JPH0789426A - Braking force distribution control device - Google Patents

Braking force distribution control device

Info

Publication number
JPH0789426A
JPH0789426A JP23701693A JP23701693A JPH0789426A JP H0789426 A JPH0789426 A JP H0789426A JP 23701693 A JP23701693 A JP 23701693A JP 23701693 A JP23701693 A JP 23701693A JP H0789426 A JPH0789426 A JP H0789426A
Authority
JP
Japan
Prior art keywords
pressure
wheel
wheel brake
switching means
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23701693A
Other languages
Japanese (ja)
Inventor
Noriaki Hattori
部 憲 明 服
Kenji Toutsu
津 憲 司 十
Jun Mihara
原 純 三
Takayuki Ito
藤 孝 之 伊
Shingo Sugiura
浦 慎 吾 杉
Norio Yamazaki
崎 憲 雄 山
Shiyouji Inagaki
垣 匠 二 稲
Masanori Yamamoto
本 真 規 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP23701693A priority Critical patent/JPH0789426A/en
Priority to EP94114776A priority patent/EP0644093B1/en
Priority to DE69431862T priority patent/DE69431862T2/en
Priority to US08/310,729 priority patent/US5560690A/en
Publication of JPH0789426A publication Critical patent/JPH0789426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To provide a device through which braking force distribution control can be performed even when the brake pedal is not operated by a driver and also the braking operation by the driver can be made even when the braking force distribution control is performed. CONSTITUTION:A braking force distribution control device is provided with a master cylinder 2 to produce first pressure and a booster 5 to produce second pressure; constant pressure sources 21 and 22 to produce a substantially constant and high third pressure; first selector means 64 and 65 to select either of the second and third pressures; second selector means 61 to 63 to select either of the pressure selected by the first selector means and the first pressure; and the first to fourth pressure increasing and decreasing means 312, 334, 356, and 378 to supply the pressure selected by the second selector means and a low pressure selectively to wheel brakes 51 to 54.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車輪ブレ−キに与える
ブレ−キ液圧を制御する装置に関し、特に、これに限定
する意図ではないが、ドライバによる制駆動時に、不要
な車輪ロック(制動時),車輪空転(駆動時)が発生し
た場合、これを回避する目的で、車輪速度,車輪スリッ
プ率の信号から、必要により車輪ブレ−キ圧の増減圧を
繰返すアンチスキッド制御とトラクションコントロ−ル
制御(駆動輪のみ)、ならびに、転舵,加減速,路面の
傾斜,凹凸等車両の運転状態あるいは走行状態に応じ
て、それらの変化があるときの走行安定性および操舵性
を確保するための前後左右車輪ブレ−キの制動力配分を
算出しその配分に従って各車輪ブレ−キ圧を個別に増,
減する制動力配分制御、に好適な装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling a brake hydraulic pressure applied to a wheel brake, and particularly, although not intended to be limited to this, an unnecessary wheel lock (during braking / driving by a driver). If the wheel slips (during braking) and the wheel slips (during driving), the anti-skid control and the traction control are repeated for the purpose of avoiding them by repeatedly increasing and decreasing the wheel brake pressure from the signals of the wheel speed and the wheel slip ratio. -Le control (only drive wheels), and ensure running stability and steering performance when there are changes in steering, acceleration / deceleration, road inclination, unevenness, etc. depending on the driving or running conditions of the vehicle. The braking force distribution of the front, rear, left, and right wheel brakes is calculated, and the wheel brake pressures are increased individually according to the distribution.
The present invention relates to a device suitable for reducing braking force distribution control.

【0002】[0002]

【従来の技術】車輪ブレ−キには通常、ドライバが操作
するブレ−キペダルの押込み圧に対応するブレ−キ圧
(第1圧力)が、ブレ−キマスタシリンダから与えられ
る。複数個の車輪の回転速度から車体の移動速度(基準
速度)を推定演算し、基準速度と車輪の回転速度から車
輪のスリップ率あるいは路面の摩擦係数μを算出もしく
は推定し、車体が移動しているにもかかわらず車輪回転
が完全停止(車輪ロック)するのを回避するように車輪
ブレ−キ圧を減圧し、その後制動距離が可及的に短くな
るように増圧し、更に必要に応じて減,増圧を繰返すア
ンチスキッド制御のために、車輪ブレ−キ圧を減,増圧
するための増減圧弁ならびに増減圧弁に第1圧力よりも
高い圧力(第2圧力)を第1圧力ラインに与える、流体
ポンプおよびそれを駆動する電気モ−タでなる圧力源が
備えられ、アンチスキッド制御を実行する電子制御装置
が、車輪ブレ−キ圧の変更(自動介入)が必要と判定す
ると、前記圧力源より第2圧力を増減圧弁に与え、そし
て増減圧弁を使用して車輪ブレ−キを低圧(ドレイン
圧)と第2圧力に選択的に切換える。低圧供給により車
輪ブレ−キ圧は低下し第2圧力供給により車輪ブレ−キ
圧が上昇する。この種のアンチスキッド制御の1つが、
特開平2−38175号公報に提示されている。
2. Description of the Related Art Generally, a brake master cylinder applies a brake pressure (first pressure) corresponding to the pushing pressure of a brake pedal operated by a driver. The moving speed (reference speed) of the vehicle body is estimated and calculated from the rotational speeds of a plurality of wheels, and the slip rate of the wheel or the friction coefficient μ of the road surface is calculated or estimated from the reference speed and the rotational speed of the wheel, and the vehicle body moves. Despite this, the wheel brake pressure is reduced so as to prevent the wheel rotation from completely stopping (wheel lock), and then the braking distance is increased so that the braking distance is shortened as much as possible. A pressure higher than the first pressure (second pressure) is applied to the first pressure line to the pressure increasing / decreasing valve for decreasing and increasing the wheel brake pressure and the pressure increasing / decreasing valve for anti-skid control in which pressure reduction and pressure increase are repeated. , A fluid pump and a pressure source consisting of an electric motor for driving the fluid pump are provided, and when the electronic control unit that executes the anti-skid control determines that a change in the wheel brake pressure (automatic intervention) is necessary, the pressure is changed. From source Give 2 pressure to increase the pressure reducing valve and the wheel blur using increasing pressure reducing valve - key to a second pressure to a low pressure (drain pressure) selectively switches. The low-pressure supply reduces the wheel brake pressure, and the second pressure supply increases the wheel brake pressure. One of this kind of anti-skid control is
It is presented in JP-A-2-38175.

【0003】最近は、車両制動時の車輪のスリップ率お
よび制動距離に視点を置いて車輪ブレ−キ圧を制御する
ばかりでなく、車両の運転状態および走行状態ならびに
車両上の荷重分布に応じた、制動中の車両の方向安定性
を確保するための前後左右車輪ブレ−キの制動力配分を
電子制御装置で算出し、この配分を満すように、増減圧
弁を使用して車輪ブレ−キ圧を調整する制動力配分制御
が提案されている。本発明者等は、例えば、特開平5−
85327号公報,特開平5−85340号公報および
特開平5−85336号公報において提示した。また、
上述のアンチスキッド制御および制動力配分制御におい
て、増減圧弁に与える第2圧力を、第1圧力より例えば
20%程度高いハイドロブ−スタ圧とする車輪ブレ−キ
圧系統を特願平4−330062号に提示した。
Recently, not only the wheel brake pressure is controlled by focusing on the slip ratio and the braking distance of the wheel when the vehicle is being braked, but also according to the driving and running conditions of the vehicle and the load distribution on the vehicle. The electronic control unit calculates the braking force distribution of the front, rear, left, and right wheel brakes to ensure the directional stability of the vehicle during braking, and the wheel brakes are used by using the pressure increasing / decreasing valve so as to satisfy this distribution. Braking force distribution control for adjusting pressure has been proposed. The present inventors have, for example, disclosed in Japanese Unexamined Patent Publication No.
No. 85327, Japanese Patent Application Laid-Open No. 5-85340, and Japanese Patent Application Laid-Open No. 5-85336. Also,
In the above-described anti-skid control and braking force distribution control, a wheel brake pressure system in which the second pressure applied to the pressure increasing / decreasing valve is, for example, about 20% higher than the first pressure is a hydraulic brake pressure system is disclosed in Japanese Patent Application No. 4-330062. Presented to.

【0004】[0004]

【発明が解決しようとする課題】上述の従来例のいずれ
も、アンチスキッド制御はもとより制動力配分制御はド
ライバのブレ−キペダルの踏込みを条件としており、ア
ンチスキッド制御の場合はブレ−キペダルの踏込みによ
る車輪制動がいわば過制動となるとき一度車輪ブレ−キ
を減圧し、そして望ましい車輪スリップ率となるように
また制動距離が可及的に短くなるように増圧するので、
加えて、ドライバの判断によりブレ−キペダルを介して
ブレ−キ圧が操作されるので、アンチスキッド制御中の
増圧に、ブレ−キペダルの踏込みや緩めに応じた圧力と
なるハイドロブ−スタ圧を用いるのは合理的である。し
かし制動力配分制御の場合は、車両の運転状態および走
行状態ならびに車体上の荷重分布に対応して車両の方向
安定性および操舵性を確保するに有利な車輪ブレ−キ圧
分布(前後左右車輪ブレ−キのそれぞれに対するブレ−
キ圧の割当て)を実現するように各車輪のブレ−キ圧を
調整するので、ハイドロブ−スタ圧では所要の制動力配
分を実現しえない場合もあり得る。例えばブレ−キペダ
ルの踏込圧が低いときにはハイドロブ−スタ圧は低い
が、制動力配分ではそれより高いブレ−キ圧が必要とな
ることもありうる。
In any of the above-mentioned conventional examples, the braking force distribution control as well as the anti-skid control requires the driver's brake pedal to be depressed. In the case of anti-skid control, the brake pedal is depressed. When the wheel braking by means of over-braking is so to speak, the wheel brake is once decompressed, and the pressure is increased so that the desired wheel slip ratio is obtained and the braking distance is shortened as much as possible.
In addition, the brake pressure is operated via the brake pedal at the discretion of the driver, so the booster pressure during anti-skid control can be adjusted by using the hydro booster pressure that corresponds to the depression or release of the brake pedal. It is rational to use. However, in the case of the braking force distribution control, the wheel brake pressure distribution (front, left, right, left, and right wheels) that is advantageous for ensuring the directional stability and steerability of the vehicle in accordance with the driving and running states of the vehicle and the load distribution on the vehicle Brakes for each of the brakes
Since the brake pressure of each wheel is adjusted so as to realize the (allocation of the key pressure), the required braking force distribution may not be achieved with the hydro booster pressure in some cases. For example, when the stepping pressure of the brake pedal is low, the hydro booster pressure is low, but a higher brake pressure may be required for braking force distribution.

