 の発光補助物質は
主に発光強度を高めるために用いられるが、この他にレ
ーザ発振のしきい(閾)値を下げてレーザ発振し易い条
件を整え、あるいは母材の塩化Baに対して発光源元素
の相対濃度を調整して発光環境を整えるなどの作用を有
する。
Rare earth elements other than R1 represented by R2 are luminescence assisting substances, and are typically Y, Gd, Yb, Lu,
La, Eu, etc. are used. Those containing these rare earth elements alone do not emit light when irradiated with infrared light, and therefore are used together with R1. The emission assisting substance of R2 is mainly used to increase the emission intensity, but in addition to this, the threshold value of laser oscillation is lowered to adjust the conditions for easy laser oscillation, or with respect to the base material Ba chloride. It has an effect of adjusting the relative concentration of the light emitting source element to adjust the light emitting environment.

【0013】具体的には、例えば、Er−YbおよびT
m−Ybの組合わせでは、吸収係数が大きく励起寿命も
長いYbの励起準位がErあるいはTmの励起準位を安
定化させる働きがあるものと考えられる。Tm−Gdの
組合わせでは、Tm単味の場合の濃度消光を緩和する効
果があると考えられる。
Specifically, for example, Er-Yb and T
In the combination of m-Yb, it is considered that the excitation level of Yb having a large absorption coefficient and a long excitation lifetime has a function of stabilizing the excitation level of Er or Tm. It is considered that the combination of Tm-Gd has an effect of alleviating the concentration quenching in the case of Tm alone.

【0014】発光源の希土類元素R1と発光補助物質で
ある希土類元素R2 の合計量は実質的に1である。希土
類元素の量比がこれを外れると単結晶になり難く、透明
結晶が得られない。なお、結晶には多少の固溶や格子欠
陥がつきまとうので、このような僅かな量比の相違は許
容される。希土類元素の合計量は実質的に1であればよ
い。
The total amount of the rare earth element R1 as the light emitting source and the rare earth element R2 as the light emission auxiliary substance is substantially 1. If the amount ratio of the rare earth element is out of this range, it becomes difficult to form a single crystal and a transparent crystal cannot be obtained. Since a small amount of solid solution and lattice defects are associated with the crystal, such a slight difference in the quantity ratio is acceptable. The total amount of rare earth elements may be substantially 1.

【0015】本発明の発光体は塩化Baを母材とする。
Baと化学的性質の類似した同族元素のCa,Sr,M
gの塩化物を母材とするものは発光効率が極めて低く、
一部のものは全く発光せず、発光体として用いることが
できない。従って、母材の塩化Baの一部にこれらの同
族元素を積極的に添加する実益はない。なお希土類元素
原料および塩化Ba原料に不可避的に含まれる不純物
は、市販品の原料純度の範囲であれば許容される。
The luminous body of the present invention uses Ba chloride as a base material.
Ca, Sr, M, which are homologous elements with similar chemical properties to Ba
Luminous efficiency is extremely low when using g chloride as the base material.
Some of them do not emit light at all and cannot be used as light emitters. Therefore, there is no practical benefit of positively adding these homologous elements to part of the base material, Ba chloride. Impurities that are unavoidably contained in the rare earth element raw material and the Ba chloride raw material are allowed within the range of the raw material purity of commercial products.

【0016】上記一般式において、Baの量比は1<z
<4の範囲である。特にBaの量比が実質的にz=2で
あるものは、上記結晶構造の透明な結晶体となり、従っ
て、レーザ光の発振素子として好適である。Baの量比
が1<z<4の範囲では、z=2の透明結晶と共に他の
結晶型の化合物が混在するので透明性が低下するが、発
光効率の低下は小さいので、赤外線検知体などの透明性
を必要としない用途に用いることができる。Baの量比
が1<z<4の範囲を外れるとアップコンバージョンの
発光効率が低下するので好ましくない。
In the above general formula, the amount ratio of Ba is 1 <z
It is a range of <4. In particular, those having a Ba amount ratio of substantially z = 2 form a transparent crystal having the above crystal structure, and are therefore suitable as an oscillation element for laser light. When the Ba content ratio is in the range of 1 <z <4, the transparent crystal of z = 2 is mixed with other crystal type compounds, so that the transparency is lowered, but the decrease of the luminous efficiency is small, so that the infrared detector, etc. Can be used for applications that do not require the transparency. When the amount ratio of Ba is out of the range of 1 <z <4, the luminous efficiency of up-conversion is lowered, which is not preferable.

