JPH0793726A - Production of magneto-resistance effect type head - Google Patents

Production of magneto-resistance effect type head

Info

Publication number
JPH0793726A
JPH0793726A JP23968193A JP23968193A JPH0793726A JP H0793726 A JPH0793726 A JP H0793726A JP 23968193 A JP23968193 A JP 23968193A JP 23968193 A JP23968193 A JP 23968193A JP H0793726 A JPH0793726 A JP H0793726A
Authority
JP
Japan
Prior art keywords
layer
magnetoresistive
effect element
lower shield
lead layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23968193A
Other languages
Japanese (ja)
Other versions
JP3344028B2 (en
Inventor
Toshikuni Kai
敏訓 甲斐
Kazufumi Hamabuchi
一文 濱渕
Hidetoshi Matsumoto
秀俊 松本
Hideki Yoshinaka
秀樹 吉中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23968193A priority Critical patent/JP3344028B2/en
Publication of JPH0793726A publication Critical patent/JPH0793726A/en
Application granted granted Critical
Publication of JP3344028B2 publication Critical patent/JP3344028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To produce a head having high reliability and capable of ensuring a stable reproducing track width under low resistance. CONSTITUTION:The periphery of a lower shield layer 8 is made flat and a magneto-resistance effect element part 10 and a lead layer 11 are formed. Since a photoresist pattern 19 used for forming the lead layer 11 by a lift-off method can easily be thinned, a range in which the lead layer 11 thins gradually can be narrowed and film residue can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録再生装置等に用
いられる磁気抵抗効果型ヘッドの製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetoresistive head used in a magnetic recording / reproducing apparatus or the like.

【0002】[0002]

【従来の技術】従来ディスク装置の高性能化に伴い、そ
れに用いる薄膜磁気ヘッドにも種々の高性能化が要求さ
れている。その一環として、磁気抵抗効果型ヘッドの利
用がある。磁気抵抗効果型ヘッドは出力が周速に依存し
ないため、小径ディスク装置の容量増加に多大な効果を
与えるが、実用上はまだ多くの技術的課題を有してい
る。特に磁気抵抗効果型ヘッドの利点が大きく発揮され
る狭トラックヘッドに関して、磁気抵抗効果素子部から
電極を取り出すリード層の形状及びその製造方法におい
て大きな課題がある。
2. Description of the Related Art As the performance of conventional disk devices has increased, various performance improvements have been required for thin film magnetic heads used therein. One of them is the use of a magnetoresistive head. Since the output of the magnetoresistive head does not depend on the peripheral speed, it has a great effect on increasing the capacity of the small-diameter disk device, but it still has many technical problems in practice. In particular, regarding the narrow track head in which the advantages of the magnetoresistive head are greatly exerted, there are major problems in the shape of the lead layer for taking out the electrode from the magnetoresistive element portion and the manufacturing method thereof.

【0003】以下、従来の磁気抵抗効果型ヘッドの製造
方法を用いて製造したハードディスクドライブ用の薄膜
磁気ヘッドの構成を、図4、図5を参照して説明する。
図4は従来の磁気抵抗効果型ヘッドの製造方法を用いて
製造した薄膜磁気ヘッドを示す斜視図、図5は図4のA
部の部分拡大断面図である。磁気抵抗効果型ヘッドは再
生専用のヘッドであり、通常の記録動作用のインダクテ
ィブヘッドと一体化された形で使用されるので、以下記
録ヘッドも含めて説明する。薄膜磁気ヘッドはセラミッ
ク基板上に薄膜形成技術を用いて素子を形成し、図4の
ような磁気ディスク装置用のスライダー1とした状態で
使用し、薄膜磁気ヘッドを装置に搭載する時は浮上レー
ル2に対して裏面側に平行にジンバルを接着して磁気ヘ
ッドアセンブリ状態として用いる。この浮上レール2は
用途に応じて種々の形態をとり、機械加工やイオンビー
ムエッチング等により2〜3本形成される。図4は機械
加工で3本の浮上レール2を形成した場合を示してい
る。薄膜磁気ヘッドは図4のスライダー1の手前側、動
作時には媒体の回転方向に対して後端面に形成されてお
り、図4中、3が上部絶縁層、4は上部磁性層、5が後
工程でワイヤーをボンディングするためのパッド部であ
る。
The structure of a thin film magnetic head for a hard disk drive manufactured by the conventional method of manufacturing a magnetoresistive head will be described below with reference to FIGS. 4 and 5.
FIG. 4 is a perspective view showing a thin film magnetic head manufactured by using a conventional method of manufacturing a magnetoresistive head, and FIG.
It is a partial expanded sectional view of a part. The magnetoresistive head is a read-only head and is used in a form integrated with an inductive head for normal recording operation. Therefore, the recording head will be described below. The thin film magnetic head is used by forming an element on the ceramic substrate by using a thin film forming technique, and is used as a slider 1 for a magnetic disk device as shown in FIG. 4. When the thin film magnetic head is mounted on the device, a flying rail is used. A gimbal is adhered to 2 in parallel with the back surface side and used as a magnetic head assembly state. The levitation rails 2 have various forms depending on the application, and two or three levitation rails 2 are formed by machining or ion beam etching. FIG. 4 shows a case where three levitation rails 2 are formed by machining. The thin film magnetic head is formed on the front side of the slider 1 in FIG. 4 and on the rear end face in the rotation direction of the medium during operation. In FIG. 4, 3 is an upper insulating layer, 4 is an upper magnetic layer, and 5 is a post-process. It is a pad portion for bonding a wire.

【0004】ここでパッド部5が各々4ヶ所ずつあるの
は記録部及び再生部に少なくとも2ヶ所ずつの端子が必
要であるからである。
The reason why there are four pad portions 5 each is that at least two terminals are required for each of the recording portion and the reproducing portion.