【0005】また、ブレ−キペダルを踏まない急発進や
急旋回などでは、車体上の荷重分布が一時的にシフトし
たり、路面の摩擦係数が4輪で各々異なったりし、車両
の方向安定性や操舵性が悪化することがあり、制動力配
分制御があった方が好ましい場合があるが、ブレ−キペ
ダルの踏込みがないのでハイドロブ−スタ圧によって車
輪ブレ−キ圧を高めることはできない。更には、制動力
配分制御では、前後左右4車輪のブレ−キ圧のそれぞれ
を個別に制御しうるのが好ましい。なお、車種(エンジ
ンの位置,運転席の位置,座席分布,前輪駆動/後輪駆
動/全輪駆動,前輪操舵/後輪操舵/前後輪操舵,荷台
の有無)によっては、必ずしも全輪のブレ−キ圧のそれ
ぞれを個別に制御しなくても、特定の1又は数車輪のブ
レ−キ圧の制動力配分制御で、方向安定性および操舵性
を確保しうる。
Further, when the vehicle is suddenly started or turned without pressing the brake pedal, the load distribution on the vehicle body is temporarily shifted, and the friction coefficient of the road surface is different among the four wheels. In some cases, it is preferable to have the braking force distribution control. However, since the brake pedal is not depressed, the wheel brake pressure cannot be increased by the hydro booster pressure. Further, in the braking force distribution control, it is preferable that each of the brake pressures of the four front, rear, left and right wheels can be individually controlled. Depending on the vehicle type (engine position, driver's seat position, seat distribution, front wheel drive / rear wheel drive / all wheel drive, front wheel steering / rear wheel steering / front / rear wheel steering, presence / absence of luggage bed) The direction stability and the steerability can be secured by the braking force distribution control of the brake pressure of one or several specific wheels without individually controlling each of the brake pressures.

【0006】本発明は、ドライバの車輪ブレ−キ圧操作
が無いときにも制動力配分制御を実現しうる制動力配分
制御装置を提供することを第1の目的とし、制動力配分
制御中にドライバのブレ−キペダル操作があったときに
も、制御を中断することなく続け、ドライバにも異和感
がない制動力配分制御装置を提供することを第2の目的
とする。
A first object of the present invention is to provide a braking force distribution control device capable of realizing the braking force distribution control even when the driver does not operate the wheel braking pressure. A second object of the present invention is to provide a braking force distribution control device in which control is continued without interruption even when the driver operates the brake pedal, and the driver does not feel discomfort.

【0007】[0007]

【課題を解決するための手段】本発明の制動力配分制御
装置は、ドライバによって操作され、操作力対応の第1
圧力を発生するマスタシリンダ(2)および第1圧力より
高い第2圧力を発生するブ−スタ(5);実質上一定高圧
の第3圧力を発生する定圧力源(21,22);第2圧力と第
3圧力の一方を選択する第1切換手段(64,65);第1切
換手段(64,65)が選択した圧力と第1圧力の一方を選択
する第2切換手段(61〜63);第2切換手段(61〜63)が選
択した圧力と低圧を選択的に、前右車輪ブレ−キ(51)に
供給するための第1増減圧手段(312);前記切換手段(61
〜63)が選択した圧力と低圧を選択的に、前左車輪ブレ
−キ(52)に供給するための第2増減圧手段(334);前記
切換手段(61〜63)が選択した圧力と低圧を選択的に、後
右車輪ブレ−キ(53)に供給するための第3増減圧手段(3
56);および、前記切換手段(61〜63)が選択した圧力と
低圧を選択的に、後左車輪ブレ−キ(54)に供給するため
の第4増減圧手段(378);を備える。なお、カッコ内に
は、理解を容易にするために、図面に示す実施例の対応
要素に付した記号を、参考までに示した。
A braking force distribution control device according to the present invention is operated by a driver and corresponds to an operating force.
A master cylinder (2) for generating pressure and a booster (5) for generating a second pressure higher than the first pressure; a constant pressure source (21, 22) for generating a third pressure of substantially constant high pressure; a second First switching means (64, 65) for selecting one of the pressure and the third pressure; second switching means (61-63) for selecting one of the pressure and the first pressure selected by the first switching means (64, 65) ); First pressure increasing / decreasing means (312) for selectively supplying the pressure and low pressure selected by the second switching means (61 to 63) to the front right wheel brake (51); the switching means (61)
~ 63) the second pressure increasing / decreasing means (334) for selectively supplying the pressure and low pressure selected by the front left wheel brake (52); and the pressure selected by the switching means (61 ~ 63). A third pressure increasing / decreasing means (3) for selectively supplying the low pressure to the rear right wheel brake (53).
56); and fourth pressure increasing / reducing means (378) for selectively supplying the pressure and low pressure selected by the switching means (61 to 63) to the rear left wheel brake (54). In addition, in order to facilitate understanding, symbols in parentheses are given to corresponding elements of the embodiments shown in the drawings for reference.

【0008】[0008]

【作用】ドライバの車輪ブレ−キ圧操作による車輪制
動:第2切換手段(61〜63)で第1圧力を選択することに
より、車輪ブレ−キ(51〜54)に第1圧力が供給される。
すなわち、マスタシリンダ(2)が発生する圧力が与えら
れ、ドライバの操作力に対応するブレ−キ圧が車輪ブレ
−キ(51〜54)のそれぞれに加わる。
Operation: Wheel braking by driver's wheel brake pressure operation: The first pressure is supplied to the wheel brakes (51-54) by selecting the first pressure by the second switching means (61-63). It
That is, the pressure generated by the master cylinder (2) is applied, and the brake pressure corresponding to the operating force of the driver is applied to each of the wheel brakes (51 to 54).

【0009】アンチスキッド制御:第1切換手段(64,6
5)で第2圧力を選択し、第2切換手段(61〜63)で、第1
切換手段(64,65)が選択した第2圧力を選択する。これ
により増減圧手段(312,334,356,378)に第2圧力すなわ
ちブ−スタ圧が加わる。しかして、増減圧手段(312,33
4,356,378)のそれぞれで、該ブ−スタ圧と低圧(ドレイ
ン)を選択的に、車輪ブレ−キ(51〜54)のそれぞれに個
別に供給することにより、車輪ブレ−キ(51〜54)のそれ
ぞれのブレ−キ圧が個別に定まる。
Anti-skid control: first switching means (64,6
Select the second pressure in 5), and use the second switching means (61-63) to select the first pressure.
The second pressure selected by the switching means (64, 65) is selected. As a result, the second pressure, namely the booster pressure, is applied to the pressure increasing / decreasing means (312, 334, 356, 378). Then, the pressure increasing / decreasing means (312, 33
4,356,378) by selectively supplying the booster pressure and low pressure (drain) to each of the wheel brakes (51-54) individually. Each break pressure is set individually.

【0010】トラクション制御:第1切換手段(65)で第
3圧力を選択し、第2切換手段(63)で、第1切換手段(6
5)が選択した圧力、すなわちここでは第3圧力、を選択
する。これにより、増減圧手段(356,378)に第3圧力、
すなわち定圧力源(21,22)が発生する実質上一定の高
圧、が加わる。しかして、増減圧手段(356,378)のそれ
ぞれで、該高圧と低圧を選択的に、車輪ブレ−キ(53,5
4)のそれぞれに個別に供給することにより、車輪ブレ−
キ(53,54)のそれぞれのブレ−キ圧が個別に定まる。
Traction control: The first switching means (65) selects the third pressure, and the second switching means (63) selects the first switching means (6).
5) Select the pressure selected, that is, the third pressure here. Thereby, the third pressure is applied to the pressure increasing / decreasing means (356,378)
That is, a substantially constant high pressure generated by the constant pressure source (21, 22) is applied. Therefore, the high pressure and the low pressure are selectively applied to the wheel brakes (53, 5) by the pressure increasing / decreasing means (356, 378).
By individually supplying each of 4), wheel blur
The brake pressure of each key (53, 54) is determined individually.

【0011】制動力配分制御:第1切換手段(64,65)で
第3圧力を選択し、第2切換手段(61〜63)で、第1切換
手段(64,65)が選択した圧力、すなわちここでは第3圧
力、を選択する。これにより、増減圧手段(312,334,35
6,378)に第3圧力、すなわち定圧力源(21,22)が発生す
る実質上一定の高圧、が加わる。しかして、増減圧手段
(312,334,356,378)のそれぞれで、該高圧と低圧を選択
的に、車輪ブレ−キ(51〜54)のそれぞれに個別に供給す
ることにより、車輪ブレ−キ(51〜54)のそれぞれのブレ
−キ圧が個別に定まる。
Braking force distribution control: The first switching means (64, 65) selects the third pressure, and the second switching means (61-63) selects the pressure selected by the first switching means (64, 65). That is, here, the third pressure is selected. Thereby, the pressure increasing / decreasing means (312, 334, 35
A third pressure, that is, a substantially constant high pressure generated by the constant pressure source (21, 22), is applied to (6,378). Then, the pressure increasing / decreasing means
(312, 334, 356, 378), the high pressure and the low pressure are selectively supplied to the wheel brakes (51 to 54) individually, so that the respective brakes of the wheel brakes (51 to 54) are broken. The pressure is determined individually.

【0012】以上のように、本発明の車輪ブレ−キ圧制
御装置によれば、アンチスキッド制御,トラクション制
御および制動力配分制御を実施しうる。これらの制御の
いずれにおいても、前,後および左,右の、全車輪ブレ
−キのブレ−キ圧を個別に調整しうる。また、特に制動
力配分制御においては、ブ−スタ圧(第2圧力)に代え
て定圧力源(21,22)が発生する実質上一定の高圧(第3
圧力)を車輪ブレ−キのそれぞれに個別に供給しうるの
で、ドライバのブレ−キ操作によるブレ−キ圧が低くて
も、方向安定性および操舵性を確保するためのブレ−キ
圧を、前,後および左,右の、全車輪ブレ−キに供給す
ることができ、より高い方向安定性および操舵性をもた
らすことができる。加えて、ドライバのブレ−キ操作に
よるブレ−キ圧とは別個の、定圧力源(21,22)が発生す
る高圧を増減圧手段(312,334,356,378)に与えるので、
ドライバによるブレ−キ操作がない急発進や急旋回など
でも、方向安定性および操舵性を高く維持するために、
前後左右4車輪のブレ−キ圧のそれぞれを個別に制御し
うる。
As described above, according to the wheel brake pressure control device of the present invention, antiskid control, traction control and braking force distribution control can be performed. In any of these controls, the brake pressure of all wheel brakes, front, rear and left, right can be adjusted individually. Further, particularly in the braking force distribution control, a substantially constant high pressure (third pressure) generated by the constant pressure sources (21, 22) is used instead of the booster pressure (second pressure).
(Pressure) can be supplied to each of the wheel brakes individually, so even if the brake pressure by the driver's brake operation is low, the brake pressure for ensuring directional stability and steerability is It can supply front, rear and left and right all-wheel brakes, resulting in higher directional stability and steerability. In addition, since the high pressure generated by the constant pressure source (21, 22), which is different from the brake pressure by the brake operation of the driver, is applied to the pressure increasing / decreasing means (312, 334, 356, 378),
In order to maintain high directional stability and steerability even when the vehicle is suddenly started or turned without braking.
It is possible to individually control the brake pressures of the front, rear, left, and right four wheels.

