JPH0790336A - Method for controlling combustion of tunnel furnace for sponge iron - Google Patents

Method for controlling combustion of tunnel furnace for sponge iron

Info

Publication number
JPH0790336A
JPH0790336A JP35978491A JP35978491A JPH0790336A JP H0790336 A JPH0790336 A JP H0790336A JP 35978491 A JP35978491 A JP 35978491A JP 35978491 A JP35978491 A JP 35978491A JP H0790336 A JPH0790336 A JP H0790336A
Authority
JP
Japan
Prior art keywords
furnace
flow rate
air
combustion
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35978491A
Other languages
Japanese (ja)
Inventor
Shigeyuki Saito
滋之 齋藤
Susumu Sasaki
進 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP35978491A priority Critical patent/JPH0790336A/en
Publication of JPH0790336A publication Critical patent/JPH0790336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To provide a method for controlling the combustion capable of stable combustion by optimumly maintaining the flow rate of the air into the furnace to cope with the air invading into the tunnel furnace and the combustion of CO gas generated from the reduction assistant or the like. CONSTITUTION:The flow rate of the fuel gas from a burner 8 is controlled so that the furnace temperature in the tunnel furnace 6 may be the targeted value, and the air flow rate of the burner 8 is controlled so that the oxygen content in the combustion gas may be the targeted value. This constitution optimizes the air flow rate into the furnace, and stabilizes the combustion to reduce the fuel consumption unit and stabilize the quality of sponge iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は海綿鉄用トンネル炉の燃
焼制御方法に係り、特に安定した海綿鉄品質が得られ燃
料原単位を低減できる燃焼制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method for a sponge iron tunnel furnace, and more particularly to a combustion control method capable of obtaining stable sponge iron quality and reducing the fuel consumption rate.

【0002】[0002]

【従来の技術】一般に海綿鉄は、酸化鉄を還元助材と共
にトンネル炉に装入し還元および焼結させることにより
製造される。この時、トンネル炉の燃焼制御方法として
は、従来、図2に示すような方法が知られている。すな
わち、酸化鉄およびコークス等の還元助材を充填した容
器2を積載した台車4はトンネル炉に装入され、所定の
温度と時間で通過することにより酸化鉄は還元および焼
結されて海綿鉄となる。
2. Description of the Related Art Sponge iron is generally produced by charging iron oxide together with a reduction aid into a tunnel furnace and reducing and sintering it. At this time, as a combustion control method for the tunnel furnace, a method as shown in FIG. 2 is conventionally known. That is, a trolley 4 loaded with a container 2 filled with reduction aids such as iron oxide and coke is charged into a tunnel furnace, and the iron oxide is reduced and sintered by passing through at a predetermined temperature and time, and sponge iron. Becomes

【0003】台車4はバーナー8により直接加熱され、
炉内の燃焼ガスは排ガスブロアー10により炉外に排出
される。炉内のガスの流れは台車4の進行と対向し、炉
内ガスにより台車4を予熱するため、台車4の装入側よ
り排ガスを排出するのが一般的である。炉内を所定温度
に保つため次の如き燃焼制御が行われる。炉内温度を温
度計12により測定し、目標温度から外れている場合
は、制御装置14により燃料ガスダンパー16を操作
し、燃料ガス流量を調整する。次に燃料ガス流量計18
により燃料ガス流量を測定し、あらかじめ制御装置14
に設定してある空燃比から目標の空気流量が決定され
る。空気流量計20により測定された空気流量が目標値
から外れた場合は制御装置14が空気ダンパー22を操
作し空気流量を調整する。
The truck 4 is directly heated by the burner 8,
The combustion gas in the furnace is discharged outside the furnace by the exhaust gas blower 10. The gas flow in the furnace opposes the traveling of the truck 4, and the truck gas is preheated by the furnace gas. Therefore, exhaust gas is generally discharged from the charging side of the truck 4. The following combustion control is performed to maintain the inside of the furnace at a predetermined temperature. The temperature inside the furnace is measured by the thermometer 12, and when the temperature is out of the target temperature, the control unit 14 operates the fuel gas damper 16 to adjust the fuel gas flow rate. Next, the fuel gas flow meter 18
The fuel gas flow rate is measured by
The target air flow rate is determined from the air-fuel ratio set to. When the air flow rate measured by the air flow meter 20 deviates from the target value, the controller 14 operates the air damper 22 to adjust the air flow rate.