【0017】本発明に係る上記希土類Ba複合塩化物結
晶は赤外光が入射すると、青色から緑色(450nm 〜550n
m )の波長域の可視光を発光する。例えば、上記R1が
Er,Tm,Hoの各結晶についてみると、ErBa2
Cl7 は、波長810nm付近の赤外光が入射すると55
0nm付近で最も強く発光する。またYbを添加した(E
r,Yb)Ba2 Cl7 系化合物は980nmあるいは1
500nmの赤外光によって波長550nm付近で強い発光
を有する。この化合物は同時に660nm付近および44
0nm付近にもやや弱い発光ピークを有する。また、Tm
Ba2 Cl7 は790nm付近の赤外光によって455nm
および550nm付近の緑色発光を生じ、これにYbを添
加した(Tm、Yb)Ba2 Cl7結晶は810nmおよ
び980nmの赤外光励起により、530nm、550nmま
たは490nm付近の緑色発光を生じる。同様に、HoB
2 Cl7 は650nm付近の励起光によって、主に49
0nmまたは550nm付近の緑色発光を生じる。
The rare earth Ba composite chloride crystal according to the present invention, when infrared light is incident, changes from blue to green (450 nm to 550 n
It emits visible light in the m) wavelength range. For example, regarding each crystal in which R1 is Er, Tm, and Ho, ErBa 2
Cl 7 is 55 when infrared light with a wavelength near 810 nm is incident.
It emits the strongest light near 0 nm. In addition, Yb was added (E
r, Yb) Ba 2 Cl 7 compound is 980 nm or 1
It has a strong emission around a wavelength of 550 nm by infrared light of 500 nm. This compound is near 660 nm and 44 at the same time.
It has a slightly weak emission peak near 0 nm. Also, Tm
Ba 2 Cl 7 is 455 nm due to infrared light near 790 nm
And green emission around 550 nm is generated, and the Yb-added (Tm, Yb) Ba 2 Cl 7 crystal emits green emission around 530 nm, 550 nm, or 490 nm by infrared light excitation at 810 nm and 980 nm. Similarly, HoB
a 2 Cl 7 is mainly excited by the excitation light near 650 nm to 49
It produces a green emission around 0 or 550 nm.

【0018】上記Er,Tm,Ho以外のR1を含有す
る化合物については、例えば、Ndは600nm付近の励
起光によって400nm付近の発光を示す。Ndを単独
(R1=Nd、x=1)で塩化Baに添加しても透明体
結晶を得るのは難しいが、GdまたはYbと併用し(R
1=Nd、R2 =GdまたはYb)、x=0.001〜
0.5の範囲で上記波長の発光ピークを有する透明体結
晶を得ることができる。また、Prは1010nmおよび
835nmの2波長励起によって青、緑、赤の各波長の発
光を生じるが、Prを単独(R1=Pr、x=1)で塩
化Baに添加しても透明体結晶を得るのは難しいので、
GdまたはYbと併用(R2 =GdまたはYb)するこ
とにより、上記色調の発光を生じる透明結晶を得ること
が期待できる。
Regarding the compounds containing R1 other than Er, Tm and Ho, for example, Nd emits light around 400 nm by excitation light around 600 nm. It is difficult to obtain a transparent crystal even if Nd is added alone (R1 = Nd, x = 1) to Ba chloride, but it is used in combination with Gd or Yb (R
1 = Nd, R2 = Gd or Yb), x = 0.001-
A transparent crystal having an emission peak at the above wavelength in the range of 0.5 can be obtained. Further, Pr emits light of blue, green, and red wavelengths when excited by two wavelengths of 1010 nm and 835 nm, but even if Pr alone (R1 = Pr, x = 1) is added to Ba chloride, a transparent crystal is formed. Hard to get, so
When used in combination with Gd or Yb (R2 = Gd or Yb), it can be expected to obtain a transparent crystal that emits light of the above-mentioned color tone.

