JPH079086U - Eddy current type speed reducer - Google Patents

Eddy current type speed reducer

Info

Publication number
JPH079086U
JPH079086U JP4253893U JP4253893U JPH079086U JP H079086 U JPH079086 U JP H079086U JP 4253893 U JP4253893 U JP 4253893U JP 4253893 U JP4253893 U JP 4253893U JP H079086 U JPH079086 U JP H079086U
Authority
JP
Japan
Prior art keywords
eddy current
generating member
permanent magnet
current generating
conductivity material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4253893U
Other languages
Japanese (ja)
Inventor
義治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4253893U priority Critical patent/JPH079086U/en
Publication of JPH079086U publication Critical patent/JPH079086U/en
Pending legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

(57)【要約】 【目的】 変換された熱エネルギーにより各種部材が高
温にさらされる問題を解決し、多方面の用途に使用でき
る制動効率の高い渦電流式減速装置の提供。 【構成】 永久磁石1と所定の空隙を形成し且つ永久磁
石2と相対的に回転自在に対向配置する磁性体からなる
渦電流発生部材3の永久磁石1対向面側に配置した非磁
性体からなる高電気伝導度材料4と渦電流発生部材3と
の間に所定の熱放散用空隙8を形成し、例えば、該熱方
散用空隙8に積極的に空気を送風したり冷水を循環した
りすることによって高電気伝導度材料4及び渦電流発生
部材3の温度上昇を抑制し、効率的に制動トルクを向上
させる。
(57) [Abstract] [Purpose] To provide an eddy current type speed reducer with high braking efficiency, which solves the problem that various members are exposed to high temperatures due to converted thermal energy and can be used in various fields. A non-magnetic material arranged on the surface facing the permanent magnet 1 of an eddy current generating member 3 made of a magnetic material that forms a predetermined gap with the permanent magnet 1 and is rotatably opposed to the permanent magnet 2 relative to the permanent magnet 1. A predetermined heat dissipation space 8 is formed between the high electrical conductivity material 4 and the eddy current generating member 3 and, for example, air is actively blown into the heat dissipation space 8 or cold water is circulated. As a result, the temperature rise of the high electrical conductivity material 4 and the eddy current generating member 3 is suppressed, and the braking torque is efficiently improved.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、各種工作機械の制動装置、健康器具の制動装置等、多方面にて使 用されている所謂ディスクタイプの渦電流式減速装置(リターダ)の改良に係り 、特に制動効率の高い渦電流式減速装置に関する。 The present invention relates to an improvement of a so-called disk type eddy current type speed reducer (retarder) which is used in various fields such as a braking device for various machine tools and a braking device for health equipment. The present invention relates to a current type speed reducer.

【0002】[0002]

【従来の技術】[Prior art]

ディスクタイプの渦電流式減速装置の基本的な構成としては、図2に示すよう なものが知られている。 図において1は円板状のヨーク2の一方主面に配置される偏平環状の永久磁石 であり、該永久磁石1対向面側に渦電流発生の増加を目的とするCu等の非磁性 体からなる高電気伝導度材料4を接着したFe合金等の磁性体からなる円板状の 渦電流発生部材3と所定の空隙(Lg)5を形成し、且つ前記永久磁石1と渦電 流発生部材3とがそれぞれ相対的に回転自在に対向配置する構成からなっている (特開昭63−274359号)。 なお、永久磁石1の渦電流発生部材3との対向面には、複数の磁極が交互に異 磁極が隣接するよう環状に配置されている。図において6は、ヨーク2に固定さ れる軸であり、7は渦電流発生部材3に固定される軸である。 As a basic configuration of a disk type eddy current type speed reducer, one shown in FIG. 2 is known. In the figure, reference numeral 1 denotes a flat annular permanent magnet arranged on one main surface of the disk-shaped yoke 2, and is made of a non-magnetic material such as Cu for the purpose of increasing eddy current generation on the surface facing the permanent magnet 1. A disk-shaped eddy current generating member 3 made of a magnetic material such as an Fe alloy to which a high electrical conductivity material 4 is adhered and a predetermined gap (Lg) 5 are formed, and the permanent magnet 1 and the eddy current generating member are formed. 3 and 3 are arranged so as to be rotatable relative to each other (Japanese Patent Laid-Open No. 274359/1988). On the surface of the permanent magnet 1 facing the eddy current generating member 3, a plurality of magnetic poles are arranged in an annular shape so that different magnetic poles are adjacent to each other. In the figure, 6 is a shaft fixed to the yoke 2, and 7 is a shaft fixed to the eddy current generating member 3.

