JPH0794863A - Method for flattening ceramic substrate surface - Google Patents

Method for flattening ceramic substrate surface

Info

Publication number
JPH0794863A
JPH0794863A JP25529093A JP25529093A JPH0794863A JP H0794863 A JPH0794863 A JP H0794863A JP 25529093 A JP25529093 A JP 25529093A JP 25529093 A JP25529093 A JP 25529093A JP H0794863 A JPH0794863 A JP H0794863A
Authority
JP
Japan
Prior art keywords
ceramic substrate
thin film
substrate
aluminum nitride
flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25529093A
Other languages
Japanese (ja)
Inventor
Mototoshi Nishizawa
元亨 西沢
Shunichi Fukuyama
俊一 福山
Mineharu Tsukada
峰春 塚田
Kaoru Hashimoto
薫 橋本
Nobuo Kamehara
伸男 亀原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25529093A priority Critical patent/JPH0794863A/en
Publication of JPH0794863A publication Critical patent/JPH0794863A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5077Geopolymer cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00336Materials with a smooth surface, e.g. obtained by using glass-surfaced moulds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To form a thin rigid flat layer, and obtain a flat ceramic substrate having high thermal conductivity, by forming an inorganic polymer film on the surface of a ceramic substrate. CONSTITUTION:On the surface of an aluminum nitride substrate whose surface is polished, inorganic polymer material expressed by formula K (R: 1-3C alkyl group, phenyl group) is dripped and spin-coated at 3000rpm for 15 seconds. By baking the substrate in atmosphere at 700 deg.C for l hour after drying in atmosphere at 150 deg.C for 15 minutes, a thin film of about 5000Angstrom in thickness which has composition expressed by formula I is formed. The surface of the aluminum nitride substrate is flattened. Thereby a conductor film, an insulating film, etc., which constitute multilayered wiring structure can be formed with excellent continuity, and the ceramic substrate can be used in a wide range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子を実装する
ためのセラミック基板の表面を平坦化する方法に関す
る。一般にセラミック基板は、樹脂基板と比較して熱伝
導率が高く、熱膨張係数がシリコンに近いことから、半
導体素子を実装する際の基板として優れている。そし
て、半導体素子を実装するための基板の表面には、金属
薄膜等による配線を生成する必要があるため、表面が平
坦であることが望まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of flattening the surface of a ceramic substrate for mounting a semiconductor device. Generally, a ceramic substrate has a higher thermal conductivity than a resin substrate and has a thermal expansion coefficient close to that of silicon, and thus is excellent as a substrate for mounting a semiconductor element. Since it is necessary to form a wiring by a metal thin film or the like on the surface of the substrate on which the semiconductor element is mounted, it is desired that the surface is flat.

【0002】[0002]

【従来の技術】比較的焼結が容易なアルミナのような酸
化系のセラミック基板等においては、焼結したままの表
面が平坦な材料もあるが、一般には、その用途に応じて
適宜セラミック基板の表面にガラス層を形成して平坦化
しているのが実情である。焼結しにくい非酸化物系のセ
ラミック基板等においては、焼結に際して助剤を添加す
る必要があり、この助剤が焼結後の粒子の界面に析出す
るため表面の焼結粒子が脱離しやすい。このように粒子
が脱離すると、その表面が平坦にならないため、基板の
表面に平坦化処理を加えることが不可欠である。
2. Description of the Related Art There are some ceramics such as alumina which are relatively easy to sinter and which have a flat surface as they are sintered. Generally, however, the ceramic substrate is appropriately selected depending on its application. The reality is that a glass layer is formed on the surface of the to flatten it. For non-oxide ceramic substrates that are difficult to sinter, it is necessary to add an auxiliary agent during sintering, and this auxiliary agent precipitates at the interface of the particles after sintering, so the sintered particles on the surface are detached. Cheap. When the particles are desorbed in this way, the surface of the particles does not become flat, so it is essential to apply a flattening treatment to the surface of the substrate.