【0013】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0014】[0014]

【実施例】図1に本発明の一実施例の車輪ブレ−キ圧系
統を示し、図2には該車輪ブレ−キ圧系統の各種電磁弁
およびセンサが接続された、車輪ブレ−キ51〜54の
それぞれの圧力を制御するための電気系統の概要を示
す。
1 shows a wheel brake pressure system according to an embodiment of the present invention, and FIG. 2 shows a wheel brake 51 to which various electromagnetic valves and sensors of the wheel brake pressure system are connected. 5 shows an outline of an electric system for controlling each pressure of ~ 54.

【0015】まず図1を参照すると、ブレ−キペダル3
をドライバ(運転者)が踏込むと、タンデム型のマスタ
シリンダ2が踏込圧対応の前輪ブレ−キ用流体圧(2
a)および後輪ブレ−キ用流体圧(2b)を発生し、図
1に示す状態において、前輪ブレ−キ用流体圧(2a)
は電磁切換弁61および62を通して前右車輪FRの車
輪ブレ−キ51および前左車輪FLの車輪ブレ−キ52
に加わる。後輪ブレ−キ用流体圧(2b)は、比例制御
弁6で調圧され更に電磁切換弁63並びに、増減圧弁ユ
ニット356の増圧用電磁弁35を介して後右車輪RR
の車輪ブレ−キ53に、また増減圧弁ユニット378の
増圧用電磁弁37を介して後左車輪RLの車輪ブレ−キ
54に加わる。これらのブレ−キ液圧を以下、第1圧力
と称する。ポンプ21は電気モ−タ24で駆動されてリ
ザ−バ4のブレ−キ液を吸引してチェックバルブ25を
通してアキュムレ−タ22に供給する。アキュムレ−タ
22の高圧は、ハイドロブ−スタ5ならびに電磁切換弁
64および65に供給される。アキュムレ−タ22のブ
レ−キ液の圧力は圧力センサ46で検出される。フキュ
ム−タ22の圧力が下限値以下に下がると低圧スイッチ
47が閉となる。リザ−バ4とアキュムレ−タ22の間
にはリリ−フバルブ23が介挿されており、アキュムレ
−タ22の圧力が上限値に達するとリリ−フバルブ23
がアキュム−タ22のブレ−キ液を、その圧力が上限値
未満になるまでリザ−バ4に放出する。なお、図2に示
し後述する電子制御装置10が、低圧スイッチ47の開
(圧力が下限値を越えた)/閉(圧力が下限値以下)を
監視しかつ圧力センサ46の検出圧を読んで、低圧スイ
ッチ47が閉(圧力が下限値以下)のときには電気モ−
タ24を駆動し、圧力センサ46の検出圧が低圧スイッ
チ47の上限値より低い設定値に達すると電気モ−タ2
4を止めて、アキュムレ−タ22の圧力を実質上一定圧
(下限値と設定値の間の範囲)に維持する。この、アキ
ュムレ−タ22のブレ−キ液圧を以下、第3圧力と称す
る。
Referring first to FIG. 1, the brake pedal 3
When the driver (driver) steps on the tandem master cylinder 2, the front wheel brake fluid pressure (2
a) and rear wheel brake fluid pressure (2b) are generated, and in the state shown in FIG. 1, front wheel brake fluid pressure (2a).
Is a wheel brake 51 of the front right wheel FR and a wheel brake 52 of the front left wheel FL through electromagnetic switching valves 61 and 62.
Join in. The rear wheel brake fluid pressure (2b) is regulated by the proportional control valve 6 and further via the electromagnetic switching valve 63 and the pressure increasing solenoid valve 35 of the pressure increasing / reducing valve unit 356.
To the wheel brake 54 of the left rear wheel RL via the pressure increasing solenoid valve 37 of the pressure increasing / decreasing valve unit 378. These brake fluid pressures are hereinafter referred to as the first pressure. The pump 21 is driven by an electric motor 24 to suck the brake liquid of the reservoir 4 and supply it to the accumulator 22 through a check valve 25. The high pressure of the accumulator 22 is supplied to the hydro booster 5 and the electromagnetic switching valves 64 and 65. The pressure of the brake fluid in the accumulator 22 is detected by the pressure sensor 46. When the pressure of the fuser 22 falls below the lower limit value, the low pressure switch 47 is closed. A relief valve 23 is interposed between the reservoir 4 and the accumulator 22. When the pressure of the accumulator 22 reaches the upper limit value, the relief valve 23 is released.
Discharges the brake liquid of the accumulator 22 to the reservoir 4 until the pressure becomes less than the upper limit value. The electronic control unit 10 shown in FIG. 2 and described later monitors the opening (pressure exceeds the lower limit value) / close (pressure is below the lower limit value) of the low pressure switch 47 and reads the pressure detected by the pressure sensor 46. , When the low pressure switch 47 is closed (the pressure is below the lower limit value), the electric mode is set.
When the motor 24 is driven and the detected pressure of the pressure sensor 46 reaches a set value lower than the upper limit value of the low pressure switch 47, the electric motor 2
4 is stopped and the pressure of the accumulator 22 is maintained at a substantially constant pressure (range between the lower limit value and the set value). The brake fluid pressure of the accumulator 22 is hereinafter referred to as the third pressure.

【0016】アキュムレ−タ22の圧力(第3圧力)は
ハイドロブ−スタ5に印加され、ハイドロブ−スタ5
は、該圧力を、ブレ−キペダル3の押し込み力に比例す
る圧力に調圧して、電磁切換弁64および65に与え
る。これがブ−スタ圧であり、ブレ−キマスタシリンダ
2から出力する圧力の約120%程度の圧力となる。こ
のブ−スタ圧を以下、第2圧力と称する。
The pressure (third pressure) of the accumulator 22 is applied to the hydro booster 5, and the hydro booster 5
Adjusts the pressure to a pressure proportional to the pushing force of the brake pedal 3 and applies the pressure to the electromagnetic switching valves 64 and 65. This is the booster pressure, which is about 120% of the pressure output from the brake master cylinder 2. This booster pressure is hereinafter referred to as the second pressure.

【0017】電磁切換弁64および65には、アキュム
レ−タ圧(第3圧力)とブ−スタ圧(第2圧力)が与え
られる。電磁切換弁64は、その電気コイルに通電がな
いときには図1に示すように、ブ−スタ圧(第2圧力)
を、前右車輪ブレ−キ51の調圧用の増減圧弁ユニット
312の増圧用電磁弁31ならびに前左車輪ブレ−キ5
2の調圧用の増減圧弁ユニット334の増圧用電磁弁3
3、の入力ポ−トに与えるが、電気コイルに通電がある
と、ブ−スタ圧(第2圧力)に代えてアキュムレ−タ圧
(第3圧力)を増圧用電磁弁31および33の入力ポ−
トに与える。電磁切換弁65は、その電気コイルに通電
がないときには図1に示すように、ブ−スタ圧(第2圧
力)を、電磁切換弁63に与えるが、電気コイルに通電
があると、ブ−スタ圧(第2圧力)に代えてアキュムレ
−タ圧(第3圧力)を電磁切換弁63に与える。
Accumulator pressure (third pressure) and booster pressure (second pressure) are applied to the electromagnetic switching valves 64 and 65. The electromagnetic switching valve 64 has a booster pressure (second pressure) as shown in FIG. 1 when the electric coil is not energized.
To the pressure increasing solenoid valve 31 of the pressure increasing / reducing valve unit 312 for adjusting the pressure of the front right wheel brake 51 and the front left wheel brake 5.
Pressure increasing / decreasing valve unit 334 for adjusting pressure 2 solenoid valve 3 for increasing pressure
When the electric coil is energized, the accumulator pressure (third pressure) is input to the pressure increasing solenoid valves 31 and 33 instead of the booster pressure (second pressure). Po
Give to The electromagnetic switching valve 65 applies a booster pressure (second pressure) to the electromagnetic switching valve 63 as shown in FIG. 1 when the electric coil is not energized. An accumulator pressure (third pressure) is applied to the electromagnetic switching valve 63 instead of the star pressure (second pressure).

【0018】電磁切換弁61および62は、その電気コ
イルに通電がないときには図1に示すように、ブレ−キ
マスタシリンダ2の出力圧(第1圧力)を前右車輪ブレ
−キ51および前左車輪ブレ−キ52に与えるが、電気
コイルに通電があると、前右車輪ブレ−キ51の調圧用
の増減圧弁ユニット312の出力ポ−ト(増圧用電磁弁
31の出力ポ−ト)および前左車輪ブレ−キ52の調圧
用の増減圧弁ユニット334の出力ポ−ト(増圧用電磁
弁33の出力ポ−ト)に、前右車輪ブレ−キ51および
前左車輪ブレ−キ52を接続する。
When the electric coils of the electromagnetic switching valves 61 and 62 are not energized, as shown in FIG. 1, the output pressure (first pressure) of the brake master cylinder 2 is set to the front right wheel brake 51 and the front left wheel. Although applied to the wheel brake 52, when the electric coil is energized, the output port of the pressure increasing / decreasing valve unit 312 for pressure adjustment of the front right wheel brake 51 (the output port of the pressure increasing solenoid valve 31) and the The front right wheel brake 51 and the front left wheel brake 52 are connected to the output port of the pressure increasing / decreasing valve unit 334 (the output port of the pressure increasing solenoid valve 33) for adjusting the pressure of the front left wheel brake 52. Connecting.

【0019】電磁切換弁63は、その電気コイルに通電
がないときには図1に示すように、ブレ−キマスタシリ
ンダ2の出力圧を比例制御弁6が調圧した圧力(第1圧
力)を、後右車輪ブレ−キ53の調圧用の増減圧弁ユニ
ット356の入力ポ−ト(増圧用電磁弁35の入力ポ−
ト)および後左車輪ブレ−キ54の調圧用の増減圧弁ユ
ニット378の入力ポ−ト(増圧用電磁弁37の入力ポ
−ト)に与えるが、電気コイルに通電があるときには、
ユニット356および378の入力ポ−トに電磁切換弁
65の出力圧(第2圧力又は第3圧力)を与える。
As shown in FIG. 1, the solenoid operated directional control valve 63 controls the output pressure of the brake master cylinder 2 by the proportional control valve 6 (first pressure) as shown in FIG. The input port of the pressure increasing / decreasing valve unit 356 for adjusting the pressure of the right wheel brake 53 (the input port of the pressure increasing solenoid valve 35).
To the input port of the pressure increasing / decreasing valve unit 378 for adjusting the pressure of the rear left wheel brake 54 (the input port of the pressure increasing solenoid valve 37), but when the electric coil is energized,
The output pressure (second pressure or third pressure) of the electromagnetic switching valve 65 is applied to the input ports of the units 356 and 378.