【0019】Tmは480nmと450nmに発光ピークを
有するが、EuとTmを組合せることにより480nmの
発光が抑制され、450nmのレーザ発振が容易になるこ
とが期待できる。Sm、Tbも同様の効果がある。さら
にTbはエネルギー準位によれば380nmおよび500
nmでの発光が期待でき、発光源物質となる可能がある
が、励起途中の準位が欠けているので、これとEr、Y
b、Hoなどを組合せて中間準位を形成すれば発光が期
待できる。
Although Tm has emission peaks at 480 nm and 450 nm, it is expected that the combination of Eu and Tm will suppress emission at 480 nm and facilitate laser oscillation at 450 nm. Sm and Tb also have the same effect. Furthermore, Tb is 380 nm and 500 according to the energy level.
It can be expected to emit light at nm, and it may become a light-emitting source substance, but since the level in the middle of excitation is lacking, Er and Y
Light emission can be expected if b, Ho, etc. are combined to form an intermediate level.

【0020】なお、以上のように本発明の結晶体は、ア
ップコンバージョン現象による優れた波長変換特性を有
しており、赤外光を可視光に変換することはもとより、
赤色光などの比較的波長の長い可視光を紫色や紫外光な
どのより波長の短い光に変換することもでき、従って本
発明において赤外励起発光体とはこのような場合をも含
む。
As described above, the crystal body of the present invention has excellent wavelength conversion characteristics due to the up-conversion phenomenon, and it is possible to convert infrared light into visible light.
It is also possible to convert visible light having a relatively long wavelength such as red light into light having a shorter wavelength such as violet or ultraviolet light, and therefore, the infrared excitation luminescent material in the present invention includes such a case.

【0021】[0021]

【実施例および比較例】本発明の実施例を以下に示す。
なお本実施例は例示であり本発明の範囲を限定するもの
ではない。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below.
It should be noted that the present embodiment is an example and does not limit the scope of the present invention.

【0022】実施例1 純度99.9%のEr2 3 粉末28g、純度99.9%のBa
Cl2 粉末60gを、グラファイト微粉末3gと共にグ
ラッシーカーボン製のルツボに装入し、石英ガラス製の
反応容器内で200℃に加熱し、10-3torrまで真空引き
した後、Arガスを流しながら1000℃まで加熱して
BaCl2 主体の融体を形成させ、ここに塩素ガスを30
0ml/min の流量で90分間吹き込み、Er2 3 を完全
に塩素化した。塩素化の終了した試料は、未反応グラフ
ァイト粉末を分離するために750℃の温度下で1時間
静置し、さらに650℃から520℃まで毎時5℃の速
度で徐冷した後に室温まで完全に冷却した。
Example 1 28 g of Er 2 O 3 powder having a purity of 99.9% and Ba having a purity of 99.9%
60 g of Cl 2 powder, together with 3 g of graphite fine powder, were placed in a glassy carbon crucible, heated to 200 ° C. in a quartz glass reaction vessel, and evacuated to 10 −3 torr, while flowing Ar gas. It is heated to 1000 ° C. to form a BaCl 2 -based melt, and chlorine gas is added thereto at 30 ° C.
Er 2 O 3 was completely chlorinated by bubbling at a flow rate of 0 ml / min for 90 minutes. The chlorinated sample was allowed to stand at 750 ° C for 1 hour to separate unreacted graphite powder, and then gradually cooled from 650 ° C to 520 ° C at a rate of 5 ° C / hour, and then completely cooled to room temperature. Cooled.

