JPH0793230B2 - How to stack ceramic sheets - Google Patents

How to stack ceramic sheets

Info

Publication number
JPH0793230B2
JPH0793230B2 JP3083308A JP8330891A JPH0793230B2 JP H0793230 B2 JPH0793230 B2 JP H0793230B2 JP 3083308 A JP3083308 A JP 3083308A JP 8330891 A JP8330891 A JP 8330891A JP H0793230 B2 JPH0793230 B2 JP H0793230B2
Authority
JP
Japan
Prior art keywords
sheet
ceramic
carrier film
ceramic sheet
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3083308A
Other languages
Japanese (ja)
Other versions
JPH06120074A (en
Inventor
克之 堀江
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3083308A priority Critical patent/JPH0793230B2/en
Publication of JPH06120074A publication Critical patent/JPH06120074A/en
Publication of JPH0793230B2 publication Critical patent/JPH0793230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層磁器コンデンサ
どの電子部品に見られるセラミックシートの積層方法に
関する。
BACKGROUND OF THE INVENTION The present invention relates to a laminated ceramic capacitor .
The present invention relates to a method of laminating ceramic sheets found in any electronic component .

【0002】[0002]

【従来の技術】電子部品、例えば積層磁器コンデンサは
誘電体層と導体からなる内部電極層とを交互に形成した
構造に特徴を有し、その製造方法としてキャリアフィル
ム上に連続的に形成されたセラミックシートを一定形状
に切断する操作と、このセラミックシート上に内部電極
層を形成する操作とを行うことにより必要量のセラミッ
クシートを作製し、これを所定枚数積層し、圧着する方
法が一般に行われている。
2. Description of the Related Art Electronic parts, such as laminated ceramic capacitors, are characterized by a structure in which dielectric layers and internal electrode layers made of conductors are alternately formed. As a method of manufacturing the same, they are continuously formed on a carrier film. Generally, a method of producing a required amount of ceramic sheets by cutting a ceramic sheet into a certain shape and forming an internal electrode layer on the ceramic sheet, stacking a predetermined number of the sheets, and press-bonding is performed. It is being appreciated.

【0003】一方、近年の電子部品の小型化に伴い、積
層磁器コンデンサなどの電子部品においては静電容量を
増加するために、セラミックシートの薄層化と積層精度
の向上が要求されている。前者については薄いセラミッ
クシートの機械的強度には自ずと限界があるのでセラミ
ックシートをキャリアフィルムごと切断し、このまま扱
うことにより見かけの強度を著しく向上することによっ
て対応している。次に後者の積層精度については、セラ
ミックシートの変形を最小限とし、なおかつ、セラミッ
クシートの切断、内部電極層の形成、積層および圧着と
いう一連の操作それぞれの精度の向上が必要となる。
On the other hand, with the recent miniaturization of electronic components , in electronic components such as laminated ceramic capacitors, it has been required to reduce the thickness of ceramic sheets and improve the lamination accuracy in order to increase the capacitance. With respect to the former, the mechanical strength of a thin ceramic sheet is naturally limited, so the ceramic sheet is cut together with the carrier film, and handled as it is to remarkably improve the apparent strength. Next, regarding the latter laminating accuracy, it is necessary to minimize the deformation of the ceramic sheet and to improve the accuracy of each of a series of operations such as cutting the ceramic sheet, forming internal electrode layers, laminating and crimping.

【0004】したがって例えば積層磁器コンデンサの製
造においては内部電極パターンを所望の位置に精度よく
積層する技術が必要不可欠であり、これにより必要な静
電容量のコンデンサを歩留り良く得ることができる。
Therefore, for example, in the manufacture of a laminated ceramic capacitor, a technique of precisely laminating the internal electrode pattern at a desired position is indispensable, and a capacitor having a required electrostatic capacity can be obtained with a high yield.

【0005】こうした背景のもとに考案された方法とし
てセラミックシートを金属枠上に張りつけ、内部電極を
印刷した後、打ち抜いてセラミックシートを積層する方
法がある。さらに薄いセラミックシートはキャリアフィ
ルムごと金属枠に張りつける方法がある。
As a method devised under such a background, there is a method in which a ceramic sheet is attached to a metal frame, the internal electrodes are printed, and then punching is performed to laminate the ceramic sheets. A thinner ceramic sheet may be attached to a metal frame together with a carrier film.