【0020】前右車輪ブレ−キ51の調圧用の増減圧弁
ユニット312の出力ポ−ト(増圧用電磁弁31の出力
ポ−ト)および前左車輪ブレ−キ52の調圧用の増減圧
弁ユニット334の出力ポ−ト(増圧用電磁弁33の出
力ポ−ト)と、前輪系第1圧力ライン(マスタシリンダ
2の出力ポ−ト)の間にはそれぞれ、電磁開閉弁HSV
1およびHSV2が介挿されている。また、後輪系第1
圧力ライン(比例制御弁6の出力ポ−ト)と後右車輪ブ
レ−キ53および後左車輪ブレ−キ54との間にはそれ
ぞれ電磁開閉HSV3およびHSV4が介挿されてい
る。これらの電磁開閉HSV1〜HSV4は、電気コイ
ルに通電がないときには図1に示すように弁閉(遮断)
であり、電気コイルに通電があると弁開(通流)とな
る。弁開のときHSV1〜HSV4内部のチェックバル
ブにより、第1圧力が車輪ブレ−キ圧より高いときには
第1圧力が車輪ブレ−キに加わるが、第1圧力が車輪ブ
レ−キ圧より低いときには、車輪ブレ−キ圧は、第1圧
力によっては変化しない(第1圧力は実質上車輪ブレ−
キに加わらない)。
An output port of the pressure increasing / decreasing valve unit 312 for adjusting the pressure of the front right wheel brake 51 (an output port of the pressure increasing electromagnetic valve 31) and a pressure increasing / decreasing valve unit for adjusting the pressure of the front left wheel brake 52. An electromagnetic on-off valve HSV is provided between the output port of 334 (the output port of the solenoid valve 33 for increasing pressure) and the first pressure line of the front wheel system (the output port of the master cylinder 2).
1 and HSV2 are inserted. Also, the rear wheel system first
Electromagnetic switches HSV3 and HSV4 are inserted between the pressure line (the output port of the proportional control valve 6) and the rear right wheel brake 53 and the rear left wheel brake 54, respectively. These electromagnetic switches HSV1 to HSV4 are closed (shut off) as shown in FIG. 1 when the electric coil is not energized.
When the electric coil is energized, the valve opens (flows). When the valve is open, the check valves inside HSV1 to HSV4 apply the first pressure to the wheel brake when the first pressure is higher than the wheel brake pressure, but when the first pressure is lower than the wheel brake pressure, The wheel brake pressure does not change with the first pressure (the first pressure is substantially the wheel brake pressure).
Do not join ki).

【0021】なお、ブレ−キペダル踏込み時の制動力配
分制御で、各電磁弁の切換え制御法によっては、必ずし
もHSV1〜4は必要ではない。
In the braking force distribution control when the brake pedal is stepped on, HSV1 to HSV4 are not always necessary depending on the switching control method of each solenoid valve.

【0022】図1に示すブレ−キ圧系統の、ブレ−キマ
スタシリンダ2の出力圧のみを車輪ブレ−キに与えるブ
レ−キ圧伝達系,アンチスキッド制御中のブレ−キ圧伝
達系,トラクション制御中のブレ−キ圧伝達系,制動力
配分制御中のブレ−キ圧伝達系、ならびに、制動力配分
制御による圧力とブレ−キマスタシリンダ2の出力圧と
を合せて車輪ブレ−キに加えるブレ−キ圧伝達系、のそ
れぞれを構成する要素を、各車輪ブレ−キ別で、表1お
よび表2に示す。なおこれらの表において、各伝達系を
構成する要素は、車輪ブレ−キを出発点にしてブレ−キ
圧源に向かう方向に摘出し表示した。また、表1および
表2ならびに図面においては、「アンチスキッド制御」
を「ABS制御」と、「トラクション制御」を「TRC
制御」と表記した。本書では「ABS」は「アンチスキ
ッド」を意味し、「TRC」は「トラクションコントロ
−ル」を意味する。
In the brake pressure system shown in FIG. 1, a brake pressure transmission system that applies only the output pressure of the brake master cylinder 2 to the wheel brakes, a brake pressure transmission system during anti-skid control, and traction. The brake pressure transmission system under control, the brake pressure transmission system under braking force distribution control, and the pressure due to the braking force distribution control and the output pressure of the brake master cylinder 2 are added together to the wheel brake. The elements constituting each of the brake pressure transmission systems are shown in Tables 1 and 2 for each wheel brake. In these tables, the elements constituting each transmission system are extracted and displayed in the direction toward the brake pressure source with the wheel brake as the starting point. Also, in Tables 1 and 2 and the drawings, "anti-skid control"
For "ABS control" and "traction control" for "TRC
"Control". In this document, "ABS" means "anti-skid" and "TRC" means "traction control".

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1および表2の「アンチスキッド制御圧
系」,「トラクション制御圧系」,「制動力配分制御圧
系」および「フットブレ−キ圧+制動力配分制御圧系」
の各欄中で、増減圧弁ユニット312,334,356
および378は、電子制御装置10(図2)により増,
減圧制御される。すなわち、減圧要のときには、それら
のユニットの中の増圧用電磁開閉弁31,33,35お
よび37はそれらの電気コイルへの通電により弁閉に、
減圧用電磁開閉弁32,34,36および38はそれら
の電気コイルへの通電により弁開にされ、増圧要のとき
には、増圧用電磁開閉弁31,33,35および37は
それらの電気コイルの非通電により弁開に、減圧用電磁
開閉弁32,34,36および38はそれらの電気コイ
ルの非通電により弁閉にされる。また、ホ−ルド(現在
の圧力をそのまま維持)要のときには、増圧用電磁開閉
弁31,33,35および37はそれらの電気コイルへ
の通電により弁閉に、減圧用電磁開閉弁32,34,3
6および38はそれらの電気コイルの非通電により弁閉
にされる。
"Anti-skid control pressure system", "Traction control pressure system", "Brake force distribution control pressure system" and "Foot brake pressure + braking force distribution control pressure system" in Tables 1 and 2
In each column of, the pressure increasing / reducing valve unit 312, 334, 356
And 378 are increased by the electronic control unit 10 (FIG. 2),
Pressure reduction is controlled. That is, when decompression is required, the pressure-increasing electromagnetic on-off valves 31, 33, 35 and 37 in these units are closed by energizing their electric coils.
The pressure reducing electromagnetic on-off valves 32, 34, 36 and 38 are opened by energizing their electric coils, and when pressure increase is required, the pressure increasing electromagnetic on-off valves 31, 33, 35 and 37 change their electric coils. The decompression electromagnetic on-off valves 32, 34, 36 and 38 are closed by de-energizing and the valves are closed by de-energizing their electric coils. Further, when the hold (maintaining the current pressure as it is) is required, the pressure increasing electromagnetic on-off valves 31, 33, 35 and 37 are closed by energizing their electric coils, and the pressure reducing electromagnetic on-off valves 32, 34. , 3
6 and 38 are closed by de-energizing their electric coils.

【0026】なお、図1の例では、圧力系の電磁切換弁
の入り方が前輪系,後輪系で異なっているが、例えば後
輪系を前輪系と同一の油圧回路にするなども可能であ
る。
In the example of FIG. 1, the way the electromagnetic switching valve of the pressure system is entered differs between the front wheel system and the rear wheel system, but it is also possible to make the rear wheel system the same hydraulic circuit as the front wheel system, for example. Is.

【0027】図2を参照する。電子制御装置10の主体
はマイクロコンピュ−タ11であり、このマイクロコン
ピュ−タ11の主要素はCPU14,ROM15,RA
M16およびタイマ17である。電子制御装置10に
は、更に、センサを付勢(通電)し検出信号を発生する
信号処理回路18a〜18m,検出信号あるいは操作ボ
−ド100の入力をマイクロコンピュ−タ11に与える
ための電気回路すなわち入力インタ−フェイス12,モ
−タドライバおよびソレノイドドライバ19a〜19
r、および、マイクロコンピュ−タ11の制御信号をド
ライバ19a〜19rに与えるための電気回路すなわち
出力インタ−フェイス13がある。
Referring to FIG. The main body of the electronic control unit 10 is a microcomputer 11, and the main elements of this microcomputer 11 are a CPU 14, a ROM 15, and an RA.
M16 and timer 17. The electronic control unit 10 is further provided with an electric signal for energizing (energizing) the sensor to generate a detection signal, a signal processing circuit 18a to 18m, and a detection signal or an input of the operation board 100 to the microcomputer 11. Circuit or input interface 12, motor driver and solenoid drivers 19a-19
r and an electrical circuit or output interface 13 for providing control signals of the microcomputer 11 to the drivers 19a to 19r.

【0028】前右,前左,後右および後左の車輪51〜
54それぞれの回転速度を車輪速度センサ41〜44の
それぞれが検知し、各車輪速度を表わす電気信号(車輪
速度信号)を信号処理回路18a〜18dが発生して入
力インタ−フェイス12に与える。ブレ−キペダル3の
踏込み中閉となるストップスイッチ45の開(ペダル3
の踏込みなし:オフ)/閉(ペダル3の踏込みあり:オ
ン)を表わす電気信号を信号処理回路18eが発生して
入力インタ−フェイス12に与える。圧力センサ46が
アキュムレ−タ22の液圧を検知し、信号処理回路18
fが、検知圧を表わす電気信号(圧力信号)を発生して
入力インタ−フェイス12に与える。アキュムレ−タ2
2の液圧が下限値以下のとき閉となる低圧スイッチ47
の開(下限値を越える圧力:オフ)/閉(下限値以下:
オン)を表わす電気信号を信号処理回路18gが発生し
て入力インタ−フェイス12に与える。ハイドロブ−ス
タ5の出力圧(ブレ−キマスタシリンダ2の出力圧の1
20%)が実質上車輪ブレ−キが制動力を発生する所定
低圧対応値以上のとき閉となるパワ−圧スイッチ48の
開(車輪制動なし:オフ)/閉(車輪制動あり:オン)
を表わす電気信号を信号処理回路18hが発生して入力
インタ−フェイス12に与える。
Front right, front left, rear right and rear left wheels 51-
The wheel speed sensors 41 to 44 detect the respective rotation speeds of 54, and the signal processing circuits 18a to 18d generate electric signals representing the wheel speeds (wheel speed signals) and apply them to the input interface 12. The stop switch 45, which is closed while the brake pedal 3 is being depressed, is opened (pedal 3
The signal processing circuit 18e generates an electric signal representing "no depression: off" / closed (pedal 3 depression: on) and gives it to the input interface 12. The pressure sensor 46 detects the hydraulic pressure of the accumulator 22, and the signal processing circuit 18
f generates an electric signal (pressure signal) representing the detected pressure and supplies it to the input interface 12. Accumulator 2
Low pressure switch 47 that closes when the hydraulic pressure of 2 is below the lower limit
Open (pressure above the lower limit: OFF) / closed (below the lower limit:
An electric signal representing "ON" is generated by the signal processing circuit 18g and given to the input interface 12. Output pressure of the hydro booster 5 (1 of the output pressure of the brake master cylinder 2
20%) is closed when the wheel brake is substantially equal to or higher than a predetermined low pressure value at which braking force is generated. Open (without wheel braking: off) / close (with wheel braking: on) the power pressure switch 48.
Is generated by the signal processing circuit 18h and applied to the input interface 12.