【0003】また、非酸化物系のセラミック基板の代表
である窒化アルミニウム基板においては、共有結合性が
強いため、通常のガラスとの接着性が悪く、特殊な組成
の平坦化薄膜を用いることが必要である。通常のガラス
によって平坦化層を強固に形成しようとすると、この平
坦化層を厚くする必要があり、そのため、セラミック基
板全体の熱伝導率が低下し、その結果、セラミック基板
を通しての放熱性が悪化する。
In addition, since an aluminum nitride substrate, which is a typical non-oxide ceramic substrate, has a strong covalent bond, it has poor adhesion to ordinary glass, and a flattening thin film having a special composition should be used. is necessary. In order to firmly form the flattening layer with ordinary glass, it is necessary to thicken the flattening layer, which lowers the thermal conductivity of the entire ceramic substrate, resulting in poor heat dissipation through the ceramic substrate. To do.

【0004】[0004]

【発明が解決しようとする課題】本発明は、セラミック
基板の表面上に比較的簡便な方法によって、薄いが強固
な平坦化層を形成し、熱伝導率が高く平坦なセラミック
基板を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a flat ceramic substrate having a high thermal conductivity by forming a thin but strong flattening layer on the surface of the ceramic substrate by a relatively simple method. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明にかかるセラミッ
ク基板の表面を平坦化する方法においては、セラミック
基板の表面に下記の組成Xの無機高分子薄膜を形成する
ことによって、その表面を平坦化する工程を採用した。
In the method of flattening the surface of a ceramic substrate according to the present invention, an inorganic polymer thin film having the following composition X is formed on the surface of the ceramic substrate to flatten the surface. The process of doing is adopted.

【化5】 [Chemical 5]

【0006】この場合、セラミック基板の上に下記の組
成X’の高分子材料を滴下してセラミック基板の上にス
ピンコートした後、熱処理することによって無機高分子
薄膜を形成することができる。
In this case, an inorganic polymer thin film can be formed by dropping a polymer material having the following composition X'on a ceramic substrate, spin-coating on the ceramic substrate, and then heat treating.

【化6】 [Chemical 6]

【0007】本発明にかかるセラミック基板の表面を平
坦化する方法においては、セラミック基板の表面に下記
の組成Yの有機高分子薄膜を形成することによって、そ
の表面を平坦化する工程を採用した。
In the method of flattening the surface of the ceramic substrate according to the present invention, a step of flattening the surface by forming an organic polymer thin film having the following composition Y on the surface of the ceramic substrate is adopted.

【化7】 [Chemical 7]

【0008】この場合、セラミック基板の上に下記の組
成Y’の高分子材料を滴下してセラミック基板の上にス
ピンコートした後、熱処理することによって有機高分子
薄膜を形成することができる。
In this case, an organic polymer thin film can be formed by dropping a polymer material having the following composition Y'on a ceramic substrate, spin-coating on the ceramic substrate, and then heat treating.

【化8】 [Chemical 8]

【0009】これらの場合、セラミック基板の材料とし
て、熱伝導率が高い窒化アルミニウムを用いて、基板全
体の熱伝導率を高くすることができる。
In these cases, aluminum nitride having a high thermal conductivity can be used as the material of the ceramic substrate to increase the thermal conductivity of the entire substrate.

【0010】[0010]

【作用】本発明のように、表面を研磨処理した後のセラ
ミック基板の表面に前記の組成X’を有する無機高分子
材料をスピンコートし、熱処理することによって前記組
成Xを有する無機高分子膜を形成し、又は、表面を研磨
処理した後のセラミック基板の表面に前記の組成Y’を
有する有機高分子材料をスピンコートし、熱処理するこ
とによって前記組成Yを有する無機高分子膜を形成する
ことによって、セラミック基板全体の放熱性を劣化させ
ることなく、表面を平坦化することができるようになっ
た。
According to the present invention, the surface of the ceramic substrate after the surface is polished is spin-coated with the inorganic polymer material having the above composition X'and heat-treated to form an inorganic polymer film having the above composition X. Or an organic polymer material having the above composition Y ′ is spin-coated on the surface of the ceramic substrate after the surface is polished and heat-treated to form an inorganic polymer film having the composition Y. As a result, the surface can be flattened without degrading the heat dissipation of the entire ceramic substrate.