【0006】[0006]

【発明が解決しようとする課題】精度良く積層するため
には各操作における設備の充実と共に、一連の操作を常
に前の操作の結果を確認して行う必要があった。例えば
前述の枠張り法の場合、金属枠にセラミックシートを張
りつけた後、枠に合せて内部電極層を所定の位置に形成
し、さらにこの枠に合せて、あるいはCCD(電荷結合
素子)カメラ等でパターンを読み取って位置合せを行い
所定形状に打ち抜く。最後に同様に位置合せを行って積
層しなくてはならない。この結果、各操作の微細なズレ
であっても相乗的に作用して、積層、圧着後には最小で
も40μm程度の積層ズレが発生し、積層コンデンサの歩
留りを低下させる原因となっていた。また、キャリアフ
ィルムから剥がして印刷を行うとシートアタックにより
セラミックシートの変形を引き起こし、やはり積層ズレ
の要因となっていた。
In order to stack with high precision, it was necessary to carry out a series of operations while always confirming the results of the previous operations, as well as the equipment for each operation being enhanced. For example, in the case of the frame attachment method described above, after a ceramic sheet is attached to a metal frame, an internal electrode layer is formed at a predetermined position in accordance with the frame, and further in alignment with the frame, or a CCD (charge coupled device) camera or the like. The pattern is read with and the position is adjusted and punched into a predetermined shape. Finally, it must be similarly aligned and laminated. As a result, even a minute deviation in each operation acts synergistically, and a lamination deviation of at least about 40 μm occurs after lamination and pressure bonding, which causes a reduction in the yield of the laminated capacitor. Further, when the sheet is peeled off from the carrier film and printed, a sheet attack causes a deformation of the ceramic sheet, which is also a cause of stacking misalignment.

【0007】したがって、本発明の目的は、大容量の積
層磁器コンデンサなどの電子部品に対して、特に積層精
度を向上させ、したがって歩留り良く生産でき、しかも
従来の方法よりも容易なセラミックシートの積層方法を
提供することにある。
Therefore, the object of the present invention is to improve the stacking precision of electronic parts such as a large-capacity laminated ceramic capacitor, and thus to produce them with high yield, and moreover , to stack ceramic sheets more easily than the conventional method. To provide a method.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく研究の結果、セラミックシートを予めキャ
リアフィルムごと所定の形状に切断した後に内部電極を
形成し、セラミックシートの積層を行うセラミックシー
トの積層方法において、一連の操作における位置合せを
行うに際し、例えばピンあるいは付き当てなどの固定手
段によってキャリアフィルムの形状を検出するようにす
れば、特に積層精度が著しく高く、製品歩留りが向上す
ることを見出し本発明に到達した。
Means for Solving the Problems As a result of research to achieve the above object, the inventors of the present invention found that a ceramic sheet and a carrier film were preliminarily cut into a predetermined shape, and then the internal electrode was removed.
Formed, ceramic Sea to carry out the lamination of the ceramic sheet
In the stacking method of the sheet, when performing the alignment in a series of operations, if the shape of the carrier film is detected by a fixing means such as a pin or an abutting, the stacking accuracy is particularly high and the product yield is improved. The inventors have found that and reached the present invention.

【0009】すなわち、本発明は、誘電体材料をバイン
ダー溶液に分散したスラリーをキャリアフィルム上に塗
工し、得られたセラミックシートを長方形の所定の大き
さに打ち抜いた後、該シート上に内部電極を印刷し、次
いでこれらのセラミックシートを積層・圧着し積層体
とするセラミックシートの積層方法において、上記セラ
ミックシートをキャリアフィルムごと打ち抜き、キャリ
アフィルムとセラミックシートからなるシート体の位置
決め用固定手段、好ましくは位置出し用ピンを設けたス
クリーン印刷用テーブル上において内部電極の印刷を行
い、位置決め用固定手段、好ましくは位置出し用ピンを
設けた圧着金型上に該シート体のキャリアフィルムを上
側にして固定し、キャリアフィルムの剥離により表面に
出たセラミックシート上に同様にしてシート体を固定
し、キャリアフィルムの剥離を繰り返して複数のセラミ
ックシートを積層し圧着することを特徴とするセラミッ
クシートの積層方法を提供するものである。
That is, according to the present invention, a slurry in which a dielectric material is dispersed in a binder solution is coated on a carrier film, the obtained ceramic sheet is punched into a predetermined size of a rectangle, and then the sheet is internally coated on the sheet. Electrodes are printed, and then these ceramic sheets are laminated and pressed to form a laminated body.
In the method for laminating ceramic sheets, the ceramic sheets are punched together with the carrier film, and fixing means for positioning the sheet body made of the carrier film and the ceramic sheet, preferably internal electrodes on a screen printing table provided with positioning pins. Is printed, the carrier film of the sheet body is fixed to the upper side on a pressure-bonding mold provided with positioning fixing means, preferably positioning pins, and the carrier film is peeled off, and then the ceramic film is exposed on the surface. the sheet body is fixed in the same manner, characterized by repeating the peeling of the carrier film by laminating a plurality of ceramic sheets crimping ceramic
The present invention provides a method for laminating a sheet .