【0005】次に図5を用いて、従来の磁気抵抗効果型
ヘッドの製造方法を説明する。まずスパッタ法により形
成したアルミナ等の絶縁物7で被覆されたセラミックか
らなる基板6上に、電気メッキ法あるいはスパッタ法に
よりパーマロイ、センダストあるいは鉄系の合金材料に
より下部シールド層8を形成し、次にスパッタ法により
アルミナ等の絶縁材料からなる下部シールドギャップ層
9を形成し、さらにその上に磁気抵抗効果素子部10を
順次積層する。この磁気抵抗効果素子部10は図5中単
層で示しているが、磁気抵抗効果素子部10を駆動する
際のバイアス方式によって、2〜4層構成となることも
ある。
Next, a conventional method for manufacturing a magnetoresistive head will be described with reference to FIG. First, a lower shield layer 8 is formed of permalloy, sendust, or an iron-based alloy material by electroplating or sputtering on a substrate 6 made of ceramics coated with an insulator 7 such as alumina formed by sputtering. A lower shield gap layer 9 made of an insulating material such as alumina is formed by sputtering, and a magnetoresistive effect element portion 10 is sequentially laminated on the lower shield gap layer 9. Although the magnetoresistive effect element section 10 is shown as a single layer in FIG. 5, it may have a two- to four-layered structure depending on the bias system used for driving the magnetoresistive effect element section 10.

【0006】次に金等の抵抗材料及び金とその上下各層
の密着力を強化するためのクロム、チタン、タンタル等
の密着強化層を用いてリード層11を形成し、アルミナ
等の絶縁材料により上部シールドギャップ層12を形成
し、電気メッキ法あるいはスパッタ法で形成したパーマ
ロイや鉄系合金を用いて上部シールド層13を順次積層
して再生ヘッド部の作成が終了する。
Next, a lead layer 11 is formed by using a resistance material such as gold and an adhesion enhancing layer such as chromium, titanium, tantalum or the like for enhancing the adhesion between gold and the layers above and below it, and using an insulating material such as alumina. The upper shield gap layer 12 is formed, and the upper shield layer 13 is sequentially laminated by using a permalloy or an iron-based alloy formed by an electroplating method or a sputtering method, thereby completing the reproduction head portion.

【0007】次に記録ヘッド部について、まず上部シー
ルド層13上に記録部の下部磁性層14を電気メッキ法
等により形成する。なお上部シールド層13と下部磁性
層14の磁気的結合を防止するため、この2層の間にア
ルミナ等の絶縁材料からなる分離層を入れる場合もあ
る。次に記録部のギャップ層15を積層した後、図示し
ていないノボラック系あるいはポリイミド系等の樹脂か
らなる下部絶縁層、電気メッキ法等により形成した下部
コイル層、下部絶縁像と同様に上部絶縁層を順次積層
し、電気メッキ法等により上部磁性層16を積層し、最
後にアルミナ等の保護層17で保護した形とする。
Next, in the recording head portion, first, the lower magnetic layer 14 of the recording portion is formed on the upper shield layer 13 by electroplating or the like. In order to prevent magnetic coupling between the upper shield layer 13 and the lower magnetic layer 14, a separation layer made of an insulating material such as alumina may be inserted between the two layers. Next, after laminating the gap layer 15 of the recording portion, a lower insulating layer made of a resin such as a novolac resin or a polyimide resin (not shown), a lower coil layer formed by an electroplating method or the like, an upper insulating film similar to the lower insulating image. The layers are sequentially laminated, the upper magnetic layer 16 is laminated by an electroplating method or the like, and finally, the upper magnetic layer 16 is protected by a protective layer 17 such as alumina.

【0008】図6は図5の磁気抵抗効果素子部を模式的
に示した部分拡大平面図、図7は図6の磁気抵抗効果素
子部のB−B断面図である。磁気抵抗効果素子部10は
磁束応答型再生ヘッドであるため、媒体の速度に依存し
ない再生出力が得られるが、その出力は磁気抵抗効果素
子部10の高さHが低いほど、薄厚tが薄いほど大きく
なる。通常リード層11の幅L及び薄厚Tは、磁気抵抗
効果素子部10の高さ(幅)H及び薄厚tより大きく、
Lが数十μm、Tが1000〜2000Åに対してHが
1〜3μm、tがバイアス層を含めて500〜1000
Åである。磁気抵抗効果型ヘッドのうち、構造上最も電
気抵抗が大きい領域は磁気抵抗効果素子部10である。
FIG. 6 is a partially enlarged plan view schematically showing the magnetoresistive effect element portion of FIG. 5, and FIG. 7 is a BB sectional view of the magnetoresistive effect element portion of FIG. Since the magnetoresistive effect element section 10 is a magnetic flux response type reproducing head, a reproduction output independent of the speed of the medium can be obtained. However, the lower the height H of the magnetoresistive effect element section 10, the thinner the output t. The bigger it gets. Usually, the width L and the thin thickness T of the lead layer 11 are larger than the height (width) H and the thin thickness t of the magnetoresistive effect element portion 10,
L is several tens of μm, T is 1000 to 2000 Å, H is 1 to 3 μm, and t is 500 to 1000 including the bias layer.
It is Å. The region of the magnetoresistive head having the highest electric resistance in the structure is the magnetoresistive element section 10.