【0011】[0011]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0012】(第1実施例)表面を研磨した市販の窒化
アルミニウム基板の表面に前記の組成X’を有する無機
高分子材料を滴下し、3000rpmで15秒間スピン
コートする。これを大気中で、150℃で15分間乾燥
した後、大気中で700℃で1時間焼成して、厚さ50
00Å程度の前記の組成Xを有する薄膜を形成して窒化
アルミニウム基板の表面を平坦化する。
(First Example) An inorganic polymer material having the above composition X'is dropped onto the surface of a commercially available aluminum nitride substrate whose surface has been polished, and spin coating is performed at 3000 rpm for 15 seconds. This is dried in air at 150 ° C for 15 minutes, and then fired in air at 700 ° C for 1 hour to give a thickness of 50
A thin film having the above composition X of about 00Å is formed to flatten the surface of the aluminum nitride substrate.

【0013】図1は、第1実施例の無機高分子薄膜を形
成した窒化アルミニウム基板の表面の断面図であり、
(A)は結晶構造の走査型電子顕微鏡(SEM)写真、
(B)はその説明図である。この図面において、aは窒
化アルミニウム基板の表面、bは無機高分子薄膜の表
面、Xは無機高分子薄膜である。このSEM写真(A)
から、窒化アルミニウム基板の表面が平坦化されている
ことがわかるが、更に検討すると、説明図(B)に曲線
aで示されるようにかなりの凹凸や組織の破砕がある窒
化アルミニウム基板の表面上に無機高分子薄膜Xを形成
することによって、その表面をbで示されるように平坦
化することができることがわかる。
FIG. 1 is a sectional view of the surface of an aluminum nitride substrate on which an inorganic polymer thin film of the first embodiment is formed,
(A) is a scanning electron microscope (SEM) photograph of the crystal structure,
(B) is the explanatory view. In this drawing, a is the surface of the aluminum nitride substrate, b is the surface of the inorganic polymer thin film, and X is the inorganic polymer thin film. This SEM photograph (A)
It can be seen from the above that the surface of the aluminum nitride substrate is flattened. However, upon further study, on the surface of the aluminum nitride substrate where there is considerable unevenness and crushing of the structure as shown by the curve a in the explanatory diagram (B). It is understood that the surface can be flattened by forming the inorganic polymer thin film X on the surface as shown by b.

【0014】(第2実施例)表面を研磨した市販の窒化
アルミニウム基板の表面に前記の組成Y’を有する有機
高分子材料を滴下し、3000rpmで15秒間スピン
コートする。これを大気中で、150℃で15分間乾燥
した後、窒素中で450℃で30分間焼成して、前記の
組成Yを有する薄膜を形成して窒化アルミニウム基板の
表面を平坦化する。
(Second Embodiment) An organic polymer material having the above composition Y'is dropped on the surface of a commercially available aluminum nitride substrate whose surface has been polished, and spin-coated at 3000 rpm for 15 seconds. This is dried in air at 150 ° C. for 15 minutes, and then baked in nitrogen at 450 ° C. for 30 minutes to form a thin film having the above composition Y to flatten the surface of the aluminum nitride substrate.

【0015】図2は、第2実施例の有機高分子薄膜を形
成した窒化アルミニウム基板の表面の断面図であり、
(A)は結晶構造の走査型電子顕微鏡(SEM)写真、
(B)はその説明図である。この図面において、aは窒
化アルミニウム基板の表面、bは無機高分子薄膜の表
面、Yは有機高分子薄膜である。このSEM写真(A)
から、窒化アルミニウム基板の表面が平坦化されている
ことがわかるが、更に検討すると、説明図(B)に曲線
aで示されるように、かなりの凹凸や組織の破砕がある
窒化アルミニウム基板の表面上に有機高分子薄膜Yを形
成することによって、その表面を曲線bで示されるよう
に平坦化することができることがわかる。
FIG. 2 is a sectional view of the surface of the aluminum nitride substrate on which the organic polymer thin film of the second embodiment is formed,
(A) is a scanning electron microscope (SEM) photograph of the crystal structure,
(B) is the explanatory view. In this drawing, a is the surface of the aluminum nitride substrate, b is the surface of the inorganic polymer thin film, and Y is the organic polymer thin film. This SEM photograph (A)
It can be seen from the above that the surface of the aluminum nitride substrate is flattened. However, upon further study, the surface of the aluminum nitride substrate has considerable unevenness and crushing of the structure, as indicated by the curve a in the explanatory view (B). It can be seen that by forming the organic polymer thin film Y on the surface, the surface can be flattened as shown by the curve b.