【0010】なお、本発明方法に用いられるキャリアフ
ィルムとしては、セラミックシート形成の際に必要な柔
軟性と耐熱性および位置合せに耐える剛性をもち、かつ
セラミックシートと共に打ち抜くことができるフィルム
であることが必要であり、例えば40〜80μmの厚さのポ
リエステルフィルム等の高分子フィルムおよびこれに類
似するものが挙げられる。
[0010] As the carrier film used in the method of the present invention has a rigidity to withstand flexibility and heat resistance and alignment required when the ceramic sheet formation, and can be punched with a ceramic sheet film <br / >, For example, a polymer film such as a polyester film having a thickness of 40 to 80 μm and the like, and the like .

【0011】[0011]

【作用】本発明の方法によれば、内部電極層を形成する
際と積層する際の位置合せを同じキャリアフィルムによ
って行うことができ、しかもその操作の間に、打ち抜き
など他の操作を行う必要がない。したがって位置合せの
必要な操作が従来の方法よりも減り、またシートアタッ
ク等によるセラミックシートの変形が起きにくいという
利点がある。
According to the method of the present invention, the alignment when forming the internal electrode layers and the alignment at the time of stacking can be performed by the same carrier film, and it is necessary to perform other operations such as punching during the operation. There is no. Therefore, there are advantages that the number of operations that require alignment is reduced as compared with the conventional method, and that the ceramic sheet is less likely to be deformed due to sheet attack or the like.

【0012】さらに枠張りを行わないことにより、これ
に付随した操作、例えば枠張り、乾燥、枠の再使用のた
めの処理が一切不要となる。
Further, since the frame is not stretched, the operations associated therewith, for example, the process for stretching the frame, drying, and reusing the frame are unnecessary.

【0013】[0013]

【実施例1】図1ないし図5はいずれも本発明の方法を
説明するための斜視図であって、これらを参照して以下
説明する。
Embodiment 1 FIGS. 1 to 5 are perspective views for explaining the method of the present invention, which will be described below with reference to these drawings.

【0014】まず、片面にシリコン処理をした厚さ50μ
mのポリエチレンテレフタレートのキャリア(ベース)
フィルム上に、従来の方法に従って、誘電体セラミック
材料をバインダー溶液に分散したスラリーを塗工し、長
尺の厚さ10μmのセラミックシートを作製した。
First of all, the thickness of 50 μ having silicon treatment on one side
m polyethylene terephthalate carrier (base)
A slurry in which a dielectric ceramic material was dispersed in a binder solution was applied on the film according to a conventional method to prepare a long ceramic sheet having a thickness of 10 μm.

【0015】次に、図1の斜視図に見られるように、セ
ラミックシート2を 7×10cmの大きさの長方形に切断す
る際に、その4隅に相隣れる2辺からそれぞれ5mmの位
置に径3mmの位置出し用穴3をキャリアフィルム1ごと
打ち抜いた。この4つの穴は内部電極印刷および積層時
の位置出しを行うため正確に打ち抜く必要がある。逆に
いかなる形状でも、位置出し用の部位を正確に切断でき
れば、他はいかなる方法でもハンドリング可能な形状に
切断すればよい。またこの操作が可能な範囲でキャリア
フィルムの剛性は高い程、以後の操作での精度が高ま
る。
Next, as shown in the perspective view of FIG. 1, when the ceramic sheet 2 is cut into a rectangle having a size of 7 × 10 cm, it is placed at a position 5 mm from each of the two sides adjacent to the four corners. A positioning hole 3 having a diameter of 3 mm was punched out together with the carrier film 1. These four holes must be accurately punched out in order to print internal electrodes and position them during lamination. On the contrary, as long as the site for positioning can be accurately cut in any shape, it may be cut by any other method into a shape that can be handled. Further, the higher the rigidity of the carrier film within the range where this operation is possible, the higher the accuracy in the subsequent operations.

【0016】次に、図3の斜視図に示すように、キャリ
アフィルム1上に形成されたセラミックシート2に内部
電極ペースト5をスクリーン印刷した。この際の位置出
しは、図2の斜視図に示すように、印刷用テーブル6上
の径3mm、高さ1mmの4本の金属製位置出し用ピン4を
位置出し用穴3に挿入することによって行った。なお、
図1ないし図5では説明のため、横方向に比し上下方向
の寸法を拡大して示した。
Next, as shown in the perspective view of FIG. 3, the internal electrode paste 5 was screen-printed on the ceramic sheet 2 formed on the carrier film 1. The positioning at this time is performed by inserting four metal positioning pins 4 having a diameter of 3 mm and a height of 1 mm on the printing table 6 into the positioning holes 3 as shown in the perspective view of FIG. Went by. In addition,
For the sake of explanation, in FIGS. 1 to 5, the dimension in the vertical direction is shown in an enlarged manner as compared with the lateral direction.

【0017】次に、カバー用セラミックシートとして厚
さ約 100μmのセラミックシートを、電極印刷工程を除
去した以外は上記と同様に製造し、図4の斜視図に示す
ように、圧着金型8の径3mmの位置出し用ピン4に挿入
した。
Next, as a cover ceramic sheet, a ceramic sheet having a thickness of about 100 μm was manufactured in the same manner as above except that the electrode printing step was removed, and as shown in the perspective view of FIG. It was inserted into the positioning pin 4 having a diameter of 3 mm.

【0018】このカバー用セラミックシート7の上に、
前記キャリアフィルム1とセラミックシート2からなる
シート体をキャリアフィルム側を上にして圧着金型8の
径3mmの位置出し用ピン4に挿入し、軽く圧着した。圧
着後、最上層にあるキャリアフィルム1をセラミックシ
ート2から剥離した(図5参照)。
On the cover ceramic sheet 7,
The sheet body composed of the carrier film 1 and the ceramic sheet 2 was inserted into the positioning pin 4 having a diameter of 3 mm of the crimping die 8 with the carrier film side facing upward, and lightly crimped. After pressure bonding, the carrier film 1 in the uppermost layer was peeled from the ceramic sheet 2 (see FIG. 5).

【0019】キャリアフィルムの剥離により表面に出た
セラミックシート上に、上記と同様にして製造したシー
ト体を同様に挿入および圧着し、最上層にあるキャリア
フィルムを剥離した。これを繰り返し行い、電極搭載セ
ラミックシートを30層積層した後、もう1枚の前記と同
様のカバー用セラミックシートを最上層として挿入およ
び圧着して積層磁器コンデンサ素体を製造した。
The sheet body produced in the same manner as above was similarly inserted and pressure-bonded on the ceramic sheet exposed on the surface by peeling the carrier film, and the carrier film in the uppermost layer was peeled off. This process was repeated, and after laminating 30 layers of electrode-mounted ceramic sheets, another ceramic sheet for cover similar to the above was inserted as the uppermost layer and pressure-bonded to manufacture a laminated ceramic capacitor element body.

【0020】以上の方法では、セラミックシートの切断
は1回、一連の製造過程において、必要な位置合せは2
回であり、従来の方法に比し簡潔になった。しかも2回
の位置合せは、十分な剛性を備えたキャリアフィルム上
の同一の位置出し用穴で行うため以下に述べるように従
来よりも積層精度が向上した。
In the above method, the ceramic sheet is cut once and the necessary alignment is 2 in a series of manufacturing processes.
This is a simple and simple method compared to the conventional method. Moreover, since the two alignments are performed in the same positioning hole on the carrier film having sufficient rigidity, the laminating accuracy is improved as compared with the conventional case as described below.

【0021】本実施例では、図6に示すAパターンの積
層磁器コンデンサ素体を多数製造し、そのうちから無作
為に50点選び、焼成前の圧着体の積層精度を測定し、1
チップ内において最もズレの大きかったものを表1の実
施例1の欄に示した。
In the present embodiment, a large number of laminated ceramic capacitor element bodies of pattern A shown in FIG. 6 were manufactured, 50 points were randomly selected from among them, and the lamination accuracy of the pressure-bonded body before firing was measured.
Those having the largest deviation in the chip are shown in the column of Example 1 in Table 1.

【0022】[0022]

【実施例2】図7は、本実施例で製造された積層磁器コ
ンデンサの積層態様(Bパターン)を示す側断面図であ
る。
[Embodiment 2] FIG. 7 is a side sectional view showing a laminated mode (B pattern) of the laminated ceramic capacitor manufactured in this embodiment.

【0023】本実施例ではセラミックシート上に内部電
極パターンをスクリーン印刷機によって印刷する際、積
層したときに隣接するシートに形成されている内部電極
同士が一方向に交互にずれるように打ち抜き、積層体用
が図7に示すBパターンの積層磁器コンデンサ素体を製
造したこと以外は実施例1と同様に行った。なお本実施
例では、Bパターンの積層磁器コンデンサ素体を多数製
造し、そのうちから無作為に50点選び焼成前の圧着体の
積層精度を測定し、1チップ内において最もズレの大き
かったものを表1の実施例2の欄に示した。
In this embodiment, when an internal electrode pattern is printed on a ceramic sheet by a screen printing machine, the internal electrodes formed on the adjacent sheets are punched out so that the internal electrodes are alternately displaced in one direction. The same procedure as in Example 1 was carried out except that a laminated ceramic capacitor element body having a pattern B shown in FIG. In this example, a large number of B-patterned laminated ceramic capacitor element bodies were manufactured, 50 of them were randomly selected and the lamination accuracy of the pressure-bonded body before firing was measured, and the one with the largest deviation in one chip was selected. The results are shown in the column of Example 2 in Table 1.

【0024】[0024]

【比較例1】本比較例では、従来の技術の枠張り方式に
より、実施例1と同様のAパターンの積層磁器コンデン
サ素体を多数製造し、そのうちから無作為に50点選び焼
成前の圧着体の積層精度を測定し、1チップ内において
最もズレの大きかったものを表1の比較例1の欄に示し
た。
[Comparative Example 1] In this comparative example, a large number of laminated porcelain capacitor element bodies having the same pattern A as those of Example 1 were manufactured by the conventional frame framing method. The stacking accuracy of the body was measured, and the one with the largest deviation in one chip is shown in the column of Comparative Example 1 in Table 1.

【0025】表1からもわかるように、本発明の方法と
比較すると従来の方法で製造されたAパターンの積層磁
器コンデンサは、積層ズレが15μm以上大きいことが確
認された。
As can be seen from Table 1, in comparison with the method of the present invention, it was confirmed that the laminated ceramic capacitor of the A pattern manufactured by the conventional method has a large lamination deviation of 15 μm or more.

【0026】[0026]

【比較例2】本比較例では、従来の技術の枠張り方式に
より、実施例2と同様のBパターンの積層磁器コンデン
サ素体を多数製造し、そのうちから無作為に50点選び焼
成前の圧着体の積層精度を測定し、1チップ内において
最もズレの大きかったものを表1の比較例2の欄に示し
た。
[Comparative Example 2] In this comparative example, a large number of laminated ceramic capacitor element bodies having the same B pattern as those in Example 2 were manufactured by the conventional frame framing method. The stacking accuracy of the body was measured, and the one with the largest deviation in one chip is shown in the column of Comparative Example 2 in Table 1.

【0027】表1からもわかるように、本発明の方法と
比較すると従来の方法で製造されたBパターンの積層磁
器コンデンサは、積層ズレが2倍程大きいことが確認さ
れた。以上の実施例および比較例では、ともに積層磁器
コンデンサを例に説明したが、本発明の方法は位置決め
が重要である類似の電子部品における積層方法に広く利
用できることは当業者にとって容易に理解されよう。
As can be seen from Table 1, in comparison with the method of the present invention, it was confirmed that the B-patterned laminated ceramic capacitor manufactured by the conventional method has a lamination deviation about twice as large. In the above examples and comparative examples, the laminated porcelain was used.
Although the capacitor has been described as an example, the method of the present invention is positioning.
Is widely used for stacking methods in similar electronic components where
Those skilled in the art will readily understand that it can be used.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上説明したように、本発明の方法によ
れば、内部電極を形成する際と、積層する際の位置合せ
を同じキャリアフィルムによって行えるので、従来の方
法よりも簡潔であり、しかも積層精度を著しく向上させ
る結果、大容量の積層磁器コンデンサなどの電子部品
歩留りよく生産することができる。
As described above, according to the method of the present invention, the internal carrier can be formed and the positioning can be performed by the same carrier film, which is simpler than the conventional method. Moreover, as a result of remarkably improving the stacking accuracy, electronic components such as a large-capacity multilayer ceramic capacitor can be produced with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例において、内部電極印刷のと
きの位置出し用穴が形成されたキャリアフィルムとセラ
ミックシートからなるシート体を示す斜視図である。
FIG. 1 is a perspective view showing a sheet body including a ceramic film and a carrier film in which positioning holes are formed for printing internal electrodes in an embodiment of the present invention.

【図2】 本発明の実施例において、内部電極のスクリ
ーン印刷の際に位置出しに用いられるスクリーン印刷用
テーブルと位置出し用ピンを示す斜視図である。
FIG. 2 is a perspective view showing a screen printing table and a positioning pin used for positioning during screen printing of internal electrodes in the embodiment of the present invention.

【図3】 本発明の実施例において、キャリアフィルム
とセラミックシートからなるシート体に形成された位置
出し用穴およびセラミックシート上に印刷された内部電
ペーストを示す斜視図である。
FIG. 3 is a perspective view showing positioning holes formed in a sheet body composed of a carrier film and a ceramic sheet and internal electrode paste printed on the ceramic sheet in an example of the present invention.

【図4】 本発明の実施例において、内部電極を印刷し
たセラミックシートを積層・圧着する圧着金型および位
置出し用ピンを示す斜視図である。
FIG. 4 is a perspective view showing a crimping die for stacking and crimping ceramic sheets on which internal electrodes are printed and a positioning pin according to an embodiment of the present invention.

【図5】 本発明の実施例において、圧着金型上位置決
めされたカバー用セラミックシートに内部電極印刷ずみ
のセラミックシートを順次積層する要領を説明するため
の斜視図である。
FIG. 5 is a perspective view for explaining a procedure of sequentially laminating a ceramic sheet for which internal electrodes are printed on a ceramic sheet for a cover positioned on a pressure-bonding die in an example of the present invention.

【図6】 本発明の実施例1および比較例1に用いられ
た積層磁器コンデンサの積層態様(Aパターン)を示す
側断面図である。
FIG. 6 is a side sectional view showing a laminated mode (A pattern) of the laminated ceramic capacitors used in Example 1 and Comparative Example 1 of the present invention.

【図7】 本発明の実施例2および比較例2に用いられ
た積層磁器コンデンサの積層態様(Bパターン)を示す
側断面図である。
FIG. 7 is a side sectional view showing a laminated mode (B pattern) of laminated ceramic capacitors used in Example 2 and Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 キャリアフィルム 2 セラミックシート 3 位置出し用穴 4 位置出し用ピン 5 内部電極ペースト 6 スクリーン印刷用テーブル 7 カバー用セラミックシート 8 圧着用金型 1 Carrier Film 2 Ceramic Sheet 3 Positioning Hole 4 Positioning Pin 5 Internal Electrode Paste 6 Screen Printing Table 7 Cover Ceramic Sheet 8 Crimping Mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘電体材料をバインダー溶液に分散した
スラリーをキャリアフィルム上に塗工し、得られたセラ
ミックシートを長方形の所定の大きさに打ち抜いた後、
該シート上に内部電極を印刷し、次いでこれらのセラミ
ックシートを積層・圧着し積層体とするセラミックシ
ートの積層方法において、上記セラミックシートをキャ
リアフィルムごと打ち抜き、キャリアフィルムとセラミ
ックシートからなるシート体の位置決め用固定手段を設
けたスクリーン印刷用テーブル上において内部電極の印
刷を行い、位置決め用固定手段を設けた圧着金型上に該
シート体のキャリアフィルムを上側にして固定し、キャ
リアフィルムの剥離により表面に出たセラミックシート
上に同様にしてシート体を固定し、キャリアフィルムの
剥離を繰り返して複数のセラミックシートを積層し圧着
することを特徴とするセラミックシートの積層方法。
1. A slurry in which a dielectric material is dispersed in a binder solution is coated on a carrier film, and the obtained ceramic sheet is punched into a rectangular predetermined size.
Printing the internal electrode on the sheet and then laminated and crimped these ceramic sheets to form a laminate ceramic sheet
In the method for laminating a sheet, the ceramic sheet is punched out together with the carrier film, and the internal electrodes are printed on a screen printing table provided with a fixing means for positioning the sheet body composed of the carrier film and the ceramic sheet, and then the fixing means for positioning. The carrier film of the sheet body is fixed on the pressure-bonding die provided with, and the sheet body is similarly fixed on the ceramic sheet exposed on the surface by peeling of the carrier film, and peeling of the carrier film is repeated. the method of the laminated ceramic sheet, which comprises laminating a plurality of ceramic sheets crimping.
【請求項2】 上記位置決め用固定手段がスクリーン印
刷用テーブルまたは圧着金型上に設けられた位置出し用
ピンである請求項1記載の方法。
2. The method according to claim 1, wherein the positioning fixing means is a positioning pin provided on a screen printing table or a pressure die.
JP3083308A 1991-03-22 1991-03-22 How to stack ceramic sheets Expired - Lifetime JPH0793230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3083308A JPH0793230B2 (en) 1991-03-22 1991-03-22 How to stack ceramic sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3083308A JPH0793230B2 (en) 1991-03-22 1991-03-22 How to stack ceramic sheets

Publications (2)

Publication Number Publication Date
JPH06120074A JPH06120074A (en) 1994-04-28
JPH0793230B2 true JPH0793230B2 (en) 1995-10-09

Family

ID=13798792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3083308A Expired - Lifetime JPH0793230B2 (en) 1991-03-22 1991-03-22 How to stack ceramic sheets

Country Status (1)

Country Link
JP (1) JPH0793230B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644002B2 (en) * 2011-05-31 2014-02-04 Medtronic, Inc. Capacitor including registration feature for aligning an insulator layer
US8844103B2 (en) 2011-09-01 2014-09-30 Medtronic, Inc. Methods for making feedthrough assemblies including a capacitive filter array
US8644936B2 (en) 2012-01-09 2014-02-04 Medtronic, Inc. Feedthrough assembly including electrical ground through feedthrough substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211195A (en) * 1990-03-09 1992-08-03 Nec Corp Manufacture of ceramic multilayered wiring board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211195A (en) * 1990-03-09 1992-08-03 Nec Corp Manufacture of ceramic multilayered wiring board

Also Published As

Publication number Publication date
JPH06120074A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
EP0381879A1 (en) Method of manufacturing laminated ceramic electronic component
US5174842A (en) Method for laminating ceramic green sheets
JPH0562860A (en) Manufacture of laminated electronic component
JPH0793230B2 (en) How to stack ceramic sheets
JP2007053206A (en) Electronic component and manufacturing method thereof
JP3106153B2 (en) Manufacturing method of LC filter
JPH08222474A (en) Manufacture of ceramic electronic component
JPH06283375A (en) Manufacture of layered electronic components
JP2575339Y2 (en) Laminating device for multilayer ceramic electronic components
JP2002270459A (en) Manufacturing method for laminated ceramic electronic component
JPS6331104A (en) Manufacture of laminated ceramic capacitor
JP3131453B2 (en) Manufacturing method of multilayer ceramic capacitor
KR100369302B1 (en) Chip device of multi-layered type &amp; method thereof
JPH08316093A (en) Laminated ceramic electronic component manufacturing method
JP2512407B2 (en) Manufacturing method for laminated porcelain capacitors
JPS63265413A (en) Manufacture of laminated ceramic capacitor
JPH0793235B2 (en) Manufacturing method for monolithic ceramic electronic components
JPH04298915A (en) Manufacture of ceramic laminated body
JP2005136008A (en) Manufacturing method for laminated electronic component
JP2005101471A (en) Manufacturing method of laminated ceramic electronic component
JP3266986B2 (en) Manufacturing method of ceramic multilayer substrate
JP2005159180A (en) Method of manufacturing laminated ceramic electronic part
JP2004186341A (en) Method of manufacturing ceramic laminate
JP3625401B2 (en) Manufacturing method of multilayer inductor element
JPH1126279A (en) Manufacture of laminated ceramic electronic parts

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 16