【0009】次に媒体対向面から見た磁気抵抗効果素子
部10とリード層11の接合部を図7を参照しながら説
明する。さて、リード層11の端面の形状は理想的には
磁気抵抗効果素子部10に対して直角であることがよい
が、形成プロセスにおいて下層に位置する磁性抵抗効果
素子部10にダメージを与えたくないとか、磁気抵抗効
果素子部10と上部シールド層13との間隔を狭くした
い等の理由から、リード層11は通常、リフトオフ法を
用いて作成される。リフトオフ法はフォトレジスト等に
よりパターンを形成した後、スパッタや蒸着法により膜
を付着し、フォトレジスト等のパターン上に付着した膜
をフォトレジスト等と同時に除去して必要とする材料の
パターンを得る方法であるため以下の性質がある。即
ち、図8に示すように、スパッタや蒸着法によりある直
立したパターン18の近傍に膜をつけようとする場合、
パターン18の近傍への粒子の付着確率が減少するた
め、膜厚はパターン18に近づくにつれて徐々に減少す
る。この傾向はパターンの高さUが高い程顕著となり、
一定膜厚になるまでの幅Sも大きくなっていく。上記の
理由から、図7に示したようにリード層11の端面の断
面形状は、磁気抵抗効果素子部10に対して鋭角であっ
て、磁気抵抗効果素子部10との接合点Cから一定膜厚
になる位置までの幅Sの間徐々に膜厚が変化することと
なる。ここで、磁気抵抗効果素子部10の再生トラック
幅は、リード層11と磁気抵抗効果素子部10の接合点
Cとの間の距離T.W.で規定されるが、このような形
状のリード層11の端面ではリード層11と磁気抵抗効
果素子部10が接合していても、磁気抵抗効果素子部1
0の抵抗に比べてリード層11の抵抗があまり小さくな
い領域が幅Sの間に存在する。そのような領域の磁気抵
抗効果素子部10は外部磁界による抵抗変化を、リード
層11の端子間の電圧の変化としてしまうため、実効的
には再生トラック幅が広くなってしまう。この際、磁気
抵抗変化は、リード層11と磁気抵抗効果素子部10の
接合部において、リード層11が厚くなる方向でリード
端子間の電圧変化に寄与する抵抗変化が徐々に減少する
ため、再生トラック幅の終点がぼやけてしまい、磁気抵
抗効果型ヘッド駆動時のオフトラック特性が劣化すると
いう問題点を生じる。また、徐々にリード層11の膜厚
が薄くなる領域(幅S)は当然抵抗が高くなってしま
う。元来磁気抵抗効果素子部10の電気抵抗は高いが、
再生出力を向上するため、磁気抵抗効果素子部10の高
さHを低くしたり、膜厚tを薄くしたりすると、磁気抵
抗効果素子部10の電気抵抗が増々増加するためこの影
響が顕著となる。磁気抵抗効果型ヘッドを駆動する際
は、磁気抵抗効果素子部10に一定の直流電流を流す
が、磁気抵抗効果素子部10の電気抵抗が増加するとそ
の磁気抵抗効果素子部10の温度は抵抗値の2乗と電流
値の積に比例して増加するため、素子抵抗の増加に伴い
磁気抵抗効果素子部10の温度が急激に上昇する。その
ため磁気抵抗効果素子部10の温度の上昇に伴って、再
生信号への熱ノイズの影響が顕著となると共に、交換バ
イアスを用いる際は、反強磁性膜が熱的に不安定なた
め、そのバイアスの不安定さを招きバルクハウゼンノイ
ズを発生させるという問題を生ずる。上記の問題は、幅
Sが広いほどさらにトラック幅が狭くなるほど深刻にな
る。従って所望の実効的な再生トラック幅及び安定した
低抵抗の磁気抵抗効果素子部10を得るためには幅Sを
極力狭くする必要がある。
Next, the junction between the magnetoresistive effect element portion 10 and the lead layer 11 as seen from the medium facing surface will be described with reference to FIG. Now, the shape of the end surface of the lead layer 11 is ideally right-angled to the magnetoresistive effect element section 10, but it is not desired to damage the magnetoresistive effect element section 10 located in the lower layer in the forming process. The lead layer 11 is usually formed by the lift-off method for the reason that the gap between the magnetoresistive effect element portion 10 and the upper shield layer 13 is desired to be narrowed. In the lift-off method, after forming a pattern with photoresist or the like, a film is attached by sputtering or vapor deposition, and the film attached to the pattern of photoresist or the like is removed simultaneously with the photoresist or the like to obtain the pattern of the required material. Since it is a method, it has the following properties. That is, as shown in FIG. 8, when a film is to be formed near the upright pattern 18 by sputtering or vapor deposition,
Since the probability of particles adhering to the vicinity of the pattern 18 decreases, the film thickness gradually decreases as the pattern 18 approaches. This tendency becomes more remarkable as the height U of the pattern increases,
The width S until the film thickness becomes constant becomes larger. For the above reason, as shown in FIG. 7, the cross-sectional shape of the end surface of the lead layer 11 is an acute angle with respect to the magnetoresistive effect element section 10, and is a constant film from the junction C with the magnetoresistive effect element section 10. The film thickness gradually changes during the width S up to the position where the film becomes thick. Here, the reproduction track width of the magnetoresistive effect element portion 10 is the distance T.sub.2 between the lead layer 11 and the junction point C of the magnetoresistive effect element portion 10. W. However, even if the lead layer 11 and the magnetoresistive effect element portion 10 are bonded to each other on the end surface of the lead layer 11 having such a shape,
A region in which the resistance of the lead layer 11 is not so small as compared with the resistance of 0 exists between the widths S. In the magnetoresistive effect element section 10 in such a region, the resistance change due to the external magnetic field is changed as the voltage change between the terminals of the lead layer 11, so that the reproduction track width is effectively widened. At this time, the magnetoresistive change is reproduced at the junction between the lead layer 11 and the magnetoresistive effect element portion 10 because the resistance change contributing to the voltage change between the lead terminals gradually decreases in the direction in which the lead layer 11 becomes thicker. This causes a problem that the end point of the track width is blurred, and the off-track characteristic when driving the magnetoresistive head is deteriorated. Further, the resistance naturally increases in the region (width S) where the film thickness of the lead layer 11 gradually decreases. Although the electric resistance of the magnetoresistive effect element section 10 is originally high,
If the height H of the magnetoresistive effect element section 10 is reduced or the film thickness t is decreased in order to improve the reproduction output, the electric resistance of the magnetoresistive effect element section 10 increases more and this effect becomes remarkable. Become. When driving the magnetoresistive effect head, a constant direct current is passed through the magnetoresistive effect element section 10. However, when the electric resistance of the magnetoresistive effect element section 10 increases, the temperature of the magnetoresistive effect element section 10 becomes a resistance value. Since it increases in proportion to the product of the squared power and the current value, the temperature of the magnetoresistive effect element part 10 rapidly rises as the element resistance increases. Therefore, as the temperature of the magnetoresistive effect element section 10 rises, the influence of thermal noise on the reproduced signal becomes remarkable, and when the exchange bias is used, the antiferromagnetic film is thermally unstable. This causes a problem of instability of bias and generation of Barkhausen noise. The above problem becomes more serious as the width S becomes wider and the track width becomes narrower. Therefore, in order to obtain a desired effective reproducing track width and a stable low resistance magnetoresistive effect element portion 10, it is necessary to make the width S as narrow as possible.