【0016】上記の各実施例においては、熱伝導率が高
い窒化アルミニウム基板を用いているが、本発明が、窒
化アルミニウム基板に限られずセラミック基板一般に適
用できることはいうまでもない。また、前記組成Xの無
機高分子薄膜、前記組成Yの有機高分子薄膜の厚さは、
要求される平坦性と熱伝導率を勘案して適宜選択するこ
とができる。
In each of the above embodiments, an aluminum nitride substrate having a high thermal conductivity is used, but it goes without saying that the present invention is not limited to an aluminum nitride substrate and can be applied to a ceramic substrate in general. The thickness of the inorganic polymer thin film having the composition X and the thickness of the organic polymer thin film having the composition Y are
It can be appropriately selected in consideration of the required flatness and thermal conductivity.

【0017】[0017]

【発明の効果】以上説明したように、本発明によると、
全体の熱伝導率を高く保った状態で、前記組成の有機高
分子薄膜あるいは無機高分子薄膜によってセラミック基
板の表面を平坦化することができ、この平坦な表面上
に、多層配線構造を構成する導電体膜、絶縁体膜等を連
続性よく形成することが可能になり、広い範囲のセラミ
ック基板を利用することができ、集積回路技術等の分野
において寄与するところが大きい。
As described above, according to the present invention,
The surface of the ceramic substrate can be flattened by the organic polymer thin film or the inorganic polymer thin film having the above composition while keeping the overall thermal conductivity high, and the multilayer wiring structure is formed on this flat surface. It is possible to form a conductor film, an insulator film, and the like with good continuity, a wide range of ceramic substrates can be used, and this has a great contribution in the field of integrated circuit technology and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の無機高分子薄膜を形成した窒化ア
ルミニウム基板の表面の断面図であり、(A)は結晶構
造の走査型電子顕微鏡(SEM)写真、(B)はその説
明図である。
FIG. 1 is a cross-sectional view of a surface of an aluminum nitride substrate on which an inorganic polymer thin film of Example 1 is formed, (A) is a scanning electron microscope (SEM) photograph of a crystal structure, and (B) is an explanatory diagram thereof. Is.

【図2】第2実施例の有機高分子薄膜を形成した窒化ア
ルミニウム基板の表面の断面図であり、(A)は結晶構
造の走査型電子顕微鏡(SEM)写真、(B)はその説
明図である。
FIG. 2 is a cross-sectional view of the surface of an aluminum nitride substrate on which an organic polymer thin film of Example 2 is formed, (A) is a scanning electron microscope (SEM) photograph of a crystal structure, and (B) is an explanatory diagram thereof. Is.

【符号の説明】[Explanation of symbols]

a 窒化アルミニウム基板の表面 b 無機高分子薄膜の表面 X 無機高分子薄膜 Y 有機高分子薄膜 a Surface of aluminum nitride substrate b Surface of inorganic polymer thin film X Inorganic polymer thin film Y Organic polymer thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 薫 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 亀原 伸男 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kaoru Hashimoto Kaoru Hashimoto 1015 Kamiodanaka, Nakahara-ku, Kanagawa Prefecture, Fujitsu Limited Fujitsu (72) Inventor Nobuo Kamehara 1015, Kamedotaka, Nakahara-ku, Kawasaki, Kanagawa Prefecture Fujitsu Limited