【0003】 例えば、軸7を介して渦電流発生部材3が回転側に配置する構成の場合、永久 磁石1から発生する磁束の作用によって高電気伝導度材料4内及び渦電流発生部 材3内に渦電流が発生し、この渦電流による運動エネルギーを熱エネルギーに変 換して制動トルクを得ることができ、渦電流発生部材3の回転を制動、所謂ブレ ーキ作用することとなる。 渦電流発生部材3への制動トルクの調整は、通常、永久磁石1を図中矢印イ方 向に移動させ、実際に磁路を形成する永久磁石1と磁性体からなる渦電流発生部 材3との距離Lgを調整することによって行う。 上記の渦電流式減速装置においては、渦電流発生部材3が回転側に配置する場 合にて説明したが、永久磁石1が回転側に配置する場合でも同様に高電気伝導度 材料4内及び渦電流発生部材3内に渦電流が発生し、永久磁石1の回転を制動す ることとなる。For example, in the case where the eddy current generating member 3 is arranged on the rotation side via the shaft 7, the magnetic flux generated from the permanent magnet 1 acts on the inside of the high electrical conductivity material 4 and the inside of the eddy current generating member 3. An eddy current is generated in the eddy current, the kinetic energy due to the eddy current can be converted into heat energy to obtain a braking torque, and the rotation of the eddy current generating member 3 is braked, which is a so-called brake action. The adjustment of the braking torque to the eddy current generating member 3 is usually performed by moving the permanent magnet 1 in the direction of the arrow A in the figure to actually form a magnetic path and the eddy current generating member 3 composed of a magnetic material. This is done by adjusting the distance Lg from In the eddy current type speed reducer described above, the case where the eddy current generating member 3 is arranged on the rotation side has been described, but even when the permanent magnet 1 is arranged on the rotation side, the material in the high electrical conductivity material 4 and The eddy current is generated in the eddy current generating member 3 and brakes the rotation of the permanent magnet 1.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記に示す構成の渦電流式減速装置において、その制動トルクは高電気伝導度 材料4内及び渦電流発生部材3内に発生する渦電流によって決定される。 しかし、発生する渦電流はすべて熱エネルギーに変換されることから、高電気 伝導度材料4及び渦電流発生部材3はそれぞれ非常に高温となり、各構成部材に 変形を招いたり、電気伝導度材料4及び渦電流発生部材3の近傍に位置する永久 磁石1の温度が上昇して実質的な磁気特性の低下を招いたりして、装置全体とし ては必ずしも効率的な構成とは言い難く、しかも、現在該技術分野で要求される 小型軽量化を実現することができなかった。 In the eddy current type speed reducer configured as described above, the braking torque is determined by the eddy currents generated in the high electrical conductivity material 4 and the eddy current generating member 3. However, since the generated eddy currents are all converted into thermal energy, the high electrical conductivity material 4 and the eddy current generating member 3 become extremely high in temperature, which causes deformation of each constituent member and the electrical conductivity material 4 Also, the temperature of the permanent magnet 1 located in the vicinity of the eddy current generating member 3 rises, causing a substantial decrease in magnetic characteristics, and it is difficult to say that the entire device is an efficient structure. At present, it has not been possible to realize the reduction in size and weight required in the technical field.

【0005】 この考案は、変換された熱エネルギーにより各種部材が高温にさらされる問題 を解決し、多方面の用途に使用できる制動効率の高い渦電流式減速装置の提供を 目的とする。An object of the present invention is to solve the problem that various members are exposed to high temperatures due to the converted thermal energy, and to provide an eddy current type speed reducer with high braking efficiency that can be used in various fields.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

この考案は、従来の渦電流式減速装置の高電気伝導度材料と渦電流発生部材と の間に所定の熱放散用空隙を形成し、例えば、該熱方散用空隙に積極的に空気を 送風したり冷水を循環したりすることによって高電気伝導度材料及び渦電流発生 部材の温度上昇を抑制し、効率的に制動トルクを向上させることが可能であるこ とを知見し、完成したものである。 すなわち、この考案は、永久磁石と所定の空隙を形成し且つ永久磁石と相対的 に回転自在に対向配置する磁性体からなる渦電流発生部材の永久磁石対向面側に 非磁性体からなる高電気伝導度材料を配置してなる渦電流式減速装置において、 前記渦電流発生部材と高電気伝導度材料との間に所定の熱放散用空隙を形成した ことを特徴とする渦電流式減速装置である。 This invention forms a predetermined air gap for heat dissipation between the high electrical conductivity material and the eddy current generating member of the conventional eddy current type speed reducer, and, for example, positively introduces air into the heat dissipation air gap. We have found that it is possible to suppress the temperature rise of the high electric conductivity material and the eddy current generating member by blowing air or circulating cold water, and it is possible to efficiently improve the braking torque. is there. That is, this invention is a high-electricity non-magnetic material formed on the permanent magnet facing surface side of the eddy current generating member made of a magnetic material that forms a predetermined gap with the permanent magnet and is rotatably opposed to the permanent magnet. An eddy current type speed reducer in which a conductive material is arranged, wherein a predetermined heat dissipation gap is formed between the eddy current generating member and the high electric conductivity material. is there.

【0007】[0007]

【作用】[Action]

この考案の渦電流式減速装置の作用を図1に示す一実施例に基づいて説明する 。 図1は、所謂ディスクタイプの渦電流式減速装置にこの考案の構成を採用した ものであり、図において1は円板状のヨーク2の一方主面に配置される偏平環状 の永久磁石であり、該永久磁石1対向面側に所定の熱放散用空隙8を形成して偏 平環状の非磁性体からなる高電気伝導度材料4を配置してなるFe合金等の磁性 体からなる円板状の渦電流発生部材3と所定の空隙(Lg)5を形成して対向配 置する構成からなっている。なお、9は所定寸法の熱放散用空隙8を形成して渦 電流発生部材3と高電気伝導度材料4とを一体に保持する高電気伝導度材料保持 部材である。 前記偏平環状の永久磁石1の高電気伝導度材料4及び渦電流発生部材3対向面 側には、複数の磁極(通常4極〜30極程度)が交互に異磁極が隣接するよう環 状に配置される。 すなわち、予め一体品からなる偏平環状の永久磁石1の高電気伝導度材料4及 び渦電流発生部材3対向面に、複数の磁極を面着磁したり、厚さ方向に着磁され た複数の扇状偏平永久磁石を円板状のヨーク2の表面に環状に配置する等、種々 の構成が採用できる。 The operation of the eddy current type speed reducer of the present invention will be described based on an embodiment shown in FIG. FIG. 1 shows a so-called disk type eddy current type speed reducer in which the configuration of the present invention is adopted. In FIG. 1, reference numeral 1 denotes a flat annular permanent magnet arranged on one main surface of a disk-shaped yoke 2. A disk made of a magnetic material such as an Fe alloy in which a predetermined heat dissipation space 8 is formed on the surface facing the permanent magnet 1 and a high electrical conductivity material 4 made of a flat magnetic material is arranged. The eddy current generating member 3 and a predetermined gap (Lg) 5 are formed and arranged so as to face each other. Reference numeral 9 is a high-electric-conductivity material holding member that forms a heat-dissipating void 8 of a predetermined size and holds the eddy current generating member 3 and the high-electric conductivity material 4 integrally. A plurality of magnetic poles (usually about 4 to 30 poles) are alternately arranged on the side of the flat annular permanent magnet 1 opposite to the high electric conductivity material 4 and the eddy current generating member 3 so that different magnetic poles are adjacent to each other. Will be placed. That is, a plurality of magnetic poles are surface-magnetized or magnetized in the thickness direction on the surface of the flat annular permanent magnet 1 which is an integral product and faces the high electric conductivity material 4 and the eddy current generating member 3 in advance. Various configurations such as arranging the fan-shaped flat permanent magnets on the surface of the disk-shaped yoke 2 in an annular shape can be adopted.

【0008】 また、磁路は永久磁石1と磁性体からなる渦電流発生部材3とによって形成さ れ、それらの間に配置される非磁性体からなる高電気伝導度材料4は、この磁路 形成には直接関与しない。 従って、高電気伝導度材料4の配置及び熱放散用空隙8の形成は、上記磁路中 の磁気抵抗を実質的に高めることとなり、磁路形成の観点からは必ずしも好まし くなく、目的とする作用、効果を得るためには永久磁石1として、高磁気特性を 有するFe−B−R系焼結磁石等、公知の希土類系永久磁石材料を使用すること が望ましい。Further, the magnetic path is formed by the permanent magnet 1 and the eddy current generating member 3 made of a magnetic material, and the high electric conductivity material 4 made of a non-magnetic material disposed between them is the magnetic path. It is not directly involved in formation. Therefore, the arrangement of the high electric conductivity material 4 and the formation of the heat dissipation void 8 substantially increase the magnetic resistance in the magnetic path, which is not always preferable from the viewpoint of forming the magnetic path. In order to obtain the action and effect, it is desirable to use, as the permanent magnet 1, a known rare earth-based permanent magnet material such as a Fe—BR type sintered magnet having high magnetic characteristics.

【0009】 また、制動トルクは永久磁石1から発生される磁束によって高電気伝導度材料 4内と渦電流発生部材3内とに発生する渦電流の総和によって決定される。上記 の説明のように、熱放散用空隙8を形成することによって永久磁石1との距離が 必然的に大きくなり作用する磁束量が少なくなる渦電流発生部材3内では、発生 する渦電流も減少することから、永久磁石1との距離が小さい高電気伝導度材料 4内で発生する渦電流を増加させることが望ましい。 従って、高電気伝導度材料4としては、できるだけ電気伝導度が高く、従来構 成に比較して厚い寸法からなるCu、Cu合金、Al、Al合金等を要求される 制動トルク等に応じて材質、形状、寸法等を選定することが望ましい。The braking torque is determined by the total sum of eddy currents generated in the high electrical conductivity material 4 and the eddy current generating member 3 by the magnetic flux generated from the permanent magnet 1. As described above, in the eddy current generating member 3 in which the distance from the permanent magnet 1 is inevitably increased by forming the heat dissipation gap 8 and the amount of magnetic flux acting is reduced, the eddy current generated is also reduced. Therefore, it is desirable to increase the eddy current generated in the high electric conductivity material 4 whose distance from the permanent magnet 1 is small. Therefore, as the high electric conductivity material 4, Cu, Cu alloy, Al, Al alloy, etc., which have the highest electric conductivity and are thicker than the conventional structure, are used as the material according to the required braking torque and the like. It is desirable to select the shape, size, etc.

【0010】 渦電流発生部材3と高電気伝導度材料4とを一体に保持する高電気伝導度材料 保持部材9は、渦電流発生部材3と磁性体高電気伝導度材料4との冷却手段等に 応じて形状、寸法等を選定する。 例えば、空冷の場合、板状の高電気伝導度材料保持部材9を渦電流発生部材3 と高電気伝導度材料4の各々外周面周方向の数ヵ所に架設して一体とし、外部か ら熱放散用空隙8内に空気を送風したり、特に高電気伝導度材料4及び渦電流発 生部材3自体が回転する場合は、高電気伝導度材料4及び渦電流発生部材3の互 いの対向面に直接フィン状の凹凸を形成したり、他のフィン部材を配置すること が望ましい。 また、水冷の場合、高電気伝導度材料4と渦電流発生部材3とを固定側に配置 し、永久磁石1を回転側に配置する構成として、熱方散用空隙8を密封するよう 高電気伝導度材料4と渦電流発生部材3との各々外周面周方向全体を覆うように リング状の高電気伝導度材料保持部材9を配置し、該保持部材9の所定位置に冷 却水の入口と出口を設け、冷却水を循環する構成が採用できる。High electrical conductivity material that integrally holds the eddy current generating member 3 and the high electrical conductivity material 4. The holding member 9 serves as a cooling means for the eddy current generating member 3 and the magnetic high electrical conductivity material 4. Select the shape, size, etc. accordingly. For example, in the case of air cooling, a plate-shaped high-electric-conductivity material holding member 9 is erected at several places in the circumferential direction of the outer peripheral surface of the eddy current generating member 3 and the high-electric conductivity material 4, respectively, to be integrated, and heat generated from the outside. When high-conductivity material 4 and eddy current generating member 3 themselves rotate, the high-conductivity material 4 and eddy current generating member 3 face each other. It is desirable to form fin-like irregularities directly on the surface or to dispose another fin member. In the case of water cooling, the high electrical conductivity material 4 and the eddy current generating member 3 are arranged on the fixed side, and the permanent magnet 1 is arranged on the rotating side, so that the heat dissipation void 8 is sealed. A ring-shaped high-electric-conductivity material holding member 9 is arranged so as to cover the entire outer circumferential surface of each of the conductive material 4 and the eddy current generating member 3, and the cooling water inlet is provided at a predetermined position of the holding member 9. It is possible to adopt a configuration in which a cooling water is circulated by providing an outlet.

【0011】 上記構成からなる永久磁石1と、高電気伝導度材料4及び渦電流発生部材3と はそれぞれ相対的に回転自在に対向配置している。また、図において6は、ヨー ク2に固定される軸であり、7は磁性体渦電流発生部材3に固定される軸である 。 例えば、軸7を介して高電気伝導度材料4と渦電流発生部材3とが回転側に配 置する構成の場合、永久磁石1から発生する磁束の作用によって高電気伝導度材 料4内とともに渦電流発生部材3内に渦電流が発生し、これらの渦電流による運 動エネルギーを熱エネルギーに変換して制動トルクを得ることができ、高電気伝 導度材料4と渦電流発生部材3の回転を制動、所謂ブレーキ作用することとなる 。 この際、高電気伝導度材料4と渦電流発生部材3との間に形成される熱放散用 空隙8に空気を送風することによってこれらの温度上昇を抑制し、従来構成の装 置に比べ効率良く大きな制動トルクを得ることができた。 図1の構成において制動トルクの調整は、図2の従来構成と同様に通常、永久 磁石1を図中矢印イ方向に移動させ、実際に磁路を形成する永久磁石1と磁性体 からなる渦電流発生部材3との距離Lgを調整することによって行う。The permanent magnet 1 having the above structure, the high electric conductivity material 4 and the eddy current generating member 3 are arranged so as to be rotatable relative to each other. Further, in the figure, 6 is a shaft fixed to the yoke 2, and 7 is a shaft fixed to the magnetic eddy current generating member 3. For example, in the case where the high electrical conductivity material 4 and the eddy current generating member 3 are arranged on the rotation side via the shaft 7, the magnetic flux generated from the permanent magnet 1 acts together with the high electrical conductivity material 4 inside. Eddy currents are generated in the eddy current generating member 3, and the operating energy due to these eddy currents can be converted into thermal energy to obtain a braking torque, so that the high electrical conductivity material 4 and the eddy current generating member 3 can be obtained. The rotation is braked, that is, a so-called braking action is performed. At this time, air is blown into the heat dissipation space 8 formed between the high electrical conductivity material 4 and the eddy current generating member 3 to suppress the temperature rise of these and the efficiency is higher than that of the device having the conventional configuration. I was able to obtain a large braking torque. In the configuration of FIG. 1, the adjustment of the braking torque is usually performed by moving the permanent magnet 1 in the direction of the arrow a in the figure to form a magnetic path, and a vortex composed of the permanent magnet 1 and a magnetic body, as in the conventional configuration of FIG. This is performed by adjusting the distance Lg from the current generating member 3.

【0012】 上記の渦電流式減速装置においては、高電気伝導度材料4と渦電流発生部材3 とが回転側に配置する場合にて説明したが、永久磁石1が回転側に配置する場合 でも同様に高電気伝導度材料4と渦電流発生部材3内に渦電流が発生し、永久磁 石1の回転を制動することとなる。 特に、永久磁石1が回転側に配置する場合には、高電気伝導度材料4と渦電流 発生部材3が回転する場合に比べ、熱放散用空隙8を利用する冷却手段として種 々の方法が採用できる。 この考案の渦電流減速装置は、図1に示す実施例に限定されるものでなく、特 に、空隙5間距離Lgの調整手段、各軸6,7と永久磁石1または高電気伝導度 材料4及び渦電流発生部材3との接続、保持、固定手段等、使用する用途に応じ て適宜選定することが望ましい。In the above-mentioned eddy current type speed reducer, the case where the high electrical conductivity material 4 and the eddy current generating member 3 are arranged on the rotation side has been described, but even when the permanent magnet 1 is arranged on the rotation side. Similarly, an eddy current is generated in the high electric conductivity material 4 and the eddy current generating member 3, and the rotation of the permanent magnet 1 is braked. In particular, when the permanent magnet 1 is arranged on the rotation side, various methods are available as cooling means using the heat dissipation voids 8 as compared with the case where the high electrical conductivity material 4 and the eddy current generating member 3 rotate. Can be adopted. The eddy current reduction device of the present invention is not limited to the embodiment shown in FIG. 1, and in particular, adjusting means for the distance Lg between the air gaps 5, each shaft 6, 7 and the permanent magnet 1 or a high electric conductivity material. 4 and the eddy current generating member 3, connection, holding, fixing means, etc. are preferably selected as appropriate according to the intended use.

【0013】[0013]

【実施例】【Example】

図1に示すこの考案の渦電流減速装置を作成した。永久磁石1としては、最大 エネルギー積(BH)maxが35MGOeからなる複数の扇状偏平Fe−B− R系焼結磁石を環状に配置して外径130mm×内径82mm×厚さ4.5mm の環状偏平磁石を使用し、高電気伝導度材料4及び渦電流発生部材3の対向面に 12極の磁極を形成した。なお、ヨーク2は外径130mm×厚さ10mmの軟 鋼(SS41)を用いた。 高電気伝導度材料4としては外径130mm×内径82mm×厚さ4.5mm のCu板を用い、磁性体渦電流発生部材3として外径130mm×内径82mm ×厚さ10mmの所定組成からなるFe系合金を用い、それぞれの対向間に1m mの熱放散用空隙8を形成した。 該熱放散用空隙8に空気を送風するとともに、永久磁石1と渦電流発生部材3 との空隙寸法Lgを7.5mmとし、永久磁石1を748rpmにて回転した時 の高電気伝導度材料4及び磁性体渦電流発生部材3による制動トルクを測定した ところ13.2kg・cmであった。なお、この時、高電気伝導度材料4及び磁 性体渦電流発生部材3の表面温度は100℃であった。 An eddy current speed reducer of this invention shown in FIG. 1 was created. As the permanent magnet 1, a plurality of fan-shaped flat Fe-B-R series sintered magnets having a maximum energy product (BH) max of 35 MGOe are annularly arranged to have an outer diameter of 130 mm x an inner diameter of 82 mm x a thickness of 4.5 mm. A flat magnet was used, and 12 magnetic poles were formed on the opposing surfaces of the high electric conductivity material 4 and the eddy current generating member 3. The yoke 2 was made of mild steel (SS41) having an outer diameter of 130 mm and a thickness of 10 mm. A Cu plate having an outer diameter of 130 mm, an inner diameter of 82 mm, and a thickness of 4.5 mm is used as the high electrical conductivity material 4, and the magnetic eddy current generating member 3 has a predetermined composition of an outer diameter of 130 mm, an inner diameter of 82 mm, and a thickness of 10 mm. The heat-dissipating voids 8 of 1 mm were formed between the two facing each other using the system alloy. High electric conductivity material 4 when air is blown into the heat-dissipating air gap 8 and the air gap dimension Lg between the permanent magnet 1 and the eddy current generating member 3 is 7.5 mm and the permanent magnet 1 is rotated at 748 rpm. Also, the braking torque by the magnetic eddy current generating member 3 was measured and found to be 13.2 kg · cm. At this time, the surface temperatures of the high electrical conductivity material 4 and the magnetic eddy current generating member 3 were 100 ° C.

【0014】 また、比較例として上記構成における熱放散用空隙8を(零)0mmとし、他 は同様な条件にて作成した渦電流減速装置では、僅かの時間で高電気伝導度材料 4及び磁性体渦電流発生部材3の表面温度が数百℃となり、安定した制動トルク が得られないばかりか、高電気伝導度材料4の熱膨張による変形等が懸念された 。Further, as a comparative example, in the eddy current speed reducer prepared under the same conditions with the heat dissipation gap 8 having the above-mentioned configuration being (zero) 0 mm, the high electrical conductivity material 4 and the magnetic field The surface temperature of the body eddy current generating member 3 reached several hundred degrees Celsius, and not only stable braking torque could not be obtained, but also deformation of the high electrical conductivity material 4 due to thermal expansion was concerned.

【0015】[0015]

【考案の効果】[Effect of device]

以上に示すように、この考案は、高電気伝導度材料及び渦電流発生部材との間 に熱放散用空隙を形成し、これらの部材を該熱放散用空隙を利用して積極的に冷 却することによって、該部材の温度上昇を抑制し、渦電流減速装置の各構成部材 の熱的変形、永久磁石の温度上昇に伴う磁気特性の低下等を低減し、効率的に制 動トルクを作用させることができ、多方面の用途に使用できる制動効率の高い小 型軽量な渦電流式減速装置の提供を可能とする。 As described above, the present invention forms a heat dissipation space between the high electrical conductivity material and the eddy current generating member, and actively cools these members using the heat dissipation space. By suppressing the temperature rise of the member, the thermal deformation of each component of the eddy current speed reducer, the deterioration of the magnetic characteristics due to the temperature rise of the permanent magnet, etc. are reduced, and the damping torque is effectively applied. Therefore, it is possible to provide a small and lightweight eddy current type speed reducer with high braking efficiency that can be used in various fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の渦電流式減速装置の一実施例を示す
説明図である。
FIG. 1 is an explanatory view showing an embodiment of an eddy current type speed reducer of the present invention.

【図2】従来の渦電流式減速装置を示す説明図である。FIG. 2 is an explanatory view showing a conventional eddy current type speed reducer.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 ヨーク 3 高電気伝導度材料 4 渦電流発生部材 5 空隙 6,7 軸 8 熱放散用空隙 9 高電気伝導度材料保持部材 1 Permanent Magnet 2 Yoke 3 High Electrical Conductivity Material 4 Eddy Current Generating Member 5 Void 6, 7 Axis 8 Heat Dissipation Void 9 High Electrical Conductivity Material Holding Member

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 永久磁石と所定の空隙を形成し且つ永久
磁石と相対的に回転自在に対向配置する磁性体からなる
渦電流発生部材の永久磁石対向面側に非磁性体からなる
高電気伝導度材料を配置してなる渦電流式減速装置にお
いて、前記渦電流発生部材と高電気伝導度材料との間に
所定の熱放散用空隙を形成したことを特徴とする渦電流
式減速装置。
1. A high electric conductivity made of a non-magnetic material on the permanent magnet facing surface side of an eddy current generating member made of a magnetic material that forms a predetermined gap with the permanent magnet and is rotatably opposed to the permanent magnet. An eddy current type speed reducer in which a predetermined heat dissipation gap is formed between the eddy current generating member and the high electric conductivity material.
JP4253893U 1993-07-05 1993-07-05 Eddy current type speed reducer Pending JPH079086U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253893U JPH079086U (en) 1993-07-05 1993-07-05 Eddy current type speed reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253893U JPH079086U (en) 1993-07-05 1993-07-05 Eddy current type speed reducer

Publications (1)

Publication Number Publication Date
JPH079086U true JPH079086U (en) 1995-02-07

Family

ID=12638853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253893U Pending JPH079086U (en) 1993-07-05 1993-07-05 Eddy current type speed reducer

Country Status (1)

Country Link
JP (1) JPH079086U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340428A (en) * 2005-05-31 2006-12-14 Sumitomo Metal Ind Ltd Eddy current type reduction gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340428A (en) * 2005-05-31 2006-12-14 Sumitomo Metal Ind Ltd Eddy current type reduction gear
JP4600156B2 (en) * 2005-05-31 2010-12-15 住友金属工業株式会社 Eddy current reducer

Similar Documents

Publication Publication Date Title
JP5658907B2 (en) Cooling mechanism in axial gap type rotating machine
US5717262A (en) Cooling apparatus for an AC generator
US7294948B2 (en) Rotor-stator structure for electrodynamic machines
US9933032B2 (en) Eddy-current retarding device
US7800257B2 (en) Heat dissipater
US7750515B1 (en) Industrial air core motor-generator
JPH0386060A (en) Eddy current type reduction gear
US20200007019A1 (en) Electromagnetic retarder and generator assembly and vehicle comprising such an assembly
US20230361637A1 (en) Electric machines with enhanced electromagnetic interaction
JPH0691732B2 (en) Eddy current retarder rotor
JP5126218B2 (en) Magnetic coupling with hysteresis, especially for winding / unwinding devices
JPH0614523A (en) Eddy-current brake
JPH079086U (en) Eddy current type speed reducer
JPH079085U (en) Compound retarder
KR101615555B1 (en) Eddy current heating device using magnetic substance
JPH05328706A (en) Eddy-current plate and cooling structure of retarder
JP2005287232A (en) Outer rotor motor
JPH0548582U (en) Air cooling structure of retarder
JP2506598Y2 (en) Eddy current type retarder
JPS60129435A (en) Magnetic coupling device
Hawsey et al. Design of a high power density, permanent magnet, axial gap DC motor
JP3941740B2 (en) Eddy current reducer
JPH07106055B2 (en) Eddy current type speed reducer
JPH0811053Y2 (en) Eddy current retarder
Mason et al. Hard and soft magnetic composites in high speed flywheels