【0023】得られた化合物は約2mm角、長さ20mm程
度の針状あるいは4mm角程度の多面体状の透明結晶を含
んでいた。この幾つかの透明結晶を化学分析したとこ
ろ、ErとBaの量比は分析精度内で全て1:2であっ
た。また、これを粉砕し、粉末X線回折によって測定し
たところ、図1に示すように、ErCl3 およびBaC
2 の回折ピークは見当たらず、従って、この結晶はこ
れらの混合物ではなく、ErBa2 Cl7 の組成を有す
る単一化合物であることが確認された。(図1中(a)は
本実施例化合物、(b) はBaCl2 、(c) はErCl3
のピーク位置を示すX線回折チャートである。)さらに
上記結晶について、四軸ゴニオメータ(理学電機社製、
AFC5R 型)を用いて構造解析を行った。分析試料は上記
結晶の小片(約0.4 mm)を石英ガラス製キャピラリーに
封入したものを用いた。構造解析の結果によれば上記化
合物は、格子定数a=10.500Å、b=15.507Å、c=6.
804 Å、軸角β=90.48 ゜である空間群P21 /aの単
斜晶系に属する結晶である。この結晶解析データを表1
に示した。さらに、構造解析の結果に基づく結晶構造の
概念図を図3に示した。
The obtained compound contained needle-like or polyhedral transparent crystals of about 2 mm square and about 20 mm long, or about 4 mm square. When some of these transparent crystals were chemically analyzed, the ratios of Er and Ba were all 1: 2 within the analytical accuracy. Moreover, when this was crushed and measured by powder X-ray diffraction, as shown in FIG. 1, ErCl 3 and BaC were obtained.
No l 2 diffraction peak was found, thus confirming that this crystal is not a mixture of these but a single compound having a composition of ErBa 2 Cl 7 . (In FIG. 1, (a) is the compound of this example, (b) is BaCl 2 , and (c) is ErCl 3 ).
3 is an X-ray diffraction chart showing peak positions of FIG. ) Furthermore, regarding the above crystal, a four-axis goniometer (manufactured by Rigaku Denki Co.,
Structural analysis was performed using AFC5R type). As the analysis sample, a small piece (about 0.4 mm) of the above crystal was enclosed in a silica glass capillary. According to the result of the structural analysis, the above compound has a lattice constant a = 10.500Å, b = 15.507Å, c = 6.
804 Å, a crystal belonging to a monoclinic system of shaft angle beta = 90.48 ° in a space group P2 1 / a. This crystal analysis data is shown in Table 1.
It was shown to. Furthermore, a conceptual diagram of the crystal structure based on the result of the structural analysis is shown in FIG.

【0024】[0024]

【表1】 [Table 1]

【0025】また上記結晶(厚さ2mm)の透過率を40
0〜1500nmの波長域で測定したところ、Erイオン
の吸収波長以外では80%以上の透過率が得られた。な
お、上記結晶は空気中で吸湿により劣化し易いために、
試料の劣化および表面の反射や散乱を防ぐために試料表
面を透明フィルムで覆って透過率を測定した。具体的に
は透過率は、試料を不透明のワックスに埋め込み、表面
を研磨して試料を露出させ、この露出面に流動パラフィ
ンを薄く塗布して透明フィルムで覆い、分光光度計を用
い、各波長の入射光の強度を100としたとき、これに
対する試料を透過した後の透過光の強度の相対値(透過
光強度/入射光強度:%)によって測定した。この測定
方法によれば、試料表面を覆う透明フィルムによる吸収
が必然的に生じ、また界面での反射や散乱の影響のた
め、裸の試料に比べて15〜20%程度の透過率の減少
は避けられない。因みに本測定方法における透過率80
%は市販されている通常の透明ガラス(スライドガラ
ス)と同等である。
The transmittance of the above-mentioned crystal (thickness 2 mm) is 40
When measured in the wavelength range of 0 to 1500 nm, a transmittance of 80% or more was obtained except for the absorption wavelength of Er ions. In addition, since the above crystal is easily deteriorated by moisture absorption in the air,
The transmittance was measured by covering the sample surface with a transparent film in order to prevent deterioration of the sample and reflection and scattering of the surface. Specifically, the transmittance is determined by embedding the sample in opaque wax, polishing the surface to expose the sample, applying a thin layer of liquid paraffin to the exposed surface and covering with a transparent film, and using a spectrophotometer to measure each wavelength. When the intensity of the incident light was measured as 100, the relative intensity of the transmitted light after passing through the sample was measured (transmitted light intensity / incident light intensity:%). According to this measurement method, absorption due to the transparent film covering the sample surface inevitably occurs, and due to the influence of reflection and scattering at the interface, a decrease in transmittance of about 15 to 20% compared to the naked sample is not achieved. Inevitable. Incidentally, the transmittance in this measuring method is 80
% Is equivalent to that of ordinary transparent glass (slide glass) that is commercially available.

【0026】この透明結晶に規格値波長810nmの半導
体レーザ光(実測値807nm 、出力4mW)を照射したとこ
ろ、結晶内部で線状に緑色発光することが観察された。
この発光スペクトルを図5に示した。また、この透明結
晶に波長980nmのパルスレーザ光(約1mJ)を照射し
たところ、青色〜白色の発光が確認された。この発光ス
ペクトルを図4に併せて示した。
When this transparent crystal was irradiated with a semiconductor laser beam having a standard wavelength of 810 nm (measured value: 807 nm, output: 4 mW), linear green emission was observed inside the crystal.
This emission spectrum is shown in FIG. When this transparent crystal was irradiated with pulsed laser light (about 1 mJ) having a wavelength of 980 nm, blue to white light emission was confirmed. This emission spectrum is also shown in FIG.

【0027】実施例2 純度99.9%のTm2 3 粉末28gをEr2 3 粉末に
代えて用いた他は実施例1と同様にして透明結晶を得
た。この結晶を化学分析したところ、TmとBaの量比
は分析精度内で全て1:2であった。また、これを粉砕
し、粉末X線回折によって測定したところ、図2に示す
ように、TmCl3 およびBaCl2 の回折ピークは見
当たらず、従って、この結晶はこれらの混合物ではなく
TmBa2Cl7 の組成を有する単一化合物であること
が確認された。(図2中 (a)は本実施例化合物、(b) は
BaCl2 、(c) はErCl3 のピーク位置を示すX線
回折チャート) また、厚さ2mmの上記結晶の透過率を400〜1500
nmの波長域で測定したところ、Tmイオンの吸収波長以
外では80%以上の透過率が得られた。更に、この透明
結晶に規格値波長785nmの半導体レーザ光(実測値79
0nm,出力18mW)を照射したところ、結晶内部で青緑色の
発光が観察された。この発光スペクトルを図5に示し
た。
Example 2 Transparent crystals were obtained in the same manner as in Example 1 except that 28 g of Tm 2 O 3 powder having a purity of 99.9% was used in place of Er 2 O 3 powder. When this crystal was chemically analyzed, the ratios of Tm and Ba were all 1: 2 within the analytical accuracy. Further, when this was crushed and measured by powder X-ray diffraction, no diffraction peaks of TmCl 3 and BaCl 2 were found, as shown in FIG. 2, and therefore, this crystal was not a mixture of these but TmBa 2 Cl 7 It was confirmed to be a single compound having a composition. (In FIG. 2, (a) is an X-ray diffraction chart showing the peak position of the compound of this example, (b) is BaCl 2 , and (c) is ErCl 3 ). 1500
When measured in the wavelength region of nm, a transmittance of 80% or more was obtained except for the absorption wavelength of Tm ions. Furthermore, a semiconductor laser beam with a standard wavelength of 785 nm (measured value 79
Upon irradiation with 0 nm and an output of 18 mW), blue-green luminescence was observed inside the crystal. This emission spectrum is shown in FIG.

【0028】実施例3 実施例1と同様にして表2に示す組成の透明結晶を製造
し、この結晶について表2に示す波長の光を入射し、そ
の発光状態を観察した。これらの結果を実施例1、2の
結果と共に表2に纏めて示した。また各試料について、
その発光スペクトルを図6(実施例3)、図7(実施例
4)、図8(実施例5)、図9(実施例6)、図10
(実施例7)に示した。表2に示すように、本実施例の
試料は何れも赤外光の励起により、緑色ないし青色の発
光を示し、その強度も強い。
Example 3 A transparent crystal having a composition shown in Table 2 was produced in the same manner as in Example 1. Light having a wavelength shown in Table 2 was made incident on this crystal, and the light emitting state thereof was observed. The results are summarized in Table 2 together with the results of Examples 1 and 2. For each sample,
The emission spectra are shown in FIG. 6 (Example 3), FIG. 7 (Example 4), FIG. 8 (Example 5), FIG. 9 (Example 6), and FIG.
This is shown in (Example 7). As shown in Table 2, all of the samples of this example emit green or blue light upon excitation with infrared light, and their intensity is also strong.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例4 無水塩化エルビウム(ErCl3 )と無水塩化バリウム
(BaCl2 )をアルゴン雰囲気のグローボックス中で
混合し、石英アンプルに真空封入したものを電気炉で溶
融し、冷却固化させることにより次表に示す組成の試料
(1) 〜(6) を製造した。この試料に、波長810nm の半導
体レーザ光(約35mW)を照射したところ、すべての試
料について強い緑色発光が目視によって観察された。こ
こで、試料(2) 〜(6) については発光強度の相違は殆ど
なかったが、試料(1) および(6)の発光はやや低かっ
た。
Example 4 Anhydrous erbium chloride (ErCl 3 ) and anhydrous barium chloride (BaCl 2 ) were mixed in a glow box in an argon atmosphere, and a quartz ampoule vacuum-sealed was melted in an electric furnace and solidified by cooling. According to the composition shown in the table below
(1) to (6) were produced. When this sample was irradiated with semiconductor laser light (about 35 mW) having a wavelength of 810 nm, strong green light emission was visually observed for all the samples. Here, the samples (2) to (6) showed almost no difference in the emission intensity, but the samples (1) and (6) emitted slightly less light.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】本発明の発光体は、赤外光を青色から緑
色の波長域の可視光に変換することができ、光変換効率
が高く強い発光を得ることができる。さらに、Baの量
比が2前後の化合物は高い透明性を有するのでレーザ光
の発振素子として用いることができ、赤外レーザ光を励
起源としたコンパクトな実用性の高い半導体可視光レー
ザを実現することができる。また、フォトダイオードの
光変換フィルタや赤外ダイオードにおいて可視光への光
変換素子などの用途が期待できる。さらに赤外線検知や
光アンプなどにも応用することができる。
The light-emitting body of the present invention can convert infrared light into visible light in the wavelength range of blue to green, and has high light conversion efficiency and strong light emission. Furthermore, since the compound having a Ba content ratio of about 2 has high transparency, it can be used as a laser light oscillation element, and a compact semiconductor highly visible laser using an infrared laser light as an excitation source is realized. can do. Further, applications such as a light conversion filter for a photodiode and a light conversion element for visible light in an infrared diode can be expected. It can also be applied to infrared detection and optical amplifiers.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の化合物のX線回折チャート。1 is an X-ray diffraction chart of the compound of Example 1. FIG.

【図2】 実施例2の化合物のX線回折チャート。FIG. 2 is an X-ray diffraction chart of the compound of Example 2.

【図3】 実施例1の化合物の結晶構造を示す立体模式
図。
FIG. 3 is a stereo model showing the crystal structure of the compound of Example 1.

【図4】(a)(b)実施例1の化合物の発光スペクト
ル図。
4 (a) and (b) are emission spectrum diagrams of the compound of Example 1. FIG.

【図5】 実施例2の化合物の発光スペクトル図。5 is an emission spectrum diagram of the compound of Example 2. FIG.

【図6】 実施例3の化合物の発光スペクトル図。6 is an emission spectrum diagram of the compound of Example 3. FIG.

【図7】(a)(b)実施例4の化合物の発光スペクト
ル図。
7 (a) and (b) are emission spectrum diagrams of the compound of Example 4. FIG.

【図8】(a)(b)実施例5の化合物の発光スペクト
ル図。
8 (a) and (b) are emission spectrum diagrams of the compound of Example 5. FIG.

【図9】(a)(b)実施例6の化合物の発光スペクト
ル図。
9 (a) and (b) are emission spectrum diagrams of the compound of Example 6. FIG.

【図10】(a)(b)実施例7の化合物の発光スペク
トル図。
10 (a) and (b) are emission spectrum diagrams of the compound of Example 7. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 道広 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 (72)発明者 花上 康宏 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内 (72)発明者 王 宇湖 埼玉県浦和市針ケ谷4丁目7番25号 株式 会社住田光学ガラス内 (72)発明者 永濱 忍 埼玉県浦和市針ケ谷4丁目7番25号 株式 会社住田光学ガラス内 (72)発明者 沢登 成人 埼玉県浦和市針ケ谷4丁目7番25号 株式 会社住田光学ガラス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michihiro Tanaka 1-297 Kitabukuro-cho, Omiya-shi, Saitama, Central Research Laboratory, Mitsubishi Materials Corporation (72) Yasuhiro Hanaue 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Co., Ltd. Central Research Laboratory (72) Inventor Wu Uhu 4-7-25 Harigaya, Urawa-shi, Saitama Stock Company Sumita Optical Glass Co., Ltd. (72) Shinobu Nagahama 4-7-25 Harigaya, Urawa-shi, Saitama Stock Inside Sumita Optical Glass Co., Ltd. (72) Inventor Adult Sawa Noboru 4-7-25 Harigaya Urawa City, Saitama Prefecture Sumita Optical Glass Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式 R1 x R2 (1-x) BaCl
3+2z ここで、R1 は希土類元素、0.01<x≦1、R2 は
R1 以外の希土類元素、1<z<4で表わされる赤外励
起発光体。
1. A general formula R1 x R2 (1-x) Ba z Cl
3 + 2z Here, R1 is a rare earth element, 0.01 <x≤1, R2 is a rare earth element other than R1, and 1 <z <4.
【請求項2】 上記一般式において、実質的にz=2で
あり、希土類イオンの吸収波長域を除いた400〜15
00nmの波長域における透過率が70%以上である透
明質の請求項1の赤外励起発光体。
2. In the above general formula, substantially z = 2 and 400 to 15 excluding the absorption wavelength range of rare earth ions.
The infrared-excited luminescent material according to claim 1, which is transparent and has a transmittance of 70% or more in a wavelength region of 00 nm.
【請求項3】 上記一般式において、R1がEr,T
m,Ho,NdまたはPrから選択される1種または2
種以上の希土類元素である請求項2の赤外励起発光体。
3. In the above general formula, R1 is Er, T
1 or 2 selected from m, Ho, Nd or Pr
The infrared-excited luminescent material according to claim 2, which is one or more kinds of rare earth elements.
【請求項4】 上記一般式において、R2 がYb,G
d,Y,Lu,CeまたはLaから選択される1種また
は2種以上の希土類元素である請求項2の赤外励起発光
体。
4. In the above general formula, R2 is Yb, G.
The infrared-excited luminescent material according to claim 2, which is one or more rare earth elements selected from d, Y, Lu, Ce or La.
【請求項5】 上記一般式において、R1がEr、Tm
またはHoであり、x=1である請求項2の赤外励起発
光体。
5. In the above general formula, R1 is Er, Tm.
Alternatively, the infrared-excited luminescent material according to claim 2, wherein Ho is satisfied and x = 1.
【請求項6】 上記一般式において、R1がEr、Tm
またはHoであり、R2 がYbまたはGdであって、R
1 とR2 の合計量が1である請求項2の赤外励起発光
体。
6. In the above general formula, R1 is Er, Tm.
Or Ho, R2 is Yb or Gd, and R
The infrared-excited luminescent material according to claim 2, wherein the total amount of 1 and R 2 is 1.
【請求項7】 上記一般式において、R1がErおよび
Tmであり、R2 がYbまたはGdであって、R1 とR
2 の合計量が1である請求項2の赤外励起発光体。
7. In the above general formula, R1 is Er and Tm, R2 is Yb or Gd, and R1 and Rm
The infrared-excited luminescent material according to claim 2, wherein the total amount of 2 is 1.
JP18792594A 1993-08-06 1994-07-19 Ir light-exciting emitter Pending JPH0797572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18792594A JPH0797572A (en) 1993-08-06 1994-07-19 Ir light-exciting emitter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-214935 1993-08-06
JP21493593 1993-08-06
JP18792594A JPH0797572A (en) 1993-08-06 1994-07-19 Ir light-exciting emitter

Publications (1)

Publication Number Publication Date
JPH0797572A true JPH0797572A (en) 1995-04-11

Family

ID=26504643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18792594A Pending JPH0797572A (en) 1993-08-06 1994-07-19 Ir light-exciting emitter

Country Status (1)

Country Link
JP (1) JPH0797572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241244A1 (en) 2008-06-04 2010-10-20 Fujifilm Corporation Illumination device for use in endoscope
US8790253B2 (en) 2008-06-13 2014-07-29 Fujifilm Corporation Light source device, imaging apparatus and endoscope apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241244A1 (en) 2008-06-04 2010-10-20 Fujifilm Corporation Illumination device for use in endoscope
US8337400B2 (en) 2008-06-04 2012-12-25 Fujifilm Corporation Illumination device for use in endoscope
US8506478B2 (en) 2008-06-04 2013-08-13 Fujifilm Corporation Illumination device for use in endoscope
US8790253B2 (en) 2008-06-13 2014-07-29 Fujifilm Corporation Light source device, imaging apparatus and endoscope apparatus

Similar Documents

Publication Publication Date Title
Qiu et al. Photostimulated luminescence in Eu 2+-doped fluoroaluminate glasses
Auzel et al. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up‐conversion
KR101538194B1 (en) Scintillator for neutron detection and neutron detector
US6015765A (en) Rare earth soluble telluride glasses
Ribeiro et al. Optical spectroscopy of Er 3+ and Yb 3+ co-doped fluoroindate glasses
US5391320A (en) Terbium activated silicate luminescent glasses
JP5652904B2 (en) Oxide crystal for neutron scintillator and neutron scintillator using the same
US5439616A (en) Infrared light-excited light-emitting substance
Krol et al. Luminescence and absorption of Tb3+ in mo· Al2O3· B2O3· Tb2O3 glasses
JPH0797572A (en) Ir light-exciting emitter
Arshad et al. Spectroscopic and photoluminescence properties of praseodymium doped potassium aluminum phosphate (P2O5-K2O-Al2O3) glasses for optoelectronics applications.
Anjaiah et al. Concentration dependent luminescence and energy transfer properties of samarium doped LLSZFB glasses
US6623661B2 (en) Method for producing photostimulable phosphor
JP2002274882A (en) Transition metal-containing chalcogenide glass illuminant
CN114920460B (en) Diphase quantum dot microcrystalline glass and preparation method and application thereof
Yuan et al. Distinctive Ce 3+ luminescence from single-crystalline and glassy Ce: LaB 3 O 6
JP3396264B2 (en) Infrared blue light wavelength up-converting phosphor
JP3366365B2 (en) Infrared-visible wavelength up-conversion material
JP3529162B2 (en) Infrared visible wavelength up-conversion material
RU2190704C2 (en) Monocrystalline laser material
Kozhevnikova Preparation, Absorption Spectra, and Luminescence Properties of Er2O3-and Yb2O3-Doped Oxyfluoride Glasses in the SrF2–SiO2–B2O3–Bi2O3–ZnO–Y2O3 System
Kozhevnikova Preparation, Absorption Spectra, and Luminescence Properties of Er2O3-and Yb2O3-Doped Oxyfluoride Glasses in the CaF2–SiO2–B2O3–Bi2O3–TiO2–ZnO–Y2O3 System
JPH04349141A (en) Wavelength changing glass material
JPH08217491A (en) Wavelength-changing glass material
KR0154423B1 (en) A laser glass

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030506