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基板の表面に下記の組成Xの
無機高分子薄膜を形成することによって、該セラミック
基板の表面を平坦化することを特徴とするセラミック基
板の表面を平坦化する方法。 【化1】
1. A method for flattening the surface of a ceramic substrate, which comprises flattening the surface of the ceramic substrate by forming an inorganic polymer thin film having the following composition X on the surface of the ceramic substrate. [Chemical 1]
【請求項2】 無機高分子薄膜を形成する際、セラミッ
ク基板の上に下記の組成X’の高分子材料を滴下して該
セラミック基板の上にスピンコートした後、熱処理する
ことを特徴とする請求項1に記載されたセラミック基板
の表面を平坦化する方法。 【化2】
2. When forming an inorganic polymer thin film, a polymer material having the following composition X ′ is dropped onto a ceramic substrate, spin-coated on the ceramic substrate, and then heat-treated. A method of planarizing the surface of the ceramic substrate according to claim 1. [Chemical 2]
【請求項3】 セラミック基板の表面に下記の組成Yの
有機高分子薄膜を形成することによって、該セラミック
基板の表面を平坦化することを特徴とするセラミック基
板の表面を平坦化する方法。 【化3】
3. A method for flattening the surface of a ceramic substrate, which comprises flattening the surface of the ceramic substrate by forming an organic polymer thin film having the following composition Y on the surface of the ceramic substrate. [Chemical 3]
【請求項4】 有機高分子薄膜を形成する際、セラミッ
ク基板の上に下記の組成Y’の高分子材料を滴下して該
セラミック基板の上にスピンコートした後、熱処理する
ことを特徴とする請求項1に記載されたセラミック基板
の表面を平坦化する方法。 【化4】
4. When forming an organic polymer thin film, a polymer material having the following composition Y ′ is dropped on a ceramic substrate, spin-coated on the ceramic substrate, and then heat-treated. A method of planarizing the surface of the ceramic substrate according to claim 1. [Chemical 4]
【請求項5】 セラミック基板の材料として、窒化アル
ミニウムを用いることを特徴とする請求項1から請求項
4までのいずれか1項に記載されたセラミック基板の表
面を平坦化する方法。
5. The method for flattening the surface of a ceramic substrate according to claim 1, wherein aluminum nitride is used as a material for the ceramic substrate.
JP25529093A 1993-09-20 1993-09-20 Method for flattening ceramic substrate surface Withdrawn JPH0794863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25529093A JPH0794863A (en) 1993-09-20 1993-09-20 Method for flattening ceramic substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25529093A JPH0794863A (en) 1993-09-20 1993-09-20 Method for flattening ceramic substrate surface

Publications (1)

Publication Number Publication Date
JPH0794863A true JPH0794863A (en) 1995-04-07

Family

ID=17276714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25529093A Withdrawn JPH0794863A (en) 1993-09-20 1993-09-20 Method for flattening ceramic substrate surface

Country Status (1)

Country Link
JP (1) JPH0794863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193790A2 (en) * 2000-09-29 2002-04-03 Robert Bosch Gmbh Substrate with a smoothed surface and method of manufacturing thereof
JP5996435B2 (en) * 2010-11-22 2016-09-21 株式会社東芝 Semiconductor module and method for manufacturing semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193790A2 (en) * 2000-09-29 2002-04-03 Robert Bosch Gmbh Substrate with a smoothed surface and method of manufacturing thereof
EP1193790A3 (en) * 2000-09-29 2003-05-14 Robert Bosch Gmbh Substrate with a smoothed surface and method of manufacturing thereof
JP5996435B2 (en) * 2010-11-22 2016-09-21 株式会社東芝 Semiconductor module and method for manufacturing semiconductor module

Similar Documents

Publication Publication Date Title
JP2589950B2 (en) Metal via formation method
EP0517475A2 (en) Process for coating a substrate with a silica precursor
EP0498604A1 (en) Semiconductor device having a teos based spin-on-glass and process for making the same
WO2016052597A1 (en) Bonded substrate and method for manufacturing same, and support substrate for bonding
US5070393A (en) Aluminum nitride substrate for formation of thin-film conductor layer and semiconductor device using the substrate
JP2513995B2 (en) Electrostatic check
JPH0794863A (en) Method for flattening ceramic substrate surface
JP3431454B2 (en) Method for manufacturing semiconductor device
EP0807318B1 (en) Process for producing a glass-coated article and article produced thereby
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JP2024521248A (en) Method for manufacturing multi-layer structures
JP3236882B2 (en) Aluminum nitride substrate and method of manufacturing the same
JP3370532B2 (en) Electrostatic chuck
JPH08306681A (en) Formation of flattened coat insulating film
JP4398576B2 (en) Resistor board
JP3363614B2 (en) Method for manufacturing semiconductor device
JPS6046036A (en) Manufacture of semiconductor device
JPH10144672A (en) Method for forming insulating film of semiconductor device, and material for insulating film
JPH06125152A (en) Aluminum nitride circuit board and manufacture thereof
JP2002173361A (en) Ceramic board, thin film printed circuit board and method of manufacturing ceramic board
JP2883333B2 (en) Method for manufacturing semiconductor device
JPH04359056A (en) Resin composition and method for forming layer insulating film
TW457586B (en) Forming a protective film in a semiconductor device
JPH0585868A (en) Sputtering film-bearing member and its production
JPS6057699A (en) Method of flatly smoothing substrate surface roughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128