【0029】車体のヨ−レ−トをヨ−レ−トセンサYA
が検知し、信号処理回路18iが、ヨ−レ−ト(実ヨ−
レ−ト)を表わす電気信号を発生して入力インタ−フェ
イス12に与える。ステアリングホイ−ルの回転角度を
前輪舵角センサθFが検知し信号処理回路18jが、前
輪舵角を表わす電気信号を発生して入力インタ−フェイ
ス12に与える。後輪の舵角は後輪舵角センサθRが検
知し信号処理回路18kが、後輪舵角を表わす電気信号
を発生して入力インタ−フェイス12に与える。車体の
前後加速度を加速度センサ(GXセンサ)が検知し信号
処理回路18lが、前後加速度を表わす電気信号を発生
して入力インタ−フェイス12に与える。車体の横加速
度を加速度センサ(GYセンサ)が検知し信号処理回路
18mが、横加速度を表わす電気信号を発生して入力イ
ンタ−フェイス12に与える。
The yaw rate of the vehicle body is controlled by the yaw rate sensor YA.
Is detected by the signal processing circuit 18i, and the signal processing circuit 18i detects the yaw rate (actual yaw rate).
An electrical signal representing the rate) is generated and provided to the input interface 12. The rotation angle of the steering wheel is detected by the front wheel steering angle sensor θF, and the signal processing circuit 18j generates an electric signal representing the front wheel steering angle and supplies it to the input interface 12. The steering angle of the rear wheels is detected by the rear wheel steering angle sensor θR, and the signal processing circuit 18k generates an electric signal representing the rear wheel steering angle and gives it to the input interface 12. An acceleration sensor (GX sensor) detects the longitudinal acceleration of the vehicle body, and the signal processing circuit 18l generates an electric signal representing the longitudinal acceleration and applies it to the input interface 12. The acceleration sensor (GY sensor) detects the lateral acceleration of the vehicle body, and the signal processing circuit 18m generates an electrical signal representing the lateral acceleration and applies it to the input interface 12.

【0030】図3に、図2に示すマイクロコンピュ−タ
11の処理機能の概要を示す。車両上のエンジンが起動
され、車両上電気系統の電源が投入され該系統の電圧が
安定した後に電子制御装置10に動作電圧が印加される
(図3のステップ1;以下、カッコ内ではステップとい
う語を省略して、ステップNo.数字のみを記す)。動
作電圧が加わるとマイクロコンピュ−タ11は、内部レ
ジスタ,入出力ポ−トおよび内部タイマを初期状態に設
定し、入,出力インタ−フェイス12,13を、待機時
の入力読取接続および出力信号レベルに設定する
(2)。そして、モ−タドライバ19aに電気モ−タ2
4(ポンプ21)の駆動を指示して、アキュムレ−タ2
2の液圧制御を開始すると共に、この液圧制御と併行し
て、実質上所定周期で、「センサ読取り」(3)から
「電磁弁制御」(8)までの処理すなわち車輪ブレ−キ
圧制御を、実質上所定周期で繰返し実行する。なお、ア
キュムレ−タの液圧制御では、圧力センサ46による検
出圧が上限値に達すると電気モ−タ24(ポンプ21)
を停止し、低圧スイッチ47が閉(液圧が下限値以下)
になると電気モ−タ24(ポンプ21)を駆動する。
FIG. 3 shows an outline of processing functions of the microcomputer 11 shown in FIG. After the engine on the vehicle is started and the electric system on the vehicle is turned on and the voltage of the system is stabilized, the operating voltage is applied to the electronic control unit 10 (step 1 in FIG. 3; hereinafter, referred to as steps in parentheses). The word is omitted and only the step No. and number are described). When the operating voltage is applied, the microcomputer 11 sets the internal register, the input / output port and the internal timer to the initial state, and the input / output interfaces 12 and 13 are connected to the input reading connection and the output signal during standby. Set to level (2). Then, the electric motor 2 is attached to the motor driver 19a.
4 (pump 21) is instructed to drive the accumulator 2
The hydraulic pressure control of No. 2 is started, and in parallel with this hydraulic pressure control, the processing from "sensor reading" (3) to "electromagnetic valve control" (8), that is, the wheel brake pressure, is substantially performed at a predetermined cycle. The control is repeatedly executed substantially at a predetermined cycle. In the hydraulic pressure control of the accumulator, when the pressure detected by the pressure sensor 46 reaches the upper limit value, the electric motor 24 (pump 21).
And the low pressure switch 47 is closed (the fluid pressure is below the lower limit).
Then, the electric motor 24 (pump 21) is driven.

【0031】実質上所定周期で繰返す、「センサ読取
り」(3)から「電磁弁制御」(8)までの処理すなわ
ち車輪ブレ−キ圧制御の中の、「センサ読取り」(3)
では、まず、入力インタ−フェイス12に接続された入
力手段(センサ,スイッチ等)のすべての情報を読込
み、そして、ABS制御,TRC制御および制動力配分
制御の実行要否の判定,車輪ブレ−キ圧の減,増圧要否
ならびに継続時間の判定,終了要否の判定等に参照する
情報を生成する。本実施例での参照情報のうちの主たる
ものは次の通りである。
"Sensor reading" (3) in the processing from "sensor reading" (3) to "solenoid valve control" (8), that is, wheel brake pressure control, which is repeated substantially at a predetermined cycle.
Then, first, all the information of the input means (sensors, switches, etc.) connected to the input interface 12 is read, and then it is judged whether ABS control, TRC control and braking force distribution control are necessary or not, and wheel blur. Information is generated to refer to whether the pressure is reduced, the pressure is required to be increased, the duration is determined, or the end is required. The main items of the reference information in this embodiment are as follows.

【0032】 情報 情報源 実ヨ−レ−トγ ヨ−レ−トセンサYAによる検出値 車輪速度VwFR 車輪速度センサ41による検出値 車輪速度VwFL 車輪速度センサ42による検出値 車輪速度VwRR 車輪速度センサ43による検出値 車輪速度VwRL 車輪速度センサ44による検出値 前後加速度gx 前後加速度センサGXによる検出値 横加速度gy 横加速度センサGYによる検出値 前輪舵角θf 舵角センサθFによる検出値 後輪舵角θr 舵角センサθRによる検出値 車輪制動有/無 ストップスイッチ45のオン/オフ 車輪加速度dVwFR 車輪速度センサ41による過去および現在の 検出値より算出 車輪加速度dVwFL 車輪速度センサ42による過去および現在の 検出値より算出 車輪加速度dVwRR 車輪速度センサ43による過去および現在の 検出値より算出 車輪加速度dVwRL 車輪速度センサ44による過去および現在の 検出値より算出 推定車速Vso VwFR〜VwRLおよび過去の推定車速 に基づいて算出 車両の加速度dVs 推定車速Vsoおよび過去の推定車速 に基づいて算出 車輪スリップ率SwFR VwFRとVsoに基づいて算出 車輪スリップ率SwFL VwFLとVsoに基づいて算出 車輪スリップ率SwRR VwRRとVsoに基づいて算出 車輪スリップ率SwRL VwRLとVsoに基づいて算出。Information Information Source Actual Yaw Rate γ Detected Value by Yaw Rate Sensor YA Wheel Speed VwFR Detected Value by Wheel Speed Sensor 41 Wheel Speed VwFL Detected Value by Wheel Speed Sensor 42 Wheel Speed VwRR By Wheel Speed Sensor 43 Detected value Wheel speed VwRL Detected value by wheel speed sensor 44 Longitudinal acceleration gx Detected value by longitudinal acceleration sensor GX Lateral acceleration gy Detected value by lateral acceleration sensor GY Front wheel steering angle θf Detected value by steering angle sensor θF Rear wheel steering angle θr Steering angle Detection value by sensor θR Wheel braking ON / OFF Stop switch 45 ON / OFF Wheel acceleration dVwFR Calculated from past and present detected values by wheel speed sensor 41 Wheel acceleration dVwFL Calculated from past and present detected values by wheel speed sensor 42 Wheel Acceleration dVwRR Calculated from past and present detected values by the wheel speed sensor 43. Wheel acceleration dVwRL Calculated from past and present detection values by the wheel speed sensor 44 Estimated vehicle speed Vso VwFR to VwRL Calculated based on past estimated vehicle speed Vehicle acceleration dVs Calculated based on estimated vehicle speed Vso and past estimated vehicle speed Wheel slip rate SwFR Calculated based on VwFR and Vso Wheel slip ratio SwFL Calculated based on VwFL and Vso Wheel slip ratio SwRR Calculated based on VwRR and Vso Wheel slip ratio SwRL Calculated based on VwRL and Vso

【0033】マイクロコンピュ−タ11は、これらの情
報の読取りおよび演算を行なうと、順次、ABS制御処
理(4),制動力配分制御処理(5)およびTRC制御
処理(6)を行なう。なおこれらの処理ブロックでは、
実質上制御を実行していない(制御フラグがない)とき
には制御の要否を判定し、制御を開始するとき各制御フ
ラグを立てる。実質上制御を実行している(制御フラグ
がある)ときには、制御の終了の要否を判定し、終了条
件が成立すると終了処理を行なってこの終了処理が終わ
ったときに制御フラグを降ろす。ABS制御処理
(4),制動力配分制御処理(5)およびTRC制御処
理(6)のいずれも制御を行なっていない(制御フラグ
がない)ときには、「非制御処理」(7)に進む。AB
S制御処理(4),制動力配分制御処理(5),TRC
制御処理(6)および「非制御処理」(7)はいずれ
も、ブレ−キ圧系の接続モ−ド,電磁弁のオン/オフ,
その時間等の情報(制御情報)を設定するものであり、
「電磁弁制御」(8)で、設定された制御情報に基づい
て電磁弁のオン/オフを行なう。
After reading and calculating these pieces of information, the microcomputer 11 sequentially executes ABS control processing (4), braking force distribution control processing (5) and TRC control processing (6). Note that in these processing blocks,
When the control is not substantially executed (there is no control flag), the necessity of the control is determined, and each control flag is set when the control is started. When the control is substantially being executed (there is a control flag), it is determined whether or not the control should be ended, and if the end condition is satisfied, the end process is performed and the control flag is cleared when the end process is completed. When none of the ABS control process (4), the braking force distribution control process (5), and the TRC control process (6) is being controlled (there is no control flag), the process proceeds to the "non-control process" (7). AB
S control process (4), braking force distribution control process (5), TRC
The control process (6) and the "non-control process" (7) are both for the brake pressure system connection mode, the solenoid valve on / off,
The information (control information) such as the time is set,
In "solenoid valve control" (8), the solenoid valve is turned on / off based on the set control information.

【0034】I. ABS制御処理(4):各輪において
車輪速度および車輪加速度(正確には減速度)から、車
輪ロック抑制のための車輪ブレ−キの減圧要否を判定す
る。この判定結果が減圧不要であると、次の制動力配分
制御処理(5)に進む。減圧要と判定した場合には、A
BS制御フラグが立っていないときには、ABS制御フ
ラグを立てて、そして偏差に対応する減圧速度(弁開閉
デュ−ティ=通電デュ−ティ)をマップ検索により算出
する。そして減圧要と判定した車輪ブレ−キを減圧とす
るための電磁弁オン/オフ情報(ブレ−キ圧系の接続モ
−ド)および算出した通電デュ−ティを制御情報として
出力レジスタに設定する。なお、実際の通電,非通電あ
るいはその切換えは先に説明したように「電磁弁制御」
(8)で行なう。これにより、減圧要と判定した車輪ブ
レ−キは、表1および表2に示す「フットブレ−キ圧
系」の接続から「ABS制御圧系」の接続に切換えら
れ、減圧要と判定した車輪ブレ−キに接続された増減圧
弁ユニット(312,334,356,378)の、減
圧弁(32,34,36,38)に、算出した通電デュ
−ティで通電が行なわれる(初期減圧)。
I. ABS control processing (4): Whether or not to reduce the wheel brake pressure for wheel lock suppression is determined from the wheel speed and wheel acceleration (accurately deceleration) of each wheel. If the result of this determination is that pressure reduction is not required, the process proceeds to the next braking force distribution control process (5). If it is determined that decompression is required, A
When the BS control flag is not set, the ABS control flag is set and the depressurization speed (valve opening / closing duty = energization duty) corresponding to the deviation is calculated by map search. Then, the solenoid valve on / off information (connection mode of the brake pressure system) for reducing the pressure of the wheel brake which is determined to require pressure reduction and the calculated energizing duty are set in the output register as control information. . Note that the actual energization, de-energization, or switching between them is performed by "solenoid valve control" as described above.
Perform in (8). As a result, the wheel brakes determined to require pressure reduction are switched from the "foot brake pressure system" connection shown in Tables 1 and 2 to the "ABS control pressure system" connection, and the wheel brakes determined to require pressure reduction are performed. The pressure reducing valves (32, 34, 36, 38) of the pressure increasing / reducing valve units (312, 334, 356, 378) connected to the key are energized at the calculated energizing duty (initial pressure reduction).

【0035】減圧をすでに開始していた(すでにABS
制御フラグがあった)場合には、今回進入した「ABS
制御処理」(4)では、減圧を開始した車輪ブレ−キ
の、増圧,減圧,ホ−ルドの要否を、目標スリップ率に
対する実スリップ率の偏差ならびに車輪加速度(車輪速
度の変化傾向)に基づいて判定し、かつ増,減圧速度
(通電デュ−ティ)を算出して、増圧要と判定すると増
減圧弁ユニット(312,334,356,378)の
減圧弁(32,34,36,38)の通電は遮断し増圧
弁(31,33,35,37)に算出した通電デュ−テ
ィで通電を行なう制御情報を設定する。減圧と判定した
場合は上述の初期減圧のときと同様な処置を行なう。ホ
−ルドと判定したときには、増圧弁に連続通電して増圧
弁を弁閉にし、減圧弁は非通電にして弁閉にする制御情
報を設定する。ABS制御終了条件が成立すると、AB
S制御フラグを降ろす。ABSフラグを降ろすと、他の
制御(5,6)による電磁弁のオン/オフがない限り、
「非制御処理」(7)で、車輪ブレ−キを、表1および
表2に示す「フットブレ−キ圧系」の接続にする制御情
報が設定され、「電磁弁制御」(8)で、「フットブレ
−キ圧系」の接続(全電磁弁非通電)が確立される。
Decompression has already started (already ABS
(There was a control flag), the “ABS
In "control processing" (4), the necessity of pressure increase, pressure reduction, and hold of the wheel brake that has started pressure reduction is determined by the deviation of the actual slip ratio from the target slip ratio and the wheel acceleration (wheel speed change tendency). The pressure reducing valve (32, 34, 36, 36, 36) of the pressure increasing / reducing valve unit (312, 334, 356, 378) is determined when the pressure increasing / reducing speed (energization duty) is calculated based on 38) The energization is cut off, and the control information for energizing the booster valves (31, 33, 35, 37) with the calculated energizing duty is set. When it is determined that the pressure is reduced, the same treatment as in the case of the above-described initial pressure reduction is performed. When it is determined to be the hold, control information is set so that the pressure increasing valve is continuously energized to close the pressure increasing valve and the pressure reducing valve is de-energized to close the valve. When the ABS control end condition is satisfied, AB
Clear the S control flag. When the ABS flag is turned off, unless the solenoid valve is turned on / off by another control (5, 6),
In the "non-control process" (7), the control information for connecting the wheel brake to the "foot brake pressure system" shown in Tables 1 and 2 is set, and in the "solenoid valve control" (8), "Foot brake pressure system" connection (all solenoid valves de-energized) is established.

【0036】II. 制動力配分制御処理(5):制動力配
分制御処理(5)の内容を図4に示す。ここではまず
「ヨ−レ−ト偏差演算」(51)を実行する。その内容
を図5に示す。目標ヨ−レ−トγ*を、前輪操舵角θ
f,横加速度gyおよび推定車体速Vsoに基づいて算出
し(511)、ヨ−レ−ト偏差γ*−γを算出する(5
12)。そしてヨ−レ−ト偏差γ*−γに基づいて4輪
全体としての制御量を算出する(513)。次に「制御
輪選択」(52)を実行する。その内容を図6に示す。
「制御輪選択」(52)では、車両の旋回方向DIRを
実ヨ−レ−トγ,横加速度gy,および前輪操舵角θf
で判定し(521)、スピン/ドリフトフラグをヨ−レ
−ト偏差γ*−γおよび実ヨ−レ−トγに基づいて算出
し(522)、そして各輪の制動力配分制御量を算出す
る(523FR〜RL)。各輪の制動力配分制御量は、
増減圧弁の増圧弁の通電デュ−ティ(時系列平均の開
度)および減圧弁の通電デュ−ティ(時系列平均の開
度)で表現される。なお、減圧は、すでに増圧していた
場合のブレ−キ圧の抜きに意味がある。
II. Braking force distribution control process (5): FIG. 4 shows the contents of the braking force distribution control process (5). Here, first, "yaw rate deviation calculation" (51) is executed. The contents are shown in FIG. Set the target yaw rate γ * to the front wheel steering angle θ
Based on f, lateral acceleration gy and estimated vehicle speed Vso (511), yaw rate deviation γ * -γ is calculated (5).
12). Then, the control amount of the entire four wheels is calculated based on the yaw rate deviation γ * -γ (513). Next, "control wheel selection" (52) is executed. The contents are shown in FIG.
In "control wheel selection" (52), the turning direction DIR of the vehicle is set to the actual yaw rate γ, the lateral acceleration gy, and the front wheel steering angle θf.
(521), the spin / drift flag is calculated based on the yaw rate deviation γ * -γ and the actual yaw rate γ (522), and the braking force distribution control amount of each wheel is calculated. Yes (523FR to RL). The braking force distribution control amount of each wheel is
It is expressed by the energization duty (time-series average opening) of the pressure-increasing and reducing valve and the energization duty (time-series average opening) of the pressure reducing valve. The decompression has a meaning to release the brake pressure when the pressure has already been increased.

【0037】そして、いずれかの車輪ブレ−キの制動力
配分制御量(プラスが増圧,マイナスが減圧であるの
で、それらの絶対値)が設定値以上であると制動力配分
制御フラグを立てて、該設定値以上の車輪ブレ−キを表
1および表2に示す「制動力配分制御圧系」の接続とし
かつ算出した通電デュ−ディで増,減圧するための電磁
弁オン,オフ情報および通電デュ−ティ(制御情報)を
設定する。なお、実際の通電,非通電あるいはその切換
えは先に説明したように「電磁弁制御」(8)で行な
う。これにより、車輪ブレ−キ圧系は、表1および表2
に示す「フットブレ−キ圧系」の接続から「制動力配分
制御圧系」の接続に切換えられ、増,減圧要と判定した
車輪ブレ−キに接続された増減圧弁ユニット(312,
334,356,378)の増,減圧弁に、算出したデ
ュ−ティで通電が行なわれる(正確には、減圧の場合は
減圧弁にデュ−ティ通電および増圧弁には連続通電。増
圧の場合には増圧弁に算出したデュ−ティで通電および
減圧弁は連続非通電)。いずれの車輪ブレ−キの制御量
も設定値未満であると制動力配分制御フラグを降ろす。
該フラグを降ろした場合は、他の制御(6)による電磁
弁のオン/オフがない限り、「非制御処理」(7)で、
車輪ブレ−キを、表1および表2に示す「フットブレ−
キ圧系」の接続にする制御情報が設定され、「電磁弁制
御」(8)で、「フットブレ−キ圧系」の接続(全電磁
弁非通電)が確立される。
If the braking force distribution control amount of any of the wheel brakes (plus is pressure increase and minus is pressure decrease, their absolute value) is equal to or greater than the set value, the braking force distribution control flag is set. A solenoid valve on / off information for increasing / decreasing the wheel brake above the set value by connecting the "braking force distribution control pressure system" shown in Tables 1 and 2 with the calculated energizing duty. And energization duty (control information) are set. The actual energization, de-energization, or switching between them is performed by the "solenoid valve control" (8) as described above. As a result, the wheel brake pressure system is shown in Table 1 and Table 2.
The connection of the "foot brake pressure system" shown in Fig. 3 is switched to the connection of the "braking force distribution control pressure system", and the pressure increasing / decreasing valve unit (312, 312 connected to the wheel brake determined to require the pressure increase / decrease).
334, 356, 378), and the pressure reducing valve is energized at the calculated duty (accurately, in the case of decompression, duty energizing the pressure reducing valve and continuously energizing the pressure increasing valve. In this case, energize the booster valve with the calculated duty and continuously de-energize the pressure reducing valve). If the control amount of any of the wheel brakes is less than the set value, the braking force distribution control flag is cleared.
When the flag is cleared, unless the solenoid valve is turned on / off by another control (6), the "non-control process" (7)
The wheel brakes are shown in Table 1 and Table 2 as "foot brakes".
The control information for connecting the "pressure system" is set, and the connection (all solenoid valves are de-energized) of the "foot brake pressure system" is established in the "solenoid valve control" (8).

【0038】なお、「制御輪選択」(52)で車輪ブレ
−キを表1および表2に示す「制動力配分制御圧系」の
接続としかつ算出した制御量対応の値とするための電磁
弁オン,オフ情報等を設定した場合でも、ドライバがブ
レ−キペダルを踏込んでストップスイッチ45がオンに
なると、「非制御処理」(図4の54)で制動力配分制
御フラグを降ろす。すると「非制御処理」(図3の7)
に進み、そこで車輪ブレ−キを表1および表2に示す
「フットブレ−キ圧系」に設定する制御情報が設定さ
れ、「電磁弁制御」(8)で、「フットブレ−キ圧系」
の接続(全電磁弁非通電)が確立される。これにより、
ドライバの制動操作が制動力配分制御より優先される。
In the "control wheel selection" (52), the electromagnetic wave for connecting the wheel brake to the "braking force distribution control pressure system" shown in Tables 1 and 2 and having a value corresponding to the calculated control amount. Even when the valve on / off information is set, when the driver depresses the brake pedal to turn on the stop switch 45, the braking force distribution control flag is cleared by "non-control processing" (54 in FIG. 4). Then, "non-control processing" (7 in Fig. 3)
Then, the control information for setting the wheel brake to the "foot brake pressure system" shown in Tables 1 and 2 is set, and in the "solenoid valve control" (8), the "foot brake pressure system" is set.
Connection (all solenoid valves de-energized) is established. This allows
The driver's braking operation has priority over the braking force distribution control.

【0039】制動力配分制御処理(5)による制御情報
の設定と該制御情報に基づいた「電磁弁制御」(図3の
8;内容は図7)による電磁弁のオン/オフと、それに
よってもたらされる車輪ブレ−キ圧を、図8に示す。
Setting of control information by the braking force distribution control process (5) and turning on / off of the solenoid valve by "solenoid valve control" (8 in FIG. 3; content is FIG. 7) based on the control information, and thereby The resulting wheel brake pressure is shown in FIG.

【0040】III. TRC制御処理(6):ここでは、
駆動輪(本実施例では後輪RR,RL)の車輪スリップ
率および車輪加速度(正しく加速度)から、駆動輪の加
速スリップ抑制のための車輪制動の要否および要の場合
には車輪スリップ率および車輪加速度に対応する車輪ブ
レ−キ圧増圧速度(増減圧弁の通電デュ−ティ)を算出
する。そして車輪制動要と判定したときにはTRC制御
フラグを立てて、後輪車輪ブレ−キ圧系を表2に示す
「TRC制御圧系」の接続とする電磁弁オン/オフおよ
び増減圧弁の通電デュ−ティ(制御情報)を設定する。
車輪制動不要と判定するとTRC制御フラグを降ろす。
このようなTRC制御処理(6)による制御情報の設定
と該制御情報に基づいた「電磁弁制御」(図3の8;内
容は図7)による電磁弁のオン/オフ制御により、駆動
輪の車輪スリップ率および車輪加速度に応じて駆動輪ブ
レ−キ圧の増減が繰り返されて、加速スリップが抑制さ
れる。
III. TRC control processing (6): Here,
From the wheel slip ratios and wheel accelerations (correct accelerations) of the driving wheels (rear wheels RR and RL in this embodiment), whether or not the wheel braking is necessary for suppressing the acceleration slip of the driving wheels, and if necessary, the wheel slip ratios and A wheel brake pressure increasing speed (energization duty of the pressure increasing / decreasing valve) corresponding to the wheel acceleration is calculated. When it is determined that the wheel braking is required, the TRC control flag is set, and the rear wheel brake pressure system is connected to the "TRC control pressure system" shown in Table 2. Set the tee (control information).
When it is determined that the wheel braking is unnecessary, the TRC control flag is set down.
The setting of the control information by the TRC control process (6) and the on / off control of the solenoid valve by the “solenoid valve control” (8 in FIG. 3; the content is FIG. 7) based on the control information cause the drive wheels The drive wheel brake pressure is repeatedly increased and decreased according to the wheel slip ratio and the wheel acceleration, and the acceleration slip is suppressed.

【0041】IV. 非制御処理(7):ここでは全車輪ブ
レ−キを表1および表2に示す「フットブレ−キ圧系」
の接続に設定する制御情報(この実施例では全電磁弁を
非通電=フットブレ−キ圧系接続)を生成する。
IV. Non-control processing (7): All wheel brakes are shown in Table 1 and Table 2 "Foot brake pressure system".
Control information (in this embodiment, all solenoid valves are de-energized = foot brake-pressure system connection) to be set for the connection No.

【0042】V. 電磁弁制御(8):上述の制御情報を
電磁弁制御指令として図1に示す各種電磁弁の通電/非
通電を行なう。その内容を図7に示す。増減圧弁312
(増圧弁31+減圧弁32),334,356および3
78を除く電磁弁に関しては単に制御情報に示されたオ
ン(通電)又はオフ(非通電)を行なうだけである(図
7の81〜85)。なお、図7の82〜85の内容は、
81の内容の中の電磁弁61を、それぞれ電磁弁62,
電磁弁63,電磁弁64および電磁弁65と置換したも
のとなっている。
V. Solenoid valve control (8): The above-mentioned control information is used as a solenoid valve control command to energize / de-energize the various solenoid valves shown in FIG. The contents are shown in FIG. Pressure increase / decrease valve 312
(Pressure increasing valve 31 + pressure reducing valve 32), 334, 356 and 3
All the solenoid valves except 78 are simply turned on (energized) or turned off (non-energized) indicated in the control information (81 to 85 in FIG. 7). The contents of 82 to 85 in FIG.
The solenoid valve 61 in the contents of 81 is replaced by a solenoid valve 62,
The solenoid valve 63, the solenoid valve 64, and the solenoid valve 65 are replaced.

【0043】しかし、増減圧弁312,334,356
および378は、基本的に増圧速度および減圧速度を通
電デュ−ティで制御するものであって、加えて、増圧弁
(31)と減圧弁(32)の両者の同時の閉(液路遮
断)によりブレ−キ圧を現圧に維持(ホ−ルド)するも
のでもあるので、増減圧弁312,334,356およ
び378(それぞれ2個=増圧弁+減圧弁)に関して
は、増圧モ−ド(増圧弁の開閉+減圧弁の連続閉)/減
圧モ−ド(減圧弁の開閉+増圧弁の連続閉)およびホ−
ルドモ−ド(増圧弁の閉+減圧弁の閉)の通電制御が必
要である。
However, the pressure increasing / decreasing valves 312, 334, 356
And 378 basically control the pressure increasing speed and the pressure reducing speed by the energizing duty, and in addition, simultaneously close both the pressure increasing valve (31) and the pressure reducing valve (32) (liquid passage cutoff). ), The brake pressure is maintained at the current pressure (hold). Therefore, the pressure increasing / decreasing valves 312, 334, 356 and 378 (two each = pressure increasing valve + pressure reducing valve) are increased in pressure increasing mode. (Open / close pressure increase valve + continuously close pressure reducing valve) / Decompression mode (open / close pressure reducing valve + continuously close pressure increasing valve) and ho
It is necessary to control the energization of the control mode (close the pressure increasing valve + close the pressure reducing valve).

【0044】そこで、増減圧弁312の制御(86)で
は、ホ−ルドモ−ドが指定されていると、増圧弁31は
通電して弁閉とし減圧弁32は非通電により弁閉とす
る。増圧モ−ド又は減圧モ−ドが指定されているとき
は、それに通電デュ−ティデ−タ(一定周期Tの中の弁
開時間dt)が付加されているので、フロ−チャ−トに
は示していないが、通電デュ−ティデ−タが設定される
と、Tタイマをスタ−トして「開(増圧の場合は増圧弁
非通電/減圧の場合は減圧弁通電)区間」情報を生成し
かつdtタイマをスタ−トし、dtタイマがタイムオ−
バすると該情報を「閉(増圧の場合は増圧弁通電/減圧
の場合は減圧弁非通電)区間」情報に変更する。そして
Tタイマがタイムオ−バするとTタイマを再スタ−トし
て「開区間」情報を生成しかつdtタイマを再スタ−ト
する。制御情報が変更されるまでこれを繰返す。しか
も、開区間情報がある間は、増圧モ−ドが指定されてい
ると増圧弁31は非通電(弁開)、減圧弁32も非通電
(弁閉)とし、減圧モ−ドが指定されていると増圧弁3
1は通電(弁閉)、減圧弁32は通電(弁開)とする。
閉区間情報がある間は、「ホ−ルドモ−ド」が指定され
ているときと同様に、増圧弁31は通電(弁閉)、減圧
弁32は非通電(弁閉)とする。なお、図7の87〜8
9の内容は、86の内容の中の増減圧弁312の増圧弁
31および減圧弁32を、それぞれ増減圧弁334,3
56および378の増圧弁および減圧弁に読み替えた内
容となっている。
Therefore, in the control (86) of the pressure increasing / decreasing valve 312, when the hold mode is designated, the pressure increasing valve 31 is energized to close the valve and the pressure reducing valve 32 is deenergized to close the valve. When the pressure-increasing mode or the pressure-decreasing mode is designated, the energization duty data (valve opening time dt within the constant period T) is added to it, so the flow chart is Although not shown, when the energization duty data is set, the T timer is started and the "open (pressure booster valve non-energized in case of pressure increase / pressure reducer valve energization in case of pressure decrease) interval" information Is generated and the dt timer is started, and the dt timer is timed out.
Then, the information is changed to "closed (energizing valve energized in the case of increasing pressure / depressurizing valve non-energizing in the case of depressurizing) section" information. When the T timer times out, the T timer is restarted to generate "open interval" information and the dt timer is restarted. This is repeated until the control information is changed. Moreover, while there is open section information, if the pressure increasing mode is specified, the pressure increasing valve 31 is de-energized (valve open) and the pressure reducing valve 32 is also de-energized (valve closed), and the pressure reducing mode is specified. Booster valve 3
1 is energized (valve closed), and the pressure reducing valve 32 is energized (valve open).
While the closed section information is available, the pressure increasing valve 31 is energized (valve closed) and the pressure reducing valve 32 is de-energized (valve closed) as in the case where "hold mode" is designated. Note that 87 to 8 in FIG.
The content of 9 is the same as that of the pressure increasing / decreasing valve 312 and the pressure decreasing valve 32 of the pressure increasing / decreasing valve 312 in the content of 86.
The contents are replaced with the pressure increasing valve and the pressure reducing valve of 56 and 378.