【0004】しかし、このような従来の空気流量制御方
法には問題があり、材料原単位の増加、炉内温度の不安
定、更には海綿鉄の品質のばらつきの増大等の現象が発
生した。すなわち、炉外より炉内への空気の浸入によ
り、炉内空気量が過大となりバーナー単体では最適な空
燃比となっていても、炉内全体として空気量が過大とな
り、炉内温度が低下したり、燃料原単位が増加する。ま
た。逆に還元助材として一般に用いられるコークスが炉
内温度によりCOガス化した場合、このCOガスは炉内
においてCO2ガスに燃焼し発熱するので、燃料原単位
の低減には有効であるが、炉内の酸素量が過少の場合
は、未燃焼のままCOガスとして炉外へ排出され無駄と
なる。これらの炉内への侵入空気量やコークスからのC
Oガス発生は一定のものではなく刻々と変化するもので
あり、従来の燃料ガス流量を基準とした必要空気量の制
御は炉内全体の酸素バランスを考えると不適切であつ
た。
However, such a conventional air flow rate control method has problems, and causes such phenomena as an increase in material consumption rate, instability in furnace temperature, and an increase in variation in quality of sponge iron. In other words, even if the burner alone has an optimum air-fuel ratio due to the infiltration of air from outside the furnace into the furnace, the air content in the entire furnace will be too large, and the temperature inside the furnace will drop. Or, the fuel consumption rate increases. Also. On the other hand, when coke generally used as a reduction aid is CO gasified by the temperature in the furnace, this CO gas burns into CO 2 gas in the furnace to generate heat, which is effective in reducing the fuel consumption rate. If the amount of oxygen in the furnace is too small, it will be wasted as CO gas that remains unburned outside the furnace. The amount of air entering these furnaces and C from the coke
O 2 gas generation is not constant and changes every moment, and the conventional control of the required air amount based on the fuel gas flow rate was inappropriate in view of the oxygen balance in the entire furnace.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の課題を解決し、炉全体の酸素バランスを考
え、燃料原単位を削減し品質の安定した海綿鉄が製造で
きる燃焼制御方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems of the prior art, consider the oxygen balance of the entire furnace, reduce the fuel consumption rate, and produce a sponge iron of stable quality. To provide.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは次の如くである。すなわち、酸化鉄および還元助材
を充填した容器を積載した台車をトンネル炉に装入し
て、バーナーで加熱する海綿鉄用トンネル炉の燃焼制御
方法において、前記トンネル炉の炉温が目標値になる如
く前記バーナーの燃料ガス流量を制御し、更に該トンネ
ル炉の排ガス中の酸素濃度が目標値になる如く該バーナ
ーの空気流量を制御することを特徴とする海綿鉄用トン
ネル炉の燃焼制御方法、である。
The gist of the present invention is as follows. That is, in a combustion control method for a sponge iron tunnel furnace in which a trolley loaded with a container filled with iron oxide and a reduction aid is loaded into a tunnel furnace and heated by a burner, the furnace temperature of the tunnel furnace reaches a target value. And controlling the fuel gas flow rate of the burner, and further controlling the air flow rate of the burner so that the oxygen concentration in the exhaust gas of the tunnel furnace reaches a target value. ,.

【0007】本発明の詳細を図1によって説明する。図
1において図2の従来装置と同様の部分は説明を省略す
るが、図1においては排ガスブロワー10の上流に酸素
濃度計24が設けられ、制御装置14と連絡している。
本発明においても、燃料ガスの流量制御は従来方法と同
様に炉内温度を温度計12により測定し、目標温度にな
る如く制御装置14を介して燃料ガスダンパー16を操
作して制御する。次にバーナー8への供給空気量の制御
は、酸素濃度計24による排ガス中の酸素濃度が目標値
になる如く、制御装置14を介して空気ダンパー22を
操作して調整する。
The details of the present invention will be described with reference to FIG. In FIG. 1, description of the same parts as those of the conventional device of FIG. 2 is omitted, but in FIG. 1, an oxygen concentration meter 24 is provided upstream of the exhaust gas blower 10 and is in communication with the control device 14.
Also in the present invention, the flow rate control of the fuel gas is performed by controlling the temperature inside the furnace by the thermometer 12 and operating the fuel gas damper 16 via the control device 14 so as to reach the target temperature, as in the conventional method. Next, the amount of air supplied to the burner 8 is adjusted by operating the air damper 22 via the control device 14 so that the oxygen concentration in the exhaust gas by the oxygen concentration meter 24 reaches the target value.

【0008】[0008]

【作用】本発明は上記の如く排ガス中の酸素濃度を測定
し、その結果によって空気流量を制御するのである。排
ガス中の酸素濃度は炉内全体の酸素の状態を示してい
る。すなわち、炉内空気量が過大であれば酸素濃度は高
くなり、逆に過少であれば低くなる。従って燃料ガスと
コークスからのCOガスとを燃焼させるために必要な空
気量から侵入空気を差し引いた量、換言すればバーナー
8へ供給すべき空気流量を排ガス中の酸素濃度を測定す
ることにより知ることができる。
The present invention measures the oxygen concentration in the exhaust gas as described above and controls the air flow rate based on the result. The oxygen concentration in the exhaust gas indicates the state of oxygen in the entire furnace. That is, if the amount of air in the furnace is too large, the oxygen concentration will be high, and if it is too small, it will be low. Therefore, the amount of air required to burn the fuel gas and the CO gas from the coke minus the amount of invading air, in other words, the flow rate of air to be supplied to the burner 8 is known by measuring the oxygen concentration in the exhaust gas. be able to.

【0009】すなわち、温度計12により測定した炉温
が所定の目標温度から外れた場合、制御装置14により
燃料ガスダンパー16を操作し燃料ガス流量を調整す
る。例えば炉温が目標より低い場合は、当然燃料ガス流
量を増量し、増量された燃料ガスがより多くの炉内酸素
を消費することになり、排ガス中の酸素濃度は低下す
る。排ガス中の酸素濃度は酸素濃度計24で測定され、
目標酸素濃度より低い場合は制御装置14が空気ダンパ
ー22を操作し、より多くの空気をバーナー8に供給し
増量した燃焼ガス分を補償する。
That is, when the furnace temperature measured by the thermometer 12 deviates from the predetermined target temperature, the controller 14 operates the fuel gas damper 16 to adjust the fuel gas flow rate. For example, when the furnace temperature is lower than the target, the fuel gas flow rate is naturally increased, the increased fuel gas consumes more oxygen in the furnace, and the oxygen concentration in the exhaust gas decreases. The oxygen concentration in the exhaust gas is measured by an oxygen concentration meter 24,
When the oxygen concentration is lower than the target oxygen concentration, the controller 14 operates the air damper 22 to supply more air to the burner 8 to compensate for the increased combustion gas content.

【0010】また、トンネル炉2内の侵入空気が台車4
の装入、排出時、あるいは炉のシール不良等の要因で増
加した場合、炉内酸素が余剰となり排ガス中の酸素濃度
が増加する。この時は、上記と逆の操作により空気流量
を低下させる。更に、炉内で加熱されたコークスから生
ずるCOが増加した場合、それらがCO2ガスへ燃焼す
るに足る酸素が炉内に存在しないと、未燃焼のまま排出
されるが、本発明では排ガス中の酸素濃度の低下により
検知し、空気流量を増加し、発生したCOガスを十分C
2ガスへ燃焼させて、燃料原単位の削減が可能とな
る。
In addition, the air entering the tunnel furnace 2 is moved by the truck 4.
When it is charged or discharged, or when it increases due to factors such as a defective seal in the furnace, the oxygen in the furnace becomes excessive and the oxygen concentration in the exhaust gas increases. At this time, the air flow rate is reduced by the operation reverse to the above. Further, when the amount of CO generated from the coke heated in the furnace is increased, if oxygen is not present in the furnace enough to burn them into CO 2 gas, they are discharged unburned. Detected by the decrease of oxygen concentration in the air, the air flow rate is increased, and the generated CO gas is sufficiently
It becomes possible to reduce the fuel consumption rate by burning it into O 2 gas.

【0011】次に本発明におけるトンネル炉の排ガス中
の酸素濃度の目標値について説明する。すなわち、本発
明法により酸素濃度の目標値を種々に変更しながら操業
を行い、その燃料原単位を調査し、酸素濃度と燃料原単
位指数との関係を図3に示した。図3から明らかな如
く、排ガス中の酸素濃度を1.0%とした場合、最少の燃
料原単位が得られる。本発明は上記の如く、排ガス中の
酸素濃度を測定し、その濃度が所定の目標酸素濃度にな
る如くバーナーへの空気流量を制御するので、炉内の空
気量は最適となり、燃焼状態が安定し燃料原単位が最小
となり、かつ炉温が安定しその結果海綿鉄の品質を安定
することができる。
Next, the target value of the oxygen concentration in the exhaust gas of the tunnel furnace in the present invention will be described. That is, according to the method of the present invention, the operation was carried out while variously changing the target value of the oxygen concentration, the fuel consumption rate was investigated, and the relationship between the oxygen concentration and the fuel consumption index is shown in FIG. As is clear from FIG. 3, when the oxygen concentration in the exhaust gas is 1.0%, the minimum fuel consumption rate can be obtained. As described above, the present invention measures the oxygen concentration in the exhaust gas and controls the air flow rate to the burner so that the concentration reaches a predetermined target oxygen concentration, so the air amount in the furnace is optimized and the combustion state is stable. However, the fuel consumption rate is minimized, the furnace temperature is stable, and as a result, the quality of sponge iron can be stabilized.

【0012】[0012]

【実施例】長さ160mのトンネル炉において、本発明
法および従来法により比較操業を行った。すなわち、本
発明実施例は図1に示す如く、炉温によって燃料ガス量
を制御し、空気流量は排ガス濃度中の目標酸素濃度を
1.0%として制御した。一方、従来例は図2に示す如
く炉温によって燃焼ガス流量を制御し、空気流量はバー
ナー8における空燃比が6になる如く制御した。目標炉
温、装入量等のその他の操業は全く同一で操業した。操
業結果をまとめ、13日間の炉温の変動および燃料原単
位指数を図4に、製造した海綿鉄の金属鉄含有率の変動
を図5に示した。
EXAMPLE A comparative operation was carried out in the tunnel furnace having a length of 160 m by the method of the present invention and the conventional method. That is, in the embodiment of the present invention, as shown in FIG. 1, the fuel gas amount was controlled by the furnace temperature, and the air flow rate was controlled by setting the target oxygen concentration in the exhaust gas concentration to 1.0%. On the other hand, in the conventional example, the combustion gas flow rate was controlled by the furnace temperature as shown in FIG. 2, and the air flow rate was controlled so that the air-fuel ratio in the burner 8 became 6. Other operations such as target furnace temperature and charging amount were exactly the same. The operation results are summarized, the fluctuation of the furnace temperature and the fuel consumption index for 13 days are shown in FIG. 4, and the fluctuation of the metallic iron content of the produced sponge iron is shown in FIG.

【0013】図4から、本発明実施例は空気供給量が最
適であったので従来例に比して炉温の変動は1/4に減
少すると共に、燃料原単位が10%低減されたことがわ
かる。図5において本発明実施例の海綿鉄の金属鉄の変
動が従来例の1/2となっており、これは本発明実施例
では炉温の変動が小さくなったので炉内の酸化鉄の還元
効果が安定したことを示している。
From FIG. 4, since the air supply amount was optimum in the embodiment of the present invention, the fluctuation of the furnace temperature was reduced to 1/4 and the fuel consumption rate was reduced by 10% as compared with the conventional example. I understand. In FIG. 5, the variation of metallic iron of the sponge iron of the example of the present invention is 1/2 of that of the conventional example. This is because the variation of the furnace temperature is small in the example of the present invention, and thus the reduction of iron oxide in the furnace is reduced. It shows that the effect is stable.

【0014】[0014]

【発明の効果】本発明は上記実施例からも明らかな如
く、バーナーへの燃料ガス流量を炉温によって制御し、
空気流量を排ガス中の酸素濃度によって制御し、コーク
スから発生するCOガスを完全燃焼し、余剰空気を削減
することによって、燃料原単位を低減し、海綿鉄の品質
を安定する効果を挙げることができた。
As is apparent from the above embodiment, the present invention controls the fuel gas flow rate to the burner by controlling the furnace temperature,
By controlling the air flow rate by the oxygen concentration in the exhaust gas, completely burning the CO gas generated from the coke, and reducing the surplus air, the fuel consumption rate is reduced and the quality of sponge iron is stabilized. did it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるトンネル炉の燃焼方法を示す制御
系統図である。
FIG. 1 is a control system diagram showing a combustion method of a tunnel furnace according to the present invention.

【図2】従来の燃焼方法を示す制御系統図である。FIG. 2 is a control system diagram showing a conventional combustion method.

【図3】本発明の実施例における排ガスの目標酸素濃度
と燃料原単位指数との関係を示す線図である。
FIG. 3 is a diagram showing a relationship between a target oxygen concentration of exhaust gas and a fuel consumption index in an example of the present invention.

【図4】本発明の実施例および従来例における13日間
の炉温の変動と燃料原単位指数の変化を示す線図であ
る。
FIG. 4 is a diagram showing changes in the furnace temperature and changes in the fuel consumption index for 13 days in the example of the present invention and the conventional example.

【図5】本発明の実施例および従来例における海綿鉄の
金属鉄含有率の変動を示す棒グラフである。
FIG. 5 is a bar graph showing changes in metallic iron content of sponge iron in examples of the present invention and conventional examples.

【符号の説明】[Explanation of symbols]

4 台車 6 トンネル炉 8 バーナー 12 温度計 14 制御装置 16 燃料ガスダンパー 18 燃料ガス流量計 20 空気流量計 22 空気ダンパー 24 酸素濃度計 4 dolly 6 tunnel furnace 8 burner 12 thermometer 14 controller 16 fuel gas damper 18 fuel gas flow meter 20 air flow meter 22 air damper 24 oxygen concentration meter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月10日[Submission date] August 10, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄および還元助材を充填した容器を
積載した台車をトンネル炉に装入して、バーナーで加熱
する海綿鉄用トンネル炉の燃焼制御方法において、前記
トンネル炉の炉温が目標値になる如く前記バーナーの燃
料ガス流量を制御し、更に該トンネル炉の排ガス中の酸
素濃度が目標値になる如く該バーナーの空気流量を制御
することを特徴とする海綿鉄用トンネル炉の燃焼制御方
法。
1. A combustion control method for a sponge iron tunnel furnace in which a trolley loaded with a container filled with iron oxide and a reducing aid is loaded into a tunnel furnace and heated by a burner. The fuel gas flow rate of the burner is controlled to reach a target value, and the air flow rate of the burner is controlled so that the oxygen concentration in the exhaust gas of the tunnel furnace reaches a target value. Combustion control method.
JP35978491A 1991-12-27 1991-12-27 Method for controlling combustion of tunnel furnace for sponge iron Pending JPH0790336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35978491A JPH0790336A (en) 1991-12-27 1991-12-27 Method for controlling combustion of tunnel furnace for sponge iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35978491A JPH0790336A (en) 1991-12-27 1991-12-27 Method for controlling combustion of tunnel furnace for sponge iron

Publications (1)

Publication Number Publication Date
JPH0790336A true JPH0790336A (en) 1995-04-04

Family

ID=18466275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35978491A Pending JPH0790336A (en) 1991-12-27 1991-12-27 Method for controlling combustion of tunnel furnace for sponge iron

Country Status (1)

Country Link
JP (1) JPH0790336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491004B1 (en) * 2000-12-22 2005-05-24 주식회사 포스코 A method of controlling fuel flux at burner of electric arc furnace
JP2007001843A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Degreasing method
CN102207354A (en) * 2011-06-22 2011-10-05 武汉北湖胜达制铁有限公司 Novel energy-saving combustion device based on tunnel kiln reducing process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491004B1 (en) * 2000-12-22 2005-05-24 주식회사 포스코 A method of controlling fuel flux at burner of electric arc furnace
JP2007001843A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Degreasing method
JP4523499B2 (en) * 2005-06-27 2010-08-11 日本碍子株式会社 Degreasing method
CN102207354A (en) * 2011-06-22 2011-10-05 武汉北湖胜达制铁有限公司 Novel energy-saving combustion device based on tunnel kiln reducing process

Similar Documents

Publication Publication Date Title
US4942832A (en) Method and device for controlling NOx emissions by vitiation
CN112342327B (en) Vanadium titano-magnetite blast furnace smelting method based on theoretical combustion temperature control
CN108803327A (en) Boiler draft regulating system based on Adaptive Fuzzy Control and control method
CN107429915B (en) For controllably running method, regulation device and the industrial furnace of the industrial furnace of heating
US20210131734A1 (en) Furnace system and method for operating a furnace
JPH0790336A (en) Method for controlling combustion of tunnel furnace for sponge iron
Sivtsov et al. Steel semiproduct melting intensification in electric arc furnaces using coordinated control of electric and gas conditions: II. On-line control of the state of the charge and melt zones in electric arc furnaces
JP5698219B2 (en) System and method for controlling temperature in forefurnace
KR101395508B1 (en) Apparatus for controlling combustion of furnace with oxygen lancing
JPS6125961B2 (en)
JPH0278816A (en) Method of controlling combustion efficiency
JP2637529B2 (en) Furnace temperature and NOx control device
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JPH028213B2 (en)
JPH06184615A (en) Method for controlling flow rate of blowing gas in refining furnace
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
SU1234708A1 (en) System for automatic control of fuel-oxygen medium ratio of heating apparatus
KR19990055427A (en) Sintered ore device and sintered ore manufacturing method
WO2023189570A1 (en) Heating-type sintering machine and heating-type sintering method
JPS61119987A (en) Method of controlling furnace pressure of continuous type heating furnace
JPH06212218A (en) Operation of blast furnace
SU1062475A1 (en) Method of controlling heat condition of continuous furnace
JPH1163443A (en) Method of regulating concentration of oxygen in pyrolysis furnace
SU689716A1 (en) Alunite ore reduction method
JP3235645B2 (en) Combustion control method for sludge incinerator and apparatus therefor