【0010】[0010]

【発明が解決しようとする課題】幅Sを狭くするために
は図8で示したリフトオフ材料の膜厚を薄くすることが
考えられるが、この手段によると、以下の問題点があ
る。
In order to narrow the width S, it is conceivable to reduce the film thickness of the lift-off material shown in FIG. 8, but this means has the following problems.

【0011】まず、下部シールド層8、下部シールドギ
ャップ層9及び磁気抵抗効果素子部10を形成した後、
図9(a)のごとくリード層11をリフトオフするため
のフォトレジストパターン19を形成する。ここで、フ
ォトレジストの粘度および塗布時の基板回転数を調整す
ることにより、リードパターンを形成する領域に必要と
するフォトレジスト膜厚Vを得ることができるが、下層
で形成される段差、特に下部シールド層8で形成された
段差の影響によりその近傍にはフォトレジストが充分塗
布され得ない領域Wが発生する。これは、膜厚の大小関
係及び段差近傍の粘性流体の性質から決まってしまう問
題であり、現状の下部シールド層8は2μm前後、フォ
トレジスト膜厚Vは1μm以下という組合せにおいて
は、上記の問題が極めて発生しやすい。このようにして
形成したフォトレジストパターン19を用い、図9
(b)にて蒸着やスパッタによる膜20を形成し、図9
(c)にてリフトオフを行うと、フォトレジストパター
ン19が塗布されていなかった下部シールド層8にて形
成された段差近傍に膜残り21ができてしまう。この膜
残り21は下部シールド層8のパターン端部全周にわた
って発生するため、この膜残り21によりリード層11
の両端子間のショート、あるいはその上層の上部シール
ド層13とリード層11の間のショートまたは絶縁不良
が生じ、また磁気抵抗効果素子部10と同一面に露出し
た場合には信頼性の劣化を招く。さらに、膜残り21が
著しい場合はリフトオフ不能となり磁気抵抗効果素子部
10としての機能を果たさないものとなってしまう。
First, after the lower shield layer 8, the lower shield gap layer 9 and the magnetoresistive effect element portion 10 are formed,
As shown in FIG. 9A, a photoresist pattern 19 for lifting off the lead layer 11 is formed. Here, by adjusting the viscosity of the photoresist and the number of rotations of the substrate during coating, it is possible to obtain the photoresist film thickness V required in the region where the lead pattern is formed. Due to the influence of the step formed in the lower shield layer 8, a region W in which the photoresist cannot be sufficiently applied is generated in the vicinity thereof. This is a problem that is determined by the size relationship of the film thickness and the nature of the viscous fluid near the step. In the current combination of the lower shield layer 8 of about 2 μm and the photoresist film thickness V of 1 μm or less, the above problem occurs. Are extremely likely to occur. By using the photoresist pattern 19 thus formed, FIG.
In FIG. 9B, the film 20 is formed by vapor deposition or sputtering.
When the lift-off is performed in (c), a film residue 21 is formed in the vicinity of the step formed by the lower shield layer 8 where the photoresist pattern 19 was not applied. Since this film residue 21 occurs over the entire circumference of the pattern end portion of the lower shield layer 8, the film residue 21 causes the lead layer 11
Between both terminals, or between the upper shield layer 13 and the lead layer 11 thereabove or a poor insulation occurs, and reliability is deteriorated when exposed on the same surface as the magnetoresistive effect element section 10. Invite. Further, when the film residue 21 is significant, the lift-off cannot be performed, and the function as the magnetoresistive effect element portion 10 cannot be achieved.

【0012】本発明は、上述した問題点に鑑み、特性、
信頼性に優れた磁気抵抗効果型ヘッドの製造方法を提供
することを目的とする。
In view of the above-mentioned problems, the present invention has characteristics,
An object of the present invention is to provide a method of manufacturing a magnetoresistive head having excellent reliability.

【0013】[0013]

【課題を解決するための手段】本発明は、下部シールド
層の周囲をほぼ平坦にした上で、磁気抵抗効果素子部及
びリード層を形成するものである。
According to the present invention, the magnetoresistive effect element portion and the lead layer are formed after the circumference of the lower shield layer is made substantially flat.

【0014】[0014]

【作用】上記手段により、下部シールド層の周囲を平坦
にすることにより、膜残りをなくし、安定した実効再生
トラック幅及び低い抵抗を有する磁気抵抗効果型ヘッド
を得るため製造上必要な、リード層形成用の薄いフォト
レジストパターンを形成することができる。
By the above means, the periphery of the lower shield layer is flattened to eliminate the film residue and to obtain a magnetoresistive head having a stable effective reproducing track width and low resistance. A thin photoresist pattern for formation can be formed.

【0015】[0015]

【実施例】以下、本発明の実施例を図1〜図3を参照に
しながら説明する。なお薄膜磁気ヘッドの完成状態は従
来例を示す図5と同様であるため説明を省略する。
Embodiments of the present invention will be described below with reference to FIGS. The completed state of the thin film magnetic head is similar to that of FIG.

【0016】(実施例1)図1(a)〜(e)は本発明
の第1の実施例における磁気抵抗効果型ヘッドの製造方
法のリード層形成時の製造工程図であり、これは磁気抵
抗効果素子部10付近を媒体対向面からみて拡大断面と
して示している。
(Embodiment 1) FIGS. 1 (a) to 1 (e) are manufacturing process diagrams for forming a lead layer in a method of manufacturing a magnetoresistive head according to the first embodiment of the present invention. The vicinity of the resistance effect element portion 10 is shown as an enlarged cross section as viewed from the medium facing surface.