【0045】以上に説明した実施例では、マイクロコン
ピュ−タ11が、図4に示す制動力配分制御処理を実行
するので、すなわち、ブレ−キペダル3の踏込みに連動
したストップスイッチ45のオンに応答して全車輪ブレ
−キを表1および表2に示す「フットブレ−キ圧系」の
接続に切換える(すなわち制動力配分制御を終了する)
ので、全車輪ブレ−キの圧力は、図8に示すように、ス
トップスイッチ45がオンになった時刻t1以降では、
ドライバのブレ−キペダル3の踏込み対応のものとな
る。
In the embodiment described above, the microcomputer 11 executes the braking force distribution control process shown in FIG. 4, that is, in response to turning on of the stop switch 45 linked to the depression of the brake pedal 3. Then, all-wheel brakes are switched to the connection of "foot brake pressure system" shown in Tables 1 and 2 (that is, the braking force distribution control is ended).
Therefore, as shown in FIG. 8, the pressure of all-wheel brakes is as follows after the time t 1 when the stop switch 45 is turned on.
It corresponds to depression of the brake pedal 3 of the driver.

【0046】〈第1変形例〉この変形例は、上述の実施
例の内、図4に示す「制動力配分制御処理」(5)を図
9に示すものに変更したものであり、他は上述の実施例
と同じである。図9に示す「制動力配分制御処理」
(5)の中の「制御輪選択」(52)までの処理は、図
4に示すものと同じである。しかしこの第1変形例で
は、「制御輪選択」(52)で各輪の制動力配分制御量
を算出(図6)すると、「非制御輪選択」(55)で、
制御量の絶対値が最小の車輪ブレ−キを非制御に選択し
て該車輪ブレ−キに関しては、「フットブレ−キ圧系」
の接続を行なう制御情報を設定し、他の車輪ブレ−キに
関しては、「制御輪選択」(52)で算出した制御量
に、非制御車輪の実スリップ率から算出した制動力を上
載せした制御量を割り当てて制御情報を設定する。これ
によりこの第1変形例では、制動力配分制御に関して常
時少くとも1つの車輪ブレ−キが非制御となり、この輪
を基準として、ドライバのブレ−キ操作量を確保しつ
つ、制動力配分制御が両立する。この第1変形例の制動
力配分制御による電磁弁のオン/オフと、それによって
もたらされる車輪ブレ−キ圧を、図10に示す。
<First Modification> In this modification, the “braking force distribution control process” (5) shown in FIG. 4 is changed to that shown in FIG. This is the same as the above embodiment. "Braking force distribution control process" shown in FIG.
The process up to "control wheel selection" (52) in (5) is the same as that shown in FIG. However, in this first modification, when the braking force distribution control amount of each wheel is calculated by "control wheel selection" (52) (Fig. 6), "non-control wheel selection" (55)
The wheel brake having the smallest absolute value of the control amount is selected as non-control, and the wheel brake is referred to as "foot brake pressure system".
For other wheel brakes, the braking force calculated from the actual slip ratio of the non-controlled wheel is added to the control amount calculated in "control wheel selection" (52). Assign control amount and set control information. As a result, in this first modification, at least one wheel brake is always uncontrolled for the braking force distribution control, and the braking force distribution control is performed while securing the brake operation amount of the driver on the basis of this wheel. Are compatible. FIG. 10 shows on / off of the solenoid valve by the braking force distribution control of the first modification and the wheel brake pressure caused thereby.

【0047】〈第2変形例〉この変形例は、上述の実施
例の内、図4に示す「制動力配分制御処理」(5)を図
11に示すものに変更したものであり、他は上述の実施
例と同じである。図11に示す「制動力配分制御処理」
(5)の中の「制御輪選択」(52)までの処理ならび
にストップスイッチ45のオンに応答して、制御量が最
低の車輪ブレ−キの制動力配分制御を終了する点は、図
4に示すものと同じである。しかしこの第2変形例で
は、ストップスイッチ45がオンになっても他の3車輪
ブレ−キの制動力配分制御は続行する。また、上述の実
施例の「非制御処理」(54)が「徐変処理」(56)
に置換されている。すなわち第2変形例では、ストップ
スイッチ45のオンに応答して、制御量が最低の車輪ブ
レ−キの制動力配分制御を終了するとき「徐変処理」
(56)を実行する。この内容を図12に示す。
<Second Modification> In this modification, the “braking force distribution control process” (5) shown in FIG. 4 is changed to that shown in FIG. This is the same as the above embodiment. "Braking force distribution control process" shown in FIG.
In response to the processing up to "control wheel selection" (52) in (5) and the turn-on of the stop switch 45, the braking force distribution control of the wheel brake with the minimum control amount is ended in FIG. Is the same as that shown in. However, in this second modification, the braking force distribution control for the other three-wheel brakes continues even if the stop switch 45 is turned on. Further, the "non-control process" (54) of the above-described embodiment is the "gradual change process" (56).
Has been replaced by. That is, in the second modified example, in response to the turning on of the stop switch 45, when the braking force distribution control of the wheel brake with the minimum control amount is ended, "gradual change processing".
Execute (56). This content is shown in FIG.

【0048】図12に示す「徐変処理」(56)におい
ては、まず最初にこれに進んだときには一定時間をタイ
マに設定してタイマをスタ−トし制御量が最小の車輪ブ
レ−キを、最初は通電デュ−ティが小さい(時系列の減
圧弁開度が低い)減圧モ−ドとする制御情報を設定す
る。その後はこの「徐変処理」(56)に進む毎に通電
デュ−ティを順次に大きく更新する(562〜564,
565A)。そしてタイマがタイムオ−バ(一定時間が
経過)すると、制御量が最小の車輪ブレ−キを「フット
ブレ−キ圧系」の接続に設定する制御情報を設定する
(566)。この第2変形例によれば、ブレ−キペダル
3が踏込まれストップスイッチ45がオンになると1つ
の車輪ブレ−キの制動力配分制御が徐々に停止し、この
輪を基準として、ドライバのブレ−キ操作量を確保しつ
つ、制動力配分制御が両立する。この第2変形例の制動
力配分制御による電磁弁のオン/オフと、それによって
もたらされる車輪ブレ−キ圧を、図13に示す。この例
では図13に示すように、制動力配分制御を停止する車
輪ブレ−キの圧力は一定時間の間に滑らかに低下し、車
輪ブレ−キ圧の切換わり時のブレ−キ圧変動が小さい。
In the "gradual change process" (56) shown in FIG. 12, when the process first proceeds to this, a fixed time is set in the timer and the timer is started to produce a wheel brake with the minimum control amount. First, the control information is set so that the pressure reduction mode has a small energization duty (the time series pressure reduction valve opening is low). After that, the energizing duty is sequentially and largely updated each time the "gradual change process" (56) is performed (562 to 564).
565A). Then, when the timer times out (a certain time has elapsed), the control information for setting the wheel brake with the minimum control amount to the connection of the "foot brake pressure system" is set (566). According to this second modification, when the brake pedal 3 is depressed and the stop switch 45 is turned on, the braking force distribution control for one wheel brake is gradually stopped, and the driver's brake is controlled with this wheel as a reference. The braking force distribution control is compatible while securing the operation amount. FIG. 13 shows on / off of the solenoid valve by the braking force distribution control of the second modified example and the wheel brake pressure caused thereby. In this example, as shown in FIG. 13, the pressure of the wheel brake for stopping the braking force distribution control is smoothly reduced within a certain period of time, and the brake pressure fluctuation at the time of switching the wheel brake pressure is changed. small.

【0049】〈第3変形例〉第3変形例は、、図12に
示す「制御量最小輪の減圧開時間をインクリメント」
(565A)を、該図中に2点鎖線ブロックで示す「制
御量最小輪の増圧時間をインクリメント」(565B)
に変更したものであり、他は上述の第2変形例と同じで
ある。この第3変形例では、ストップスイッチ45のオ
ンに応答し制御量が最低の車輪ブレ−キの制動力配分制
御を終了するとき「徐変処理」(56)を実行するが、
この「徐変処理」(56)においては、まず最初にこれ
に進んだときには一定時間をタイマに設定してタイマを
スタ−トし制御量が最小の車輪ブレ−キを、最初は通電
デュ−ティが大きい(時系列の増圧弁開度が低い)増圧
モ−ドとする制御情報を設定する。その後はこの「徐変
処理」(56)に進む毎に通電デュ−ティを順次に小さ
く更新する(562〜564,565B)。そしてタイ
マがタイムオ−バ(一定時間が経過)すると、制御量が
最小の車輪ブレ−キを「フットブレ−キ圧系」の接続に
設定する制御情報を設定する(566)。この第3変形
例によれば、ブレ−キペダル3が踏込まれストップスイ
ッチ45がオンになると1つの車輪ブレ−キの制動力配
分制御が徐々に停止し、この輪を基準として、ドライバ
のブレ−キ操作量を確保しつつ、制動力配分制御が両立
する。この第3変形例の制動力配分制御による電磁弁の
オン/オフと、それによってもたらされる車輪ブレ−キ
圧を、図14に示す。この例では図14に示すように、
制動力配分制御を停止する車輪ブレ−キの圧力は一定時
間の間に滑らかに上昇し、車輪ブレ−キ圧の切換わり時
のブレ−キ圧変動が小さい。なお、この第3変形例の徐
変処理は制御量最小の車輪の対称車輪(図14の例では
FL輪に対してFR輪)がホ−ルドの時に行うものとす
る。
<Third Modification> In the third modification, the “decompression open time of the minimum control amount wheel is incremented” shown in FIG.
(565A) is indicated by a two-dot chain line block in the figure, "increment pressure increase time of minimum control amount wheel" (565B)
The second modification is the same as the second modification described above. In the third modification, the "gradual change process" (56) is executed when the braking force distribution control of the wheel brake with the minimum control amount is ended in response to the turning on of the stop switch 45.
In this "gradual change process" (56), when the operation first proceeds to this, a fixed time is set in the timer and the timer is started to set the wheel brake with the minimum control amount, and the energization duty is first set. