JPH0791669A - Cooker - Google Patents

Cooker

Info

Publication number
JPH0791669A
JPH0791669A JP23968893A JP23968893A JPH0791669A JP H0791669 A JPH0791669 A JP H0791669A JP 23968893 A JP23968893 A JP 23968893A JP 23968893 A JP23968893 A JP 23968893A JP H0791669 A JPH0791669 A JP H0791669A
Authority
JP
Japan
Prior art keywords
temperature
food
detecting means
output
radiant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23968893A
Other languages
Japanese (ja)
Other versions
JP3491302B2 (en
Inventor
Takuo Shimada
拓生 嶋田
Hirohisa Imai
博久 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23968893A priority Critical patent/JP3491302B2/en
Publication of JPH0791669A publication Critical patent/JPH0791669A/en
Application granted granted Critical
Publication of JP3491302B2 publication Critical patent/JP3491302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)

Abstract

PURPOSE:To automatically cook without variability of cooking by simply and accurately measuring a temperature of food to be measured at its temperature corresponding to a decrease in an output of infrared detecting means due to a temperature change, a high temperature, deterioration, etc. CONSTITUTION:A temperature of food 2 is calculated based on an output of infrared detecting means 10 for detecting a temperature of a predetermined position 9 to be accurately measured by reference temperature detecting means 11 and radiation heat to be radiated from the position 9 in non-contact and thermoelectrically converting it. Thus, a temperature error generated due to an atmospheric temperature change, a temperature drift, aging change, etc., can be cancelled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子レンジなどの調理装
置における食品の自動調理に関し、特に食品の表面温度
を非接触で測定する赤外線検出手段を備えた調理装置の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to automatic cooking of food in a cooking apparatus such as a microwave oven, and more particularly to improvement of a cooking apparatus equipped with infrared detecting means for measuring the surface temperature of food in a non-contact manner.

【0002】[0002]

【従来の技術】従来この種の調理装置例えば電子レンジ
は、実開昭58−158202号公報に記載されてい
る。図6に示すように、調理室1内に食品2や皿3を載
せるための調理台4があり、さらにこの食品2を調理す
る加熱手段5、非接触で調理台4上に載せられた食品2
の温度を検出する表面温度検出手段6、この表面温度検
出手段6の出力が所定値に達した場合、加熱手段5によ
る食品2への加熱を停止する完了判定手段7とを備えて
いる。
2. Description of the Related Art Conventionally, a cooking apparatus of this type, for example, a microwave oven is described in Japanese Utility Model Laid-Open No. 58-158202. As shown in FIG. 6, there is a cooking table 4 on which the food 2 and the plate 3 are placed in the cooking chamber 1, and a heating means 5 for cooking the food 2 and a food placed on the cooking table 4 in a non-contact manner. Two
The surface temperature detecting means 6 for detecting the temperature of 1 and the completion determining means 7 for stopping the heating of the food 2 by the heating means 5 when the output of the surface temperature detecting means 6 reaches a predetermined value.

【0003】調理台4は食品2の加熱ムラを低減するた
め、加熱手段5によって食品2を電波加熱する場合常時
食品2を回転させる(例えば10秒間で1周させる)タ
ーンテーブルである。
The cooking table 4 is a turntable that constantly rotates the food 2 (for example, makes one revolution in 10 seconds) when the food 2 is heated by the heating means 5 in order to reduce uneven heating of the food 2.

【0004】加熱手段5は、マグネトロンからなり所定
のパワー出力で食品2をマイクロ波加熱する。
The heating means 5 comprises a magnetron and microwaves the food 2 with a predetermined power output.

【0005】表面温度検出手段6は例えば1素子のサー
モパイル型の赤外線センサで構成され、調理室1の天井
面に固定され、開口窓を介して調理台4の中央付近に置
かれた食品2から放射される熱エネルギーを非接触で検
出し温度に換算する。表面温度検出手段6は例えば図7
のように示される。6aは食品2から放射される輻射熱
(赤外線)を効率よく集光するもので赤外線を透過させ
る材質(例えばシリコン)からなる集光レンズである。
6bは集光レンズ6aで集められた食品2からの輻射熱
を熱電変換するサーモパイル素子で、6cはこのサーモ
パイル素子6bの出力信号を例えば1000倍に増幅す
る増幅回路である。
The surface temperature detecting means 6 is composed of, for example, a one-element thermopile type infrared sensor, is fixed to the ceiling surface of the cooking chamber 1, and the food 2 placed near the center of the cooking table 4 through the opening window. The radiated heat energy is detected without contact and converted to temperature. The surface temperature detecting means 6 is shown in FIG.
As shown. Reference numeral 6a is a condenser lens that efficiently collects radiant heat (infrared rays) emitted from the food 2 and is made of a material (for example, silicon) that transmits infrared rays.
Reference numeral 6b is a thermopile element that thermoelectrically converts radiant heat from the food 2 collected by the condenser lens 6a, and reference numeral 6c is an amplifier circuit that amplifies the output signal of the thermopile element 6b 1000 times, for example.

【0006】サーモパイル素子6bはゼーベック効果を
利用したものでビスマス−アンチモンといった異種金属
材料を数十対から数百対にわたり接合した熱電対を備え
ており、熱電対の温接点と冷接点間に生じた温度差に対
応した電位差を取り出すしくみとなっている。接合部の
温接点は光軸の中心付近に配置され、食品2から放射さ
れる輻射熱を受けやすくするよう金黒と呼ばれる吸熱材
を塗布している。一方接合部の冷接点はヒートシンクを
介し熱伝導率の高い外側の金属缶に熱結合し出来るだけ
温度変動しないように構成されている。
The thermopile element 6b utilizes the Seebeck effect and is equipped with a thermocouple in which several tens to several hundreds of different metal materials such as bismuth-antimony are joined, and the thermopile element 6b is formed between the hot junction and the cold junction of the thermocouple. It is a mechanism to extract the potential difference corresponding to the temperature difference. The hot junction of the joint is arranged near the center of the optical axis, and a heat absorbing material called gold black is applied so as to easily receive the radiant heat emitted from the food 2. On the other hand, the cold junction at the joint is configured to be thermally coupled to the outer metal can having a high thermal conductivity via a heat sink so that the temperature does not fluctuate as much as possible.

【0007】いま食品2から集光レンズ6aを介してサ
ーモパイル素子6bに対し輻射熱エネルギーが入射した
場合、温接点は冷接点に比べわずかに温度上昇を生じ
る。サーモパイル素子6bはこの温接点と冷接点と間に
発生した温度差をゼーベック効果を用いて起電力(例え
ば10μV/℃)に変換するものである。増幅回路6c
はサーモパイル素子からの出力電圧を例えば1000倍
に増幅し電圧V1(V)を出力する。一方6dは冷接点
温度検出サーミスタであり、サーモパイル素子6bに熱
結合されている。冷接点温度検出サーミスタ6dの出力
はさらに直線化回路6eで直線化され、冷接点温度に比
例する電圧V2(V)を出力する。最後に食品温度算出
部6fは増幅回路6cから出力される電圧V1(V)と
直線化回路6eから出力される電圧V2(V)とを合成
し食品2の温度に換算し、完了判定手段7に伝える。
When radiant heat energy enters the thermopile element 6b from the food 2 through the condenser lens 6a, the temperature of the hot junction slightly rises as compared with that of the cold junction. The thermopile element 6b converts the temperature difference generated between the hot junction and the cold junction into an electromotive force (for example, 10 μV / ° C.) using the Seebeck effect. Amplifier circuit 6c
Outputs the voltage V1 (V) by amplifying the output voltage from the thermopile element 1000 times, for example. On the other hand, 6d is a cold junction temperature detecting thermistor, which is thermally coupled to the thermopile element 6b. The output of the cold junction temperature detecting thermistor 6d is further linearized by the linearizing circuit 6e and outputs a voltage V2 (V) proportional to the cold junction temperature. Finally, the food temperature calculation unit 6f synthesizes the voltage V1 (V) output from the amplifier circuit 6c and the voltage V2 (V) output from the linearization circuit 6e to convert it into the temperature of the food 2, and the completion determination means 7 Tell.

【0008】一般に増幅回路6cすなわちサーモパイル
素子6bから出力される電圧V1(V)は食品2からの
入射エネルギーに比例し、 T1(K):食品2温度 T2(K):冷接点近傍温度 η:食品2の放射率 k:定数(ステファン・ボルツマン定数*センサ感度*
増幅率) とすると、ステファン−ボルツマンの法則に基づき V1=K*(η*T14−T24)・・・・・・・・・・・(式1) で表すことができる。ここで食品2の放射率ηを一定
(例えば0.93)、また電圧V2(V)はT2(K)に
比例し、T2(K)の変動幅が小さいとすれば(式1)
は、 T1=k1*V11/4+k2*V2+k3・・・・・・・・・(式2) k1、k2、k3:定数によって定まる値 に変形近似できる。つまりV1(V)及びV2(V)から
測温したい食品2の表面温度T1(K)を算出できるこ
とになる。実際には例えば集光レンズ6aが透過する赤
外線量が波長すなわち輻射温度によって異なるなどの理
由により、基本となる(式1)に完全には合致しない。
特に食品2が限定された狭い温度帯にある場合は T1=k1*V1+k2*V2+k3 ・・・・・・・・・・(式3) k1、k2、k3:定数Kによって定まる値 といった1次式で温度換算してよい。または(式3)に
おけるk1、k2、k3の値を使用温度帯や調理メニュー
ごとに切替え複合化してT1(K)を求めてもよい。
Generally, the voltage V1 (V) output from the amplifier circuit 6c, that is, the thermopile element 6b is proportional to the incident energy from the food 2. T1 (K): Food 2 temperature T2 (K): Cold junction vicinity temperature η: Emissivity of food 2 k: constant (Stefan-Boltzmann constant * sensor sensitivity *
Amplification rate), V1 = K * (η * T1 4 −T2 4 ) ... (Equation 1) based on the Stefan-Boltzmann law. If the emissivity η of the food 2 is constant (for example, 0.93), the voltage V2 (V) is proportional to T2 (K), and the fluctuation range of T2 (K) is small (Equation 1).
T1 = k1 * V1 1/4 + k2 * V2 + k3 ... (Equation 2) k1, k2, k3: can be transformed and approximated to values determined by constants. That is, the surface temperature T1 (K) of the food 2 to be measured can be calculated from V1 (V) and V2 (V). In reality, for example, the amount of infrared light transmitted through the condenser lens 6a differs depending on the wavelength, that is, the radiation temperature, and the like, and does not completely match the basic (formula 1).
Especially when the food 2 is in a limited narrow temperature zone, T1 = k1 * V1 + k2 * V2 + k3 (Equation 3) k1, k2, k3: A linear expression such as a value determined by a constant K You can convert the temperature with. Alternatively, the values of k1, k2, and k3 in (Equation 3) may be switched and combined for each operating temperature zone or cooking menu to obtain T1 (K).

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の構成では表面温度検出手段6近傍の雰囲気温度変動な
どにより実際のサーモパイル素子6b中の冷接点温度と
冷接点温度検出サーミスタ6dから直線化回路6eを介
し出力される電圧V2(V)との間でアンバランスが生
じ、結果的に換算される食品2の表面温度T1(K)に
測定誤差が出るという課題があった。この原因は伝導熱
によって冷接点近傍の温度を測定する冷接点温度検出サ
ーミスタ6dが冷接点そのものの温度変化に完全に追従
しきれていないことと、食品2の温度変化に対するV1
(V)の応答速度と冷接点近傍温度変動に対するV2
(V)の応答速度にずれがあるためである。
However, in the above conventional configuration, the actual cold junction temperature in the thermopile element 6b and the linear junction circuit 6e from the cold junction temperature detection thermistor 6d are changed by the ambient temperature fluctuation in the vicinity of the surface temperature detecting means 6 or the like. There is a problem that an imbalance occurs between the output voltage V2 (V) and the surface temperature T1 (K) of the food 2 which is converted as a result. This is because the cold junction temperature detection thermistor 6d, which measures the temperature in the vicinity of the cold junction by conduction heat, cannot completely follow the temperature change of the cold junction itself, and V1 for the temperature change of food 2
(V) response speed and V2 for cold junction temperature fluctuations
This is because there is a deviation in the response speed of (V).

【0010】また集光レンズ6aに汚れや水滴などが付
着した場合や振動などによって光軸が若干ずれた場合
に、サーモパイル素子6bに入射する輻射熱エネルギー
が減少し測定誤差が出る。あるいは増幅回路6c、直線
化回路6eの出力における温度ドリフト特性などにより
測定誤差が出るという課題もあった。言いかえると前記
(式3)におけるk1、k2、k3の各値が定数ではなく
応答遅れにより時間変動したり、温度によってずれてい
くということである。
Further, when dirt or water drops adhere to the condenser lens 6a or when the optical axis is slightly displaced due to vibration or the like, the radiant heat energy incident on the thermopile element 6b is reduced and a measurement error occurs. Alternatively, there is a problem that a measurement error may occur due to temperature drift characteristics in the outputs of the amplifier circuit 6c and the linearization circuit 6e. In other words, the values of k1, k2, and k3 in (Equation 3) above are not constants but time-variable due to response delay, or shift due to temperature.

【0011】本発明は上記課題を解決するもので、表面
温度検出手段6近傍の雰囲気温度が変動した場合や高温
となった場合あるいは劣化などにより出力が低下した場
合にも、その変化に対応して測温すべき食品2の温度を
簡単に精度よく測定し、出来映えにバラツキのない自動
調理ができる調理装置を提供することを目的としてい
る。
The present invention solves the above-mentioned problems and responds to changes in the ambient temperature in the vicinity of the surface temperature detecting means 6 even when the ambient temperature changes or becomes high, or when the output decreases due to deterioration or the like. It is an object of the present invention to provide a cooking device that can easily and accurately measure the temperature of the food 2 to be measured and can perform automatic cooking without variations in the finished product.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明の調理装置は、食品を加熱する加熱手段と、こ
の食品の載置位置以外の所定位置の温度を測定する基準
温度検出手段と、食品あるいは所定位置から放射される
輻射熱を非接触で検出し熱電変換する赤外線検出手段
と、食品からの輻射熱による赤外線検出手段の出力、所
定位置からの輻射熱による赤外線検出手段の出力及び基
準温度検出手段の出力から食品温度を算出する食品温度
算出手段と、食品温度算出手段の出力に応じ加熱手段を
制御する制御手段とを備えたものである。
To achieve the above object, the cooking apparatus of the present invention comprises a heating means for heating food and a reference temperature detecting means for measuring the temperature at a predetermined position other than the mounting position of the food. Infrared detecting means for non-contact detection of radiant heat radiated from food or a predetermined position and thermoelectric conversion, output of infrared detecting means by radiant heat from food, output of infrared detecting means by radiant heat from a predetermined position and reference temperature The food temperature calculation means calculates the food temperature from the output of the detection means, and the control means controls the heating means according to the output of the food temperature calculation means.

【0013】また特に赤外線検出手段を駆動し、輻射熱
検出の方向を食品の方向かまたは所定位置の方向かに切
り替える切替手段を備えたものである。
Further, it is particularly equipped with a switching means for driving the infrared detecting means to switch the direction of radiant heat detection to the direction of food or the direction of a predetermined position.

【0014】あるいは食品から赤外線検出手段に放射さ
れる輻射熱を遮断する遮断手段と、遮断手段に設けた所
定位置の温度を測定する基準温度検出手段と、前記遮断
手段を駆動し、輻射熱検出対象を食品かまたは遮断手段
に設けた所定位置かに切り替える切替手段を備えたもの
である。
Alternatively, a shielding means for shielding the radiant heat emitted from the food to the infrared detecting means, a reference temperature detecting means for measuring the temperature at a predetermined position provided on the shielding means, and the shielding means are driven to detect the radiant heat to be detected. It is provided with a switching means for switching between food and a predetermined position provided in the blocking means.

【0015】さらに所定位置の温度を可変制御する基準
温度制御手段と、この基準温度制御手段によって制御さ
れた所定位置の温度に対する赤外線検出手段の出力から
食品温度算出手段の出力を補正する補正手段とを備えた
ものである。
Further, reference temperature control means for variably controlling the temperature at the predetermined position, and correction means for correcting the output of the food temperature calculation means from the output of the infrared detection means for the temperature at the predetermined position controlled by the reference temperature control means. It is equipped with.

【0016】[0016]

【作用】本発明は上記構成によって、基準温度検出手段
で正確に測定される所定位置の温度と所定位置から放射
される輻射熱を熱電変換した赤外線検出手段の出力を基
に食品から放射される輻射熱を熱電変換する赤外線検出
手段の出力から食品温度を正確に測定することになる。
According to the present invention, the radiant heat radiated from food based on the temperature of the predetermined position accurately measured by the reference temperature detecting means and the output of the infrared detecting means thermoelectrically converting the radiant heat radiated from the predetermined position by the above-mentioned construction. The food temperature can be accurately measured from the output of the infrared detecting means for thermoelectrically converting.

【0017】また特に1つの赤外線検出手段を駆動し、
輻射熱検出対象を食品または所定位置に切り替える切替
手段を備えることによって、(式4)における右辺第2
項、第3項と(式5)における右辺第2項、第3項とは
完全に一致するので厳密に(式6)が成立する。
In particular, one infrared detecting means is driven,
By providing a switching means for switching the radiant heat detection target to food or a predetermined position, the second right side in (Equation 4)
Since the terms, the third term, and the second and third terms on the right side in (Equation 5) completely match, (Equation 6) is strictly established.

【0018】あるいは食品から赤外線検出手段に放射さ
れる輻射熱を遮断する遮断手段と、遮断手段に設けた所
定位置の温度T0(K)を測定する基準温度検出手段
と、遮断手段を駆動し、輻射熱検出対象を食品または遮
断手段に切り替える切替手段を備えても同様に作用す
る。
Alternatively, a shielding means for shielding the radiant heat emitted from the food to the infrared detecting means, a reference temperature detecting means for measuring the temperature T0 (K) at a predetermined position provided on the shielding means, and a shielding means for driving the radiant heat Even if the switching means for switching the detection target to the food or the blocking means is provided, the same operation is performed.

【0019】さらに所定位置の温度T0(K)を可変制
御する基準温度制御手段とこの基準温度制御手段によっ
て制御された所定位置の温度T0(K)に対する赤外線
検出手段の出力から食品温度算出手段の出力を補正する
補正手段とを備えることによって、様々に可変された所
定位置の温度T0(K)とそれに対応する出力電圧V0
(V)との関係から、(式5)におけるKaの値を測定
し食品2の温度算出式(式6)を自動校正することにな
る。
Further, reference temperature control means for variably controlling the temperature T0 (K) at the predetermined position and output of the infrared detecting means for the temperature T0 (K) at the predetermined position controlled by the reference temperature control means are used to calculate the food temperature calculation means. By providing a correcting means for correcting the output, the temperature T0 (K) at the predetermined position which is variously changed and the output voltage V0 corresponding to the temperature T0 (K)
From the relationship with (V), the value of Ka in (Equation 5) is measured and the temperature calculation equation (Equation 6) of the food 2 is automatically calibrated.

【0020】制御手段は食品温度検出手段で求めた正確
な食品温度に基づき、加熱手段に対し食品への加熱制御
量や加熱時間などを制御することで、出来映えにバラツ
キのない自動調理を実現する。
The control means controls the heating control amount and the heating time of the food to the heating means based on the accurate food temperature obtained by the food temperature detecting means, thereby realizing automatic cooking without variations in the finished product. .

【0021】[0021]

【実施例】以下、本発明の第1の実施例を図1、図2を
用いて説明する。尚、従来例と同じ構成のものは同一符
号をつける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. The same components as those in the conventional example are designated by the same reference numerals.

【0022】図1に示すように、調理室1内に食品2や
皿3を載せるための調理台4があり、さらにこの食品2
を調理する加熱手段5、非接触で調理台4上に載せられ
た食品2あるいは機械室8内の所定位置9から放射され
る輻射熱を熱電変換する赤外線検出手段10が設けられ
ている。所定位置9の表面は放射率を高くするため、黒
体塗装されている。またこの所定位置9の温度T0
(K)を常時検出する基準温度検出手段11が接続され
ている。12はこの赤外線検出手段10を90゜回転さ
せ、赤外線検出手段10における輻射熱検出対象を食品
2または所定位置9に切り替える切替手段であり、モー
ター、プーリーを備えタイミングベルトを介して赤外線
検出手段10に接続されている。
As shown in FIG. 1, there is a cooking table 4 on which a food 2 and a plate 3 are placed in a cooking chamber 1.
There is provided heating means 5 for cooking the food, and infrared detection means 10 for thermoelectrically converting the radiant heat radiated from the predetermined position 9 in the machine room 8 or the food 2 placed on the cooking table 4 in a non-contact manner. The surface of the predetermined position 9 is coated with a black body to increase the emissivity. Further, the temperature T0 at the predetermined position 9
A reference temperature detecting means 11 for constantly detecting (K) is connected. Reference numeral 12 is a switching means for rotating the infrared detecting means 10 by 90 ° so as to switch the radiant heat detection target in the infrared detecting means 10 to the food 2 or the predetermined position 9, and the infrared detecting means 10 is provided with a motor and a pulley via a timing belt. It is connected.

【0023】赤外線検出手段10の構成を図2に示す。
10aは輻射熱検出対象から放射される輻射熱(赤外
線)を効率よく集光するもので赤外線を透過させる材質
(例えばシリコン)からなる集光レンズである。10b
は集光レンズ10aで集められた輻射熱検出対象からの
輻射熱を非接触で検出し熱電変換するサーモパイル素子
で、10cはこのサーモパイル素子10bの出力信号を
例えば1000倍に増幅する増幅回路である。サーモパ
イル素子10bはビスマス−アンチモンといった異種金
属材料を数十対から数百対にわたり接合した熱電対を備
えている。接合部の温接点は光軸の中心付近に配置さ
れ、食品など輻射熱検出対象からの輻射熱だけを受けや
すくするよう金黒と呼ばれる吸熱材を塗布している。一
方接合部の冷接点はヒートシンクを介し熱伝導率の高い
外側の金属缶に熱結合し出来るだけ温度変動しないよう
に構成されている。いま輻射熱検出対象から集光レンズ
10aを介してサーモパイル素子10bに対し輻射熱エ
ネルギーが入射した場合、温接点は冷接点に比べわずか
に温度上昇を生じる。サーモパイル素子10bはこの温
接点と冷接点との間に発生した温度差をゼーベック効果
を用いて起電力(例えば10μV/℃)に変換するもの
である。増幅回路10cはサーモパイル素子からの出力
電圧を例えば1000倍に増幅し電圧を出力する。
The structure of the infrared detecting means 10 is shown in FIG.
Reference numeral 10a is a condenser lens that efficiently collects radiant heat (infrared rays) emitted from the radiant heat detection target and is made of a material (for example, silicon) that transmits infrared rays. 10b
Is a thermopile element for non-contact detection and thermoelectric conversion of radiant heat from the radiant heat detection target collected by the condenser lens 10a, and 10c is an amplifier circuit for amplifying the output signal of the thermopile element 10b by 1000 times, for example. The thermopile element 10b includes a thermocouple in which tens to hundreds of different metal materials such as bismuth-antimony are joined. The hot junction at the junction is located near the center of the optical axis, and is coated with a heat absorbing material called gold black so that it can easily receive only the radiant heat from the radiant heat detection target such as food. On the other hand, the cold junction at the joint is configured to be thermally coupled to the outer metal can having a high thermal conductivity via a heat sink so that the temperature does not fluctuate as much as possible. When radiant heat energy is incident on the thermopile element 10b from the radiant heat detection target through the condenser lens 10a, the temperature of the hot junction slightly rises as compared with that of the cold junction. The thermopile element 10b converts the temperature difference generated between the hot junction and the cold junction into an electromotive force (for example, 10 μV / ° C.) using the Seebeck effect. The amplifier circuit 10c amplifies the output voltage from the thermopile element by 1000 times and outputs the voltage.

【0024】ここで T1(K):食品温度(未知) T2(K):冷接点近傍温度(未知) T0(K):所定位置の温度(既知) V1(V):食品からの輻射熱による赤外線検出手段の
出力電圧(既知) V0(V):所定位置からの輻射熱による赤外線検出手
段の出力電圧(既知) V0=Ka*T0+Kb*T2+Kc・・・・・・・・・・・・・(式5) として(式3)の一次式に準じると、V1(V)及びV0
(V)は V1=(1/k1*T1)−(k2/k1)*T2−k3/k1 ・・・・・・(式4 ) V0=(1/k1*T0)−(k2/k1)*T2−k3/k1 ・・・・・・(式5 ) と表せるので、(式4)及び(式5)から T1=(V1−V0)*k1+T0 ・・・・・・・・・・・・・(式6) となる。つまり冷接点近傍温度を測定しなくても、非接
触で食品温度を正確に測定できることになる。また冷接
点近傍温度が変動しても測定温度精度に悪影響を及ぼさ
ない。これは(式3)の1次式でなく(式1)の4次式
から導いても同様である。
Here, T1 (K): food temperature (unknown) T2 (K): cold junction vicinity temperature (unknown) T0 (K): temperature at a predetermined position (known) V1 (V): infrared rays due to radiant heat from food Output voltage of detection means (known) V0 (V): Output voltage of infrared detection means due to radiant heat from a predetermined position (known) V0 = Ka * T0 + Kb * T2 + Kc ... (Equation) According to the linear equation of (Equation 3) as 5), V1 (V) and V0
(V) is V1 = (1 / k1 * T1)-(k2 / k1) * T2-k3 / k1 (Equation 4) V0 = (1 / k1 * T0)-(k2 / k1) * T2-k3 / k1 ··· (Equation 5) From (Equation 4) and (Equation 5), T1 = (V1−V0) * k1 + T0 .. (Equation 6) That is, the food temperature can be accurately measured in a non-contact manner without measuring the temperature near the cold junction. Even if the temperature near the cold junction fluctuates, the accuracy of the measured temperature is not adversely affected. This is the same even if it is derived from the quaternary equation of (Equation 1) instead of the linear equation of (Equation 3).

【0025】食品温度算出手段13は赤外線検出手段1
0及び基準温度検出手段11に接続され、加熱手段5に
よる食品2の加熱時食品2から放射される輻射熱を熱電
変換した赤外線検出手段10の出力電圧をV1(V)、
所定位置9から放射される輻射熱を熱電変換した赤外線
検出手段10の出力電圧をV0(V)、基準温度検出手
段11の出力を温度換算したものをT0(K)とする
と、前記(式6)により食品2の表面温度を算出し、常
時算出したこの食品2温度T0(K)を制御手段14に
伝える。
The food temperature calculating means 13 is an infrared detecting means 1
0 and the reference temperature detecting means 11 and the output voltage of the infrared detecting means 10 which is thermoelectrically converted from the radiant heat radiated from the food 2 when the food 2 is heated by the heating means 5 is V1 (V),
Letting V0 (V) be the output voltage of the infrared detecting means 10 that thermoelectrically converts the radiant heat radiated from the predetermined position 9 and T0 (K) be the temperature conversion of the output of the reference temperature detecting means 11, the above (Equation 6). The surface temperature of the food 2 is calculated in accordance with, and the calculated food 2 temperature T0 (K) is transmitted to the control means 14 at all times.

【0026】制御手段14は食品温度検出手段13で求
めた正確な食品2温度に基づき、加熱手段5に対し食品
2への加熱制御量や加熱時間などを制御し、また食品2
温度T0(K)の値が所定温度に達した場合加熱手段5
による食品2への加熱を停止する。
The control means 14 controls the heating control amount of the food 2 and the heating time to the heating means 5 based on the accurate food 2 temperature obtained by the food temperature detecting means 13, and the food 2
When the value of the temperature T0 (K) reaches a predetermined temperature, the heating means 5
The heating of the food 2 due to is stopped.

【0027】ところで、切替手段12によって輻射熱検
出対象を食品2へ向けるか所定位置9へ向けるかを切り
替える方法は加熱手段5による食品2の加熱中交互に切
り替えてもよいし、加熱前には輻射熱検出の方向を所定
位置9に加熱中には食品2に固定しておいてもよい。ま
た切替手段12による赤外線検出手段10の駆動方式は
回転でなく直線移動でも構わない。
By the way, as a method of switching whether the radiant heat detection target is directed to the food 2 or to the predetermined position 9 by the switching means 12, the heating means 5 may be alternately switched during heating of the food 2, or radiant heat may be applied before heating. The direction of detection may be fixed to the food 2 during heating to the predetermined position 9. Further, the driving method of the infrared detecting means 10 by the switching means 12 may be linear movement instead of rotation.

【0028】上記構成おいて、基準温度検出手段11で
正確に測定される所定位置9の温度T0(K)と食品2
及び所定位置9から放射される輻射熱を熱電変換した赤
外線検出手段10の出力電圧V1(V)、V0(V)を基
に食品2温度T1(K)を正確に測定することになる。
実際の赤外線検出手段10近傍の雰囲気温度が変動した
場合や高温となった場合あるいは劣化などにより出力が
低下した場合にも、その変化に対応して測温すべき食品
2の温度を簡単に精度よく測定し、出来映えにバラツキ
のない自動調理ができる効果がある。
In the above structure, the temperature T0 (K) at the predetermined position 9 accurately measured by the reference temperature detecting means 11 and the food 2
Also, the temperature T1 (K) of the food 2 is accurately measured based on the output voltages V1 (V) and V0 (V) of the infrared detecting means 10 that thermoelectrically converts the radiant heat radiated from the predetermined position 9.
Even if the actual ambient temperature near the infrared detecting means 10 fluctuates, becomes high, or the output decreases due to deterioration, the temperature of the food 2 to be measured can be accurately measured according to the change. It has the effect that it can be automatically measured with good measurement and no variations in the quality of the work.

【0029】次に本発明の第2の実施例を図3を用いて
説明する。尚、第1の実施例と同じ構成のものは同一符
号をつける。第1の実施例で示した構成と異なる点は食
品2から赤外線検出手段10に放射される輻射熱を遮断
する遮断手段15と、遮断手段15の温度を測定する基
準温度検出手段11と、遮断手段15を調理室1の天井
面と並行に直線駆動し、輻射熱検出対象を食品2または
遮断手段15に切り替える切替手段16を備えたことに
ある。切替手段16によって調理室1の天井面の開口部
が開放または遮断される。つまり赤外線検出手段10そ
のものを駆動するのではなく、切替手段16が遮断手段
15を駆動することによって輻射熱検出対象を食品2と
遮断手段15に切り替える構成である。ここで遮断手段
15の表面は放射率を高くするため、黒体塗装されてい
る。またこの遮断手段15の温度T0(K)を常時検出
する基準温度検出手段11が接続されている。赤外線検
出手段10の構成は第1の実施例において図2に示した
ものと同様である。
Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are designated by the same reference numerals. The difference from the configuration shown in the first embodiment is that the blocking means 15 for blocking the radiant heat emitted from the food 2 to the infrared detecting means 10, the reference temperature detecting means 11 for measuring the temperature of the blocking means 15, and the blocking means. There is a switching means 16 for linearly driving 15 in parallel with the ceiling surface of the cooking chamber 1 and switching the radiant heat detection target to the food 2 or the blocking means 15. The switching means 16 opens or closes the opening on the ceiling surface of the cooking chamber 1. That is, the infrared radiation detecting means 10 itself is not driven, but the switching means 16 drives the blocking means 15 to switch the radiant heat detection target between the food 2 and the blocking means 15. Here, the surface of the blocking means 15 is coated with a black body in order to increase the emissivity. Further, a reference temperature detecting means 11 for constantly detecting the temperature T0 (K) of the breaking means 15 is connected. The configuration of the infrared detecting means 10 is the same as that shown in FIG. 2 in the first embodiment.

【0030】食品温度算出手段13は前記第1の実施例
同様、赤外線検出手段10及び基準温度検出手段11に
接続され、加熱手段5による食品2の加熱時食品2から
放射される輻射熱を熱電変換した赤外線検出手段10の
出力電圧をV1(V)、遮断手段15から放射される輻
射熱を熱電変換した赤外線検出手段10の出力電圧をV
0(V)基準温度検出手段11の出力を温度換算したも
のをT0(K)とすると、前記(式6)により食品2の
表面温度を算出し、常時算出したこの食品2温度T0
(K)を制御手段14に伝える。
As in the first embodiment, the food temperature calculating means 13 is connected to the infrared detecting means 10 and the reference temperature detecting means 11, and the radiant heat radiated from the food 2 when the food 2 is heated by the heating means 5 is thermoelectrically converted. The output voltage of the infrared detecting means 10 is V1 (V), and the output voltage of the infrared detecting means 10 obtained by thermoelectric conversion of the radiant heat radiated from the breaking means 15 is V
Assuming that the output of the 0 (V) reference temperature detecting means 11 is temperature-converted to be T0 (K), the surface temperature of the food 2 is calculated by the above (formula 6), and this food 2 temperature T0 calculated at all times is calculated.
(K) is transmitted to the control means 14.

【0031】制御手段14は食品温度検出手段13で求
めた正確な食品2温度に基づき、加熱手段5に対し食品
2への加熱制御量や加熱時間などを制御し、また食品2
温度T0(K)の値が所定温度に達した場合加熱手段5
による食品2への加熱を停止する。
The control means 14 controls the heating control amount of the food 2 and the heating time to the heating means 5 on the basis of the accurate temperature of the food 2 obtained by the food temperature detecting means 13.
When the value of the temperature T0 (K) reaches a predetermined temperature, the heating means 5
The heating of the food 2 due to is stopped.

【0032】ところで、赤外線検出手段10をサーモパ
イルによって構成するのでなく、焦電型素子を用い、遮
断手段15をこの赤外線検出手段10のチョッパとして
併用してもよい。
By the way, the infrared detecting means 10 may not be constructed of a thermopile, but a pyroelectric element may be used and the blocking means 15 may be used as a chopper of the infrared detecting means 10.

【0033】上記構成おいて、基準温度検出手段11で
正確に測定される遮断手段15の温度T0(K)と食品
2及び遮断手段15から放射される輻射熱を熱電変換し
た赤外線検出手段10の出力電圧V1(V)、V0(V)
を基に食品2温度T1(K)を正確に測定することにな
る。実際の赤外線検出手段10近傍の雰囲気温度が変動
した場合や高温となった場合あるいは劣化などにより出
力が低下した場合にも、その変化に対応して測温すべき
食品2の温度を簡単に精度よく測定し、出来映えにバラ
ツキのない自動調理ができる効果がある。特に赤外線検
出手段10そのものを駆動しなくてよいので駆動に伴う
振動によって赤外線検出手段10の出力にノイズが重畳
することがない。また赤外線検出手段10近傍の雰囲気
温度が駆動によって変動することもないのでより安定し
た状態で測定でき、測定精度が向上する。
In the above structure, the temperature T0 (K) of the interruption means 15 accurately measured by the reference temperature detection means 11 and the output of the infrared detection means 10 which thermoelectrically converts the radiant heat radiated from the food 2 and the interruption means 15. Voltage V1 (V), V0 (V)
Based on the above, the food 2 temperature T1 (K) will be accurately measured. Even if the actual ambient temperature near the infrared detecting means 10 fluctuates, becomes high, or the output decreases due to deterioration, the temperature of the food 2 to be measured can be accurately measured according to the change. It has the effect that it can be automatically measured with good measurement and no variations in the quality of the work. In particular, since it is not necessary to drive the infrared detecting means 10 itself, noise is not superimposed on the output of the infrared detecting means 10 due to the vibration accompanying the driving. Further, since the ambient temperature in the vicinity of the infrared detecting means 10 does not change due to driving, the measurement can be performed in a more stable state, and the measurement accuracy is improved.

【0034】次に本発明の第3の実施例を図4、図5を
用いて説明する。尚、第2の実施例と同じ構成のものは
同一符号をつける。第2の実施例で示した構成と異なる
点は遮断手段15の温度を可変制御する基準温度制御手
段17と、この基準温度制御手段16によって制御され
た遮断手段15の温度に対する赤外線検出手段10の出
力から食品温度算出手段13の出力を補正する補正手段
18を備えたことにある。ここで赤外線検出手段10の
冷接点近傍温度T2(K)がほぼ一定で、遮断手段15
の温度をT0(K)、遮断手段15からの輻射熱による
赤外線検出手段10の出力電圧をV0(V)とすると
(式5)から V0=(1/k1)*T0−k3/k1・・・・・・・・・・・・(式7) と出来る。V0(V)は赤外線検出手段10からの出力
電圧であり、T0(K)は基準温度検出手段11からの
温度換算出力値である。加熱手段5による食品2への非
加熱時には切替手段16によって赤外線検出手段10の
輻射熱検出対象を遮断手段15に切り替えておき、また
基準温度制御手段17によって遮断手段15の温度を任
意に変更することで補正手段18には(式7)における
複数のV0とT0のデータ組が収集できる。補正手段18
は収集された複数のV0とT0のデータ組を例えば最小二
乗法で直線回帰することによりあらかじめ定数k1、k3
を算出し食品温度算出手段13に伝える。
Next, a third embodiment of the present invention will be described with reference to FIGS. The same components as those in the second embodiment are designated by the same reference numerals. The difference from the configuration shown in the second embodiment is that the reference temperature control means 17 variably controls the temperature of the shutoff means 15 and the infrared detection means 10 for the temperature of the shutoff means 15 controlled by the reference temperature control means 16. It is provided with the correction means 18 for correcting the output of the food temperature calculation means 13 from the output. Here, the temperature T2 (K) near the cold junction of the infrared detecting means 10 is substantially constant, and the shutoff means 15
When the output voltage of the infrared detecting means 10 due to the radiant heat from the breaking means 15 is V0 (V), the temperature of the above is V0 (V) = V0 = (1 / k1) * T0-k3 / k1 ...・ ・ ・ ・ ・ ・ ・ (Equation 7) V0 (V) is an output voltage from the infrared detecting means 10, and T0 (K) is a temperature conversion output value from the reference temperature detecting means 11. When the heating means 5 does not heat the food 2, the radiant heat detection target of the infrared detecting means 10 is switched to the blocking means 15 by the switching means 16, and the temperature of the blocking means 15 is arbitrarily changed by the reference temperature control means 17. Thus, the correction means 18 can collect a plurality of V0 and T0 data sets in (Equation 7). Correction means 18
Is a constant k1, k3 in advance obtained by linear regression of the collected data sets of V0 and T0, for example, by the method of least squares.
Is calculated and transmitted to the food temperature calculation means 13.

【0035】食品温度算出手段13は前記第1の実施例
同様、赤外線検出手段10及び基準温度検出手段11に
も接続され、加熱手段5による食品2の加熱時食品2か
ら放射される輻射熱を熱電変換した赤外線検出手段10
の出力電圧をV1(V)、遮断手段15から放射される
輻射熱を熱電変換した赤外線検出手段10の出力電圧を
V0(V)基準温度検出手段11の出力を温度換算した
ものをT0(K)とすると、前記(式6)により食品2
の表面温度を算出し、常時算出したこの食品2温度T0
(K)を制御手段14に伝える。
The food temperature calculating means 13 is also connected to the infrared detecting means 10 and the reference temperature detecting means 11 as in the first embodiment, and the radiant heat emitted from the food 2 when the food 2 is heated by the heating means 5 is thermoelectrically converted. Converted infrared detecting means 10
Output voltage of V1 (V), the output voltage of the infrared detecting means 10 that thermoelectrically converts the radiant heat radiated from the breaking means 15 is V0 (V), and the output of the reference temperature detecting means 11 is temperature converted to T0 (K). Then, according to the above (formula 6), the food 2
Calculated the surface temperature of the
(K) is transmitted to the control means 14.

【0036】制御手段14は食品温度検出手段13で求
めた正確な食品2温度に基づき、加熱手段5に対し食品
2への加熱制御量や加熱時間などを制御し、また食品2
温度T0(K)の値が所定温度に達した場合加熱手段5
による食品2への加熱を停止する。図5に示すように食
品2への加熱時と非加熱時では前記した2つ動作モード
を有し、これを繰り返す構成であり、非加熱モードで算
出される値Kaはその都度更新する。非加熱モードでは
切替手段16によって調理室1天井面の開口部が遮断さ
れているので、機械室8全体あるいは赤外線検出手段1
0近傍の雰囲気温度の変動も少なく、(式7)は成立す
る。
The control means 14 controls the heating control amount of the food 2 and the heating time to the heating means 5 on the basis of the accurate temperature of the food 2 obtained by the food temperature detecting means 13.
When the value of the temperature T0 (K) reaches a predetermined temperature, the heating means 5
The heating of the food 2 due to is stopped. As shown in FIG. 5, when the food 2 is heated and when it is not heated, it has the above-described two operation modes, which are repeated, and the value Ka calculated in the non-heated mode is updated each time. In the non-heating mode, since the opening on the ceiling surface of the cooking chamber 1 is blocked by the switching means 16, the entire machine room 8 or the infrared detecting means 1
There is little fluctuation in the ambient temperature near 0, and (Equation 7) holds.

【0037】上記構成において遮断手段15の温度T0
(K)を可変制御する基準温度制御手段17とこの基準
温度制御手段17によって制御された遮断手段15の温
度T0(K)に対する赤外線検出手段10の出力から食
品温度算出手段の出力を補正する補正手段18とを備え
ることによって、様々に可変された遮断手段15の温度
T0(K)とそれに対応する出力電圧V0(V)との関係
から、(式5)におけるKaの値を測定し食品2の温度
算出式(式6)を自動校正することになる。
In the above structure, the temperature T0 of the shutoff means 15
A correction for correcting the output of the food temperature calculation means from the output of the infrared detection means 10 with respect to the temperature T0 (K) of the reference temperature control means 17 for variably controlling (K) and the shutoff means 15 controlled by the reference temperature control means 17. By including the means 18, the value of Ka in (Equation 5) is measured from the relationship between the temperature T0 (K) of the breaking means 15 and the corresponding output voltage V0 (V), which are variously changed, to measure the food 2 The temperature calculation formula (formula 6) is automatically calibrated.

【0038】よって赤外線検出手段10中の集光レンズ
6aに汚れや水滴などが付着した場合や振動などによっ
て光軸が若干ずれた場合に、サーモパイル素子6bに入
射する輻射熱エネルギーが減少したり、増幅回路6c、
直線化回路6eの出力における温度ドリフトがあるが、
それらの変化に対応して測温すべき食品2の温度を簡単
に精度よく測定し、出来映えにバラツキのない自動調理
ができる効果がある。
Therefore, when dirt or water droplets are attached to the condenser lens 6a in the infrared detecting means 10 or when the optical axis is slightly displaced due to vibration or the like, the radiant heat energy incident on the thermopile element 6b is reduced or amplified. Circuit 6c,
Although there is a temperature drift in the output of the linearization circuit 6e,
There is an effect that the temperature of the food 2 to be temperature-measured can be easily and accurately measured in response to these changes, and automatic cooking can be performed without variations in the finished product.

【0039】ところで、補正手段18における食品温度
換算式の算出式は(式7)のような1次式でなくてもよ
い。赤外線検出手段10の構成はサーモパイルに限るも
のではない。
By the way, the calculation formula of the food temperature conversion formula in the correction means 18 does not have to be a linear formula such as (Formula 7). The configuration of the infrared detecting means 10 is not limited to the thermopile.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、次
の効果がある。
As described above, the present invention has the following effects.

【0041】(1)赤外線検出手段近傍の雰囲気温度が
変動した場合や高温となった場合あるいは劣化などによ
り出力が低下した場合にも、その変化に対応して測温す
べき食品の温度を簡単に精度よく測定し、出来映えにバ
ラツキのない自動調理ができる。
(1) Even if the ambient temperature near the infrared detecting means fluctuates, becomes high, or the output drops due to deterioration, etc., the temperature of the food to be measured can be simply adjusted according to the change. It is possible to perform automatic cooking without any variation in the result by accurately measuring.

【0042】(2)特に1つの赤外線検出手段を駆動し
輻射熱検出の方向を食品または所定位置に切り替える切
替手段を備えることによって、測定精度が向上する。
(2) Especially, by providing one infrared detecting means and switching means for switching the radiant heat detection direction to food or a predetermined position, the measurement accuracy is improved.

【0043】(3)あるいは遮断手段を駆動し輻射熱検
出の方向を食品または遮断手段に切り替える切替手段を
備えた場合、駆動に伴う振動によって赤外線検出手段の
出力にノイズが重畳することがない。また赤外線検出手
段近傍の雰囲気温度が駆動によって変動することもない
のでより安定した状態で測定でき、測定精度が向上す
る。
(3) Alternatively, when the switching means is driven and the switching means for switching the radiant heat detection direction to the food or the blocking means is provided, noise is not superposed on the output of the infrared detecting means due to the vibration accompanying the driving. Further, since the ambient temperature in the vicinity of the infrared detecting means does not fluctuate due to driving, the measurement can be performed in a more stable state and the measurement accuracy is improved.

【0044】(4)様々に可変された所定位置の温度と
それに対応する出力電圧との関係から、食品の温度算出
式を自動校正することになり、経年劣化もなくなる。
(4) The temperature calculation formula of food is automatically calibrated from the relationship between the temperature at various predetermined positions and the output voltage corresponding thereto, and the deterioration over time is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における調理装置の構成
を示すブロック図
FIG. 1 is a block diagram showing a configuration of a cooking apparatus according to a first embodiment of the present invention.

【図2】同実施例における赤外線検出手段の構成を示す
FIG. 2 is a diagram showing a configuration of infrared detecting means in the embodiment.

【図3】本発明の第2の実施例における調理装置の構成
を示すブロック図
FIG. 3 is a block diagram showing a configuration of a cooking apparatus according to a second embodiment of the present invention.

【図4】本発明の第3の実施例における調理装置の構成
を示すブロック図
FIG. 4 is a block diagram showing a configuration of a cooking apparatus according to a third embodiment of the present invention.

【図5】同実施例における調理装置の2種類の動作を説
明するブロック図
FIG. 5 is a block diagram illustrating two types of operations of the cooking apparatus according to the embodiment.

【図6】従来の調理装置の構成を示すブロック図FIG. 6 is a block diagram showing a configuration of a conventional cooking device.

【図7】同実施例における表面温度検出手段の構成を示
す図
FIG. 7 is a diagram showing a configuration of surface temperature detecting means in the embodiment.

【符号の説明】[Explanation of symbols]

2 食品 5 加熱手段 10 赤外線検出手段 11 基準温度検出手段 12 切替手段 13 食品温度算出手段 14 制御手段 15 遮断手段 18 補正手段 2 food 5 heating means 10 infrared detection means 11 reference temperature detection means 12 switching means 13 food temperature calculation means 14 control means 15 shut-off means 18 correction means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】食品を加熱する加熱手段と、前記食品の載
置位置以外の所定位置の温度を測定する基準温度検出手
段と、前記食品あるいは前記所定位置から放射される輻
射熱を非接触で検出し熱電変換する赤外線検出手段と、
前記食品からの輻射熱による前記赤外線検出手段の出力
と、前記所定位置からの輻射熱による前記赤外線検出手
段の出力及び前記基準温度検出手段の出力から前記食品
温度を算出する食品温度算出手段と、前記食品温度算出
手段の出力に応じ前記加熱手段を制御する制御手段とを
備えた調理装置。
1. A heating means for heating food, a reference temperature detecting means for measuring the temperature of a predetermined position other than the placement position of the food, and radiant heat radiated from the food or the predetermined position is detected in a non-contact manner. Infrared detecting means for thermoelectric conversion,
The output of the infrared detecting means by the radiant heat from the food, the food temperature calculating means for calculating the food temperature from the output of the infrared detecting means by the radiant heat from the predetermined position and the output of the reference temperature detecting means, the food A cooking device comprising: a control unit that controls the heating unit according to the output of the temperature calculation unit.
【請求項2】前記赤外線検出手段を駆動し、輻射熱検出
の方向を前記食品の方向かまたは前記所定位置の方向か
に切り替える切替手段を備えた請求項1記載の調理装
置。
2. The cooking apparatus according to claim 1, further comprising a switching unit that drives the infrared detection unit and switches a radiant heat detection direction to the food item direction or the predetermined position direction.
【請求項3】前記食品から赤外線検出手段に放射される
輻射熱を遮断する遮断手段と、前記遮断手段を駆動し、
輻射熱検出対象を前記食品かまたは前記遮断手段に設け
た所定位置かに切り替える切替手段とを備えた請求項1
記載の調理装置。
3. A blocking means for blocking radiant heat emitted from the food to the infrared detecting means, and driving the blocking means,
2. A switching means for switching the radiant heat detection target to the food or a predetermined position provided on the blocking means.
The cooking device described.
【請求項4】前記所定位置の温度を可変制御する基準温
度制御手段と、前記基準温度制御手段によって制御され
た前記所定位置の温度に対する前記赤外線検出手段の出
力から前記食品温度算出手段の出力を補正する補正手段
とを備えた請求項1記載の調理装置。
4. A reference temperature control means for variably controlling the temperature of the predetermined position, and an output of the food temperature calculation means from the output of the infrared detection means with respect to the temperature of the predetermined position controlled by the reference temperature control means. The cooking apparatus according to claim 1, further comprising a correction unit that corrects the correction.
JP23968893A 1993-09-27 1993-09-27 Cooking equipment Expired - Fee Related JP3491302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23968893A JP3491302B2 (en) 1993-09-27 1993-09-27 Cooking equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23968893A JP3491302B2 (en) 1993-09-27 1993-09-27 Cooking equipment

Publications (2)

Publication Number Publication Date
JPH0791669A true JPH0791669A (en) 1995-04-04
JP3491302B2 JP3491302B2 (en) 2004-01-26

Family

ID=17048439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23968893A Expired - Fee Related JP3491302B2 (en) 1993-09-27 1993-09-27 Cooking equipment

Country Status (1)

Country Link
JP (1) JP3491302B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274295A (en) * 1990-08-01 1991-12-05 Nippon Steel Corp Rustproof steel sheet having superior corrosion resistance
JPH10132288A (en) * 1996-10-25 1998-05-22 Matsushita Electric Ind Co Ltd Heater
JP2008258181A (en) * 2008-07-31 2008-10-23 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2010251332A (en) * 2010-06-16 2010-11-04 Hitachi Appliances Inc Induction cooking device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274295A (en) * 1990-08-01 1991-12-05 Nippon Steel Corp Rustproof steel sheet having superior corrosion resistance
JPH10132288A (en) * 1996-10-25 1998-05-22 Matsushita Electric Ind Co Ltd Heater
JP2008258181A (en) * 2008-07-31 2008-10-23 Matsushita Electric Ind Co Ltd Induction heating cooker
JP4535177B2 (en) * 2008-07-31 2010-09-01 パナソニック株式会社 Induction heating cooker
JP2010251332A (en) * 2010-06-16 2010-11-04 Hitachi Appliances Inc Induction cooking device

Also Published As

Publication number Publication date
JP3491302B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US5597237A (en) Apparatus for measuring the emissivity of a semiconductor wafer
JP3393648B2 (en) Temperature compensation sensor module
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US2837917A (en) Radiation systems for measuring temperature
JPH09257587A (en) Non-contact type temperature meter
JP2004095314A (en) Induction heating cooker
JP2004095313A (en) Induction heating cooker
US5707146A (en) High-temperature thermoelement calibration
JP3491302B2 (en) Cooking equipment
JP3316961B2 (en) Cooking equipment
JPH0666639A (en) Infrared thermometer
JP5341385B2 (en) Induction heating cooker
US3519352A (en) Null-system radiometer
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JP2003294526A (en) Laser power detection device
JP3350990B2 (en) High frequency heating equipment
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JPS6330890Y2 (en)
JP3093239B2 (en) Semiconductor wafer heat treatment apparatus and heat treatment method
JPH0367137A (en) Surface temperatude controller
JP3390619B2 (en) Temperature detector of high frequency heating device
JPS634651B2 (en)
JPH02196933A (en) Infrared-ray detection device
JP3176798B2 (en) Radiant heat sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20071114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091114

LAPS Cancellation because of no payment of annual fees