【0017】まず図1(a)にて、スパッタ法により形
成したアルミナ等の絶縁物7で被覆されたセラミックか
らなる基板6上に電気メッキ法あるいはスパッタ法によ
りほぼ基板6全体あるいは所望の形状より大きくパーマ
ロイ、センダストあるいは鉄系の合金材料により下部シ
ールド層8を形成する。ここで、磁気抵抗効果型ヘッド
を磁気ヘッドスライダ形状に加工する際、加工に用いる
マーカは通常磁気抵抗効果素子部10を利用するため、
後に下部シールド層8を所望の形状に加工する際ダメー
ジを受けないように、加工マーカを形成する領域には下
部シールド層8を残さないようにする。同様に他の層を
形成する際に用いるフォトマスク重ね合わせマーカに関
しても、同じ理由から形成領域に下部シールド層8を残
さないようにする必要がある。
First, as shown in FIG. 1 (a), a substrate 6 made of ceramics coated with an insulator 7 such as alumina formed by a sputtering method is electroplated or sputtered so that substantially the entire substrate 6 or a desired shape is formed. The lower shield layer 8 is largely formed of permalloy, sendust or an iron-based alloy material. Here, when the magnetoresistive head is processed into a magnetic head slider shape, the marker used for processing normally uses the magnetoresistive effect element portion 10,
The lower shield layer 8 is not left in the region where the processing marker is formed so that the lower shield layer 8 will not be damaged later when it is processed into a desired shape. Similarly, regarding the photomask overlay marker used when forming other layers, it is necessary to prevent the lower shield layer 8 from being left in the formation region for the same reason.

【0018】次にスパッタ法により形成したアルミナ等
の絶縁材料からなる下部シールドギャップ層9を形成
し、さらにその上に磁気抵抗効果素子部10を順次積層
する。この磁気抵抗効果素子部10は図中では単層で示
しているが磁気抵抗効果素子部10を駆動する際のバイ
アス方式によって、2〜4層構成となることは上述の通
りである。
Next, the lower shield gap layer 9 made of an insulating material such as alumina formed by the sputtering method is formed, and the magnetoresistive effect element portion 10 is sequentially laminated thereon. Although the magnetoresistive effect element section 10 is shown as a single layer in the drawing, it is as described above that the magnetoresistive effect element section 10 has a two- to four-layer structure depending on the bias method used for driving the magnetoresistive effect element section 10.

【0019】次に図1(b)にてリード層11形成用の
リフトオフ用のフォトレジストパターン19を薄く形成
する。このフォトレジストパターン19は1μm以下で
リード層の膜厚より厚い範囲で形成する。リフトオフを
簡易に行うためにはフォトレジストパターン19は逆テ
ーパ形状となっていることが望ましく、かつパターン制
御を高精度に行う必要があるため、通常このレジストに
はノボラック系樹脂からなるイメージリバーサルレジス
トを用いる。同じ目的で通常のノボラック系樹脂からな
るポジ型レジストをアミン系の溶媒で処理してパターン
を反転させたり、モノクロルベンゼン等の溶剤で表面処
理をして表層の現像速度を低下してオーバーハング形状
を作成してもよい。また逆テーパ形状を形成するという
点からは、環化ゴム系等のネガ型レジストを用いること
もできる。さらには後のリード層11の形成を蒸着を用
いて行うという前提で、垂直に近いパターン断面を得ら
れれば通常のポジ型レジストをそのまま用いることもで
きる。上記のように下部シールド層8がほぼ基板6の全
面にわたって存在しているため、従来のように下部シー
ルド層8の段差の影響で薄いフォトレジストパターン1
9が極端に薄くなったり、レジストがつかないといった
領域が、必要なパターンを形成する領域の近傍になく、
後にリード層11を形成する際に発生していた従来の問
題を回避することができる。
Next, as shown in FIG. 1B, a lift-off photoresist pattern 19 for forming the lead layer 11 is thinly formed. The photoresist pattern 19 is formed in a range of 1 μm or less and thicker than the film thickness of the lead layer. In order to easily perform lift-off, it is desirable that the photoresist pattern 19 has an inverse taper shape, and pattern control needs to be performed with high accuracy. Therefore, this resist is usually an image reversal resist made of a novolac resin. To use. For the same purpose, a positive resist made of normal novolac resin is treated with an amine-based solvent to reverse the pattern, or surface treatment with a solvent such as monochlorobenzene reduces the development speed of the surface layer and overhangs the shape. May be created. Further, from the viewpoint of forming an inverse taper shape, a negative resist such as cyclized rubber can be used. Further, on the assumption that the lead layer 11 is formed later by vapor deposition, an ordinary positive type resist can be used as it is if a pattern cross section close to vertical can be obtained. As described above, since the lower shield layer 8 exists over the entire surface of the substrate 6, the thin photoresist pattern 1 is affected by the step of the lower shield layer 8 as in the conventional case.
There is no area where 9 is extremely thin or the resist does not adhere near the area where the necessary pattern is formed,
It is possible to avoid the conventional problem that occurs when the lead layer 11 is formed later.

【0020】次に図1(c)にて金等の低抵抗材料を用
いて形成するリード層11、20をスパッタや蒸着法等
により基板6の全体に付着する。金の付着力を向上する
ため金の上下にチタン、クロム、タンタルあるいはタン
グステン等の材料を同時に付着形成し、図1(d)にて
リフトオフを行い、フォトレジストパターン19及び不
要部のリード材料を同時に除去し、リード層11の形成
を終了する。このリフトオフの際は不要なリード材料は
完全に除去されるため、リード層11の両端子間のショ
ート、リード層11と後に形成する上部シールド層13
とのショートまたは絶縁不良が発生することはない。
Next, in FIG. 1C, lead layers 11 and 20 formed of a low resistance material such as gold are attached to the entire substrate 6 by sputtering or vapor deposition. In order to improve the adhesion of gold, materials such as titanium, chromium, tantalum, or tungsten are simultaneously deposited and formed on and under the gold, and lift-off is performed in FIG. 1 (d) to remove the photoresist pattern 19 and the lead material of unnecessary portions. At the same time, it is removed and the formation of the lead layer 11 is completed. Since unnecessary lead material is completely removed during this lift-off, a short circuit between both terminals of the lead layer 11, a lead layer 11 and an upper shield layer 13 formed later are formed.
No short circuit with or insulation failure will occur.

【0021】次に図1(e)にて下部シールド層8を必
要な形状に加工するため、フォトレジストパターンを形
成した後イオンミリング等のエッチング加工を行う。磁
気抵抗効果型ヘッドを形成する領域からかなり離れた位
置に膜残りが発生していたとしても、上記エッチング加
工の際に全て除去することが可能である。上記のように
下部シールド層8を所望の形状に加工した後、図示はし
ていないが、アルミナ等の絶縁材料により形成した上部
シールドギャップ層12、電気メッキ法あるいはスパッ
タ法で形成したパーマロイや鉄系合金を用いて形成した
上部シールド層13を順次積層して再生ヘッド部の作成
が終了する。交換バイアスあるいはハードバイアスを利
用する場合は磁気抵抗効果素子部10に直接接触する形
に磁気抵抗効果素子部10の上、あるいはリード層11
の最下部に鉄とマンガンの合金あるいはコバルト系の合
金を用いて形成する。次に記録部の作成を行うが、これ
は従来例と同様であるため説明は省略する。
Next, in FIG. 1E, in order to process the lower shield layer 8 into a required shape, an etching process such as ion milling is performed after forming a photoresist pattern. Even if a film residue is formed at a position far away from the region where the magnetoresistive head is formed, it can be completely removed during the etching process. After processing the lower shield layer 8 into a desired shape as described above, although not shown, the upper shield gap layer 12 formed of an insulating material such as alumina, permalloy or iron formed by electroplating or sputtering. The upper shield layer 13 formed of a system alloy is sequentially laminated to complete the production of the reproducing head portion. When the exchange bias or the hard bias is used, the lead layer 11 is provided on the magnetoresistive effect element portion 10 or directly in contact with the magnetoresistive effect element portion 10.
It is formed by using an alloy of iron and manganese or a cobalt alloy at the bottom of the. Next, a recording unit is created, but since this is the same as the conventional example, description thereof will be omitted.

【0022】上記のようにして形成した磁気抵抗効果型
ヘッドはリード層11と磁気抵抗効果素子部10の接合
部においてリード層11が徐々に薄くなる幅を狭くし、
かつ膜残りをなくすことができるため、安定した実効再
生トラック幅及び低い素子抵抗を有し、簡易な製造方法
で信頼性の高いものとなる。
In the magnetoresistive head formed as described above, the width at which the lead layer 11 is gradually thinned at the junction between the lead layer 11 and the magnetoresistive element portion 10 is narrowed,
In addition, since the film residue can be eliminated, it has a stable effective reproduction track width and a low element resistance, and has a high reliability by a simple manufacturing method.

【0023】以上本実施例はリード層11を形成後、下
部シールド層8を所望の形状に加工する例を示したが、
本発明の主旨によればリード層11を形成以後でありか
つ製造上支障がなければ、下部シールド層8の加工はい
つであってもよい。例えば、上部シールドギャップ層1
2の形成後に加工することも可能である。
Although the present embodiment has shown an example in which the lower shield layer 8 is processed into a desired shape after the lead layer 11 is formed,
According to the gist of the present invention, the lower shield layer 8 may be processed at any time after the lead layer 11 is formed and there is no problem in manufacturing. For example, the upper shield gap layer 1
It is also possible to process after forming 2.

【0024】(実施例2)図2(a)〜(d)は本発明
の第2の実施例における磁気抵抗効果型ヘッドの製造方
法のリード層形成時の製造工程図である。
(Embodiment 2) FIGS. 2A to 2D are manufacturing process diagrams at the time of forming a lead layer in a method of manufacturing a magnetoresistive head according to a second embodiment of the present invention.

【0025】まず図2(a)にてスパッタ法により形成
したアルミナ等の絶縁物7で被覆されたセラミックの基
板6上に、電気メッキ法あるいはスパッタ法により基板
6の全体にパーマロイ、センダストあるいは鉄系の合金
材料により下部シールド層8を形成し、イオンビームエ
ッチング等により所望の形状に加工する。
First, as shown in FIG. 2A, on a ceramic substrate 6 coated with an insulator 7 such as alumina formed by a sputtering method, permalloy, sendust or iron is formed on the entire substrate 6 by an electroplating method or a sputtering method. The lower shield layer 8 is formed of a system alloy material and processed into a desired shape by ion beam etching or the like.

【0026】次に図2(b)のように下部シールド層8
以外の領域をアルミナ等の絶縁物22で覆い、下部シー
ルド層8と同一平面をつくり、下部シールド層8を埋め
込んだ形とする。この形は、下部シールド層8と同等以
上にアルミナ等の絶縁物をスパッタ法により基板6の全
面に付着した後、機械研磨により平坦にする方法、下部
シールド層8上に付着したアルミナをイオンビームエッ
チングにより除去する方法、アルミナを付着する前に下
部シールド層8と同等のフォトレジストパターンを形成
しておきアルミナスパッタ後アルミナをリフトオフ法に
より除去する方法等、種々の方法をとることができる。
上記のように下部シールド層8を絶縁物22でフラット
に埋め込むことにより、下部シールド層8の段差をほぼ
なくすことができるので、後の工程では工夫することな
く、下部シールドギャップ層9、磁気抵抗効果素子部1
0、リード層11を順次積層することができる。下部シ
ールド層8の段差がないため、図2(c)のごとく簡単
にリード層11のフォトレジストパターンを薄くするこ
とができ、かつ膜残りのないリフトオフを実現すること
ができる(図2(d))。下部シールド層8の形成方法
以外はリード層11の形成方法を含めて(実施例1)と
同様である。効果も同様であるが、本実施例では下部シ
ールド層8の段差がほとんど発生しないため、特に膜残
りが全く生じない安定した製造方法を得ることができ
る。また本実施例によれば、下部シールド層8をリード
層11よりも小さい形状とするような設計上の寸法変更
も容易に可能となる。
Next, as shown in FIG. 2B, the lower shield layer 8 is formed.
Areas other than the above are covered with an insulator 22 such as alumina to form the same plane as the lower shield layer 8 and the lower shield layer 8 is embedded. This shape is a method in which an insulator such as alumina which is equal to or higher than that of the lower shield layer 8 is deposited on the entire surface of the substrate 6 by a sputtering method, and then flattened by mechanical polishing, and the alumina deposited on the lower shield layer 8 is ion beamed. Various methods such as a method of removing by etching, a method of forming a photoresist pattern equivalent to that of the lower shield layer 8 before attaching alumina and removing alumina by a lift-off method after alumina sputtering can be used.
By filling the lower shield layer 8 flat with the insulator 22 as described above, the steps of the lower shield layer 8 can be almost eliminated, so that the lower shield gap layer 9, the magnetic resistance and Effect element part 1
0 and the lead layer 11 can be sequentially stacked. Since there is no step in the lower shield layer 8, the photoresist pattern of the lead layer 11 can be easily thinned as shown in FIG. 2C, and lift-off without film residue can be realized (FIG. 2D). )). Except for the method of forming the lower shield layer 8, the method of forming the lead layer 11 is the same as that of the first embodiment. Although the same effect is obtained, in this embodiment, since the step difference of the lower shield layer 8 hardly occurs, it is possible to obtain a stable manufacturing method in which no film residue is generated at all. Further, according to the present embodiment, it is possible to easily change the design dimension such that the lower shield layer 8 has a shape smaller than that of the lead layer 11.

【0027】(実施例3)図3(a)〜(c)は本発明
の第3の実施例における磁気抵抗効果型ヘッドの製造方
法のリード層形成時の製造工程図である。
(Embodiment 3) FIGS. 3 (a) to 3 (c) are manufacturing process diagrams at the time of forming a lead layer in a method of manufacturing a magnetoresistive head according to a third embodiment of the present invention.

【0028】まず図3(a)にて基板6上にアルミナ等
の絶縁物7をスパッタ法により形成する。膜厚は通常の
膜厚に下部シールド層8の膜厚を付加した膜厚かそれよ
りやや厚い膜厚とする。次に図3(b)にてイオンビー
ムエッチング等によりアルミナ等の絶縁物7に所望の下
部シールド層8と同一の形状の凹部23を形成する。次
に図3(c)にて電気メッキ法あるいはスパッタ法によ
りほぼ基板6全体にパーマロイ、センダストあるいは鉄
系の合金材料により下部シールド層8を形成した後、機
械研磨等により基板6の表面全体を平坦化加工する。以
下(実施例2)と同様に、図2(c)〜(d)に示すよ
うに各層を形成すれば同様の効果が得られる。
First, as shown in FIG. 3A, an insulator 7 such as alumina is formed on the substrate 6 by a sputtering method. The film thickness is a normal film thickness plus the film thickness of the lower shield layer 8 or a slightly thicker film thickness. Next, in FIG. 3B, a recess 23 having the same shape as the desired lower shield layer 8 is formed in the insulator 7 such as alumina by ion beam etching or the like. Next, as shown in FIG. 3C, a lower shield layer 8 is formed on almost the entire substrate 6 by electroplating or sputtering, and a lower shield layer 8 is formed by permalloy, sendust or an iron-based alloy material, and then the entire surface of the substrate 6 is mechanically polished. Flatten. Similar to the following (Example 2), the same effect can be obtained by forming each layer as shown in FIGS.

【0029】[0029]

【発明の効果】以上のように本発明は、下部シールド層
の周囲をほぼ平坦にした上で、磁気抵抗効果素子部及び
リード層を形成しているので、リード層と磁気抵抗効果
素子部の接合部においてリード層が徐々に薄くなる幅を
狭くし、かつ膜残りをなくすことができるため、安定し
た実効再生トラック幅及び低い素子抵抗を有し、簡易な
製造方法で信頼性の高い磁気抵抗効果型ヘッドを得るこ
とができる。
As described above, according to the present invention, since the magnetoresistive effect element portion and the lead layer are formed after the circumference of the lower shield layer is made substantially flat, the lead layer and the magnetoresistive effect element portion are formed. Since the width at which the lead layer is gradually thinned at the junction can be narrowed and the film residue can be eliminated, it has a stable effective read track width and low element resistance, and a highly reliable magnetic resistance by a simple manufacturing method. An effective head can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第1の実施例における磁気抵
抗効果型ヘッドの製造方法のリード層形成時の製造工程
図 (b)は本発明の第1の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図 (c)は本発明の第1の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図 (d)は本発明の第1の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図 (e)は本発明の第1の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図
FIG. 1A is a manufacturing process diagram when forming a lead layer in a method of manufacturing a magnetoresistive head according to a first embodiment of the present invention. FIG. 1B is a magnetoresistive effect according to a first embodiment of the present invention. (C) is a manufacturing step diagram of the magnetoresistive head according to the first embodiment of the present invention when forming a lead layer, and (d) is a manufacturing step diagram of the present invention. FIG. 6E is a manufacturing process diagram of the method of manufacturing the magnetoresistive head in the first embodiment when forming the lead layer. FIG. 8E is a diagram of manufacturing steps of the method of manufacturing the magnetoresistive head in the first embodiment of the present invention Manufacturing process chart

【図2】(a)は本発明の第2の実施例における磁気抵
抗効果型ヘッドの製造方法のリード層形成時の製造工程
図 (b)は本発明の第2の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図 (c)は本発明の第2の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図 (d)は本発明の第2の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図
FIG. 2A is a manufacturing process diagram when forming a lead layer in a method of manufacturing a magnetoresistive head according to a second embodiment of the present invention. FIG. 2B is a magnetoresistive effect according to a second embodiment of the present invention. (C) is a manufacturing process diagram when forming a lead layer in the method of manufacturing a magnetoresistive head according to the second embodiment of the present invention. Of manufacturing steps for forming a lead layer in a method of manufacturing a magnetoresistive head according to the second embodiment of the present invention

【図3】(a)は本発明の第3の実施例における磁気抵
抗効果型ヘッドの製造方法のリード層形成時の製造工程
図 (b)は本発明の第3の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図 (c)は本発明の第3の実施例における磁気抵抗効果型
ヘッドの製造方法のリード層形成時の製造工程図
FIG. 3A is a manufacturing process diagram when a lead layer is formed in a method of manufacturing a magnetoresistive head according to a third embodiment of the present invention. FIG. 3B is a magnetoresistive effect according to the third embodiment of the present invention. (C) is a manufacturing process diagram of the magnetoresistive head according to the third embodiment of the present invention when the lead layer is formed.

【図4】従来の磁気抵抗効果型ヘッドの製造方法を用い
て製造した薄膜磁気ヘッドを示す斜視図
FIG. 4 is a perspective view showing a thin film magnetic head manufactured by using a conventional magnetoresistive head manufacturing method.

【図5】図4のA部の部分拡大断面図5 is a partially enlarged sectional view of a portion A in FIG.

【図6】図5の磁気抵抗効果素子部を模式的に示した部
分拡大平面図
6 is a partially enlarged plan view schematically showing the magnetoresistive effect element portion of FIG.

【図7】図6の磁気抵抗効果素子部のB−B断面図7 is a sectional view taken along line BB of the magnetoresistive effect element portion of FIG.

【図8】従来の磁気抵抗効果型ヘッドの製造方法のリー
ド層形成時の製造工程図
FIG. 8 is a manufacturing process diagram when forming a lead layer in a conventional magnetoresistive head manufacturing method.

【図9】(a)は従来の磁気抵抗効果型ヘッドの製造方
法のリード層形成時の製造工程図 (b)は従来の磁気抵抗効果型ヘッドの製造方法のリー
ド層形成時の製造工程図 (c)は従来の磁気抵抗効果型ヘッドの製造方法のリー
ド層形成時の製造工程図
FIG. 9A is a manufacturing process diagram of a conventional magnetoresistive head manufacturing method when forming a lead layer, and FIG. 9B is a manufacturing process diagram of a conventional magnetoresistive head manufacturing method when forming a lead layer. FIG. 3C is a manufacturing process diagram when the lead layer is formed in the conventional magnetoresistive head manufacturing method.

【符号の説明】[Explanation of symbols]

8 下部シールド層 10 磁気抵抗効果素子部 11 リード層 13 上部シールド層 15 ギャップ層 8 Lower Shield Layer 10 Magnetoresistive Element 11 Lead Layer 13 Upper Shield Layer 15 Gap Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉中 秀樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Yoshinaka 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁気抵抗効果素子部と前記磁気抵抗素子部
から電極を引き出すリード層及びその両者を周囲の金属
膜から絶縁するギャップ層と、前記ギャップ層に接する
上下シールド層を具備する磁気抵抗効果型ヘッドを製造
するにあたり、前記下部シールド層の周囲をほぼ平坦に
した上で、磁気抵抗効果素子部及びリード層を形成する
ことを特徴とする磁気抵抗効果型ヘッドの製造方法。
1. A magnetoresistive device comprising a magnetoresistive effect element portion, a lead layer for drawing electrodes from the magnetoresistive element portion, a gap layer for insulating both of them from a surrounding metal film, and upper and lower shield layers in contact with the gap layer. A method of manufacturing a magnetoresistive effect head, characterized in that, in manufacturing the effect type head, the periphery of the lower shield layer is made substantially flat, and then the magnetoresistive effect element portion and the lead layer are formed.
JP23968193A 1993-09-27 1993-09-27 Manufacturing method of magnetoresistive head Expired - Lifetime JP3344028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23968193A JP3344028B2 (en) 1993-09-27 1993-09-27 Manufacturing method of magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23968193A JP3344028B2 (en) 1993-09-27 1993-09-27 Manufacturing method of magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH0793726A true JPH0793726A (en) 1995-04-07
JP3344028B2 JP3344028B2 (en) 2002-11-11

Family

ID=17048332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23968193A Expired - Lifetime JP3344028B2 (en) 1993-09-27 1993-09-27 Manufacturing method of magnetoresistive head

Country Status (1)

Country Link
JP (1) JP3344028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052261A (en) * 1995-06-30 2000-04-18 Fujitsu Limited Method for manufacturing magnetoresistance head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052261A (en) * 1995-06-30 2000-04-18 Fujitsu Limited Method for manufacturing magnetoresistance head
US6605414B2 (en) 1995-06-30 2003-08-12 Fujitsu Limtied Method for manufacturing magnetoresistance head

Also Published As

Publication number Publication date
JP3344028B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
US6162305A (en) Method of making spin valve read head with plasma produced metal oxide insulation layer between lead and shield layers
JP2003030803A (en) Magnetic head assembly and its manufacturing method
JP2000331315A (en) Magneto-resistance effect head
JPH11353615A (en) Thin-film magnetic head and its production
JP2620500B2 (en) Magnetoresistive sensor and method of manufacturing the same
JP2001060307A (en) Thin-film magnetic head and its production
JP3379704B2 (en) Thin-film magnetic head, magnetic head device, and magnetic recording / reproducing device
US5617277A (en) Magnetoresistive read head with back filled gap insulation layers
JP2667374B2 (en) Method of manufacturing thin film magnetic transducer for magnetic disk storage system
JP4458074B2 (en) Thin film magnetic head, magnetic head assembly, magnetic disk drive apparatus, and method of manufacturing thin film magnetic head
JP3344028B2 (en) Manufacturing method of magnetoresistive head
JP3349975B2 (en) Thin film magnetic head and method of manufacturing the same
JP3553393B2 (en) Method for manufacturing thin-film magnetic head
JP3793051B2 (en) Magnetoresistive element, method for manufacturing the same, thin film magnetic head using the same, magnetic head device, and magnetic disk device
JPH1069611A (en) Magnetic head assembly
JP2001297413A (en) Recording and reproducing separate type thin film head and method of manufacture
JPH103617A (en) Magneto-resistive effect type magnetic head and its manufacture
JP2942086B2 (en) Method of manufacturing magnetoresistive thin film magnetic head
JPH11191206A (en) Thin film magnetic head
JP3366813B2 (en) Recording / reproducing separation type head and magnetic disk drive
JPH1011717A (en) Magnetoresistive effect head and its production
JP2000339639A (en) Magnetoresistance effect type composite head and its production
JP2741510B2 (en) Thin film magnetic head
JP2002353538A (en) Magnetic detecting element, manufacturing method therefor, and magnetic head
JP3854022B2 (en) Thin film magnetic head

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

EXPY Cancellation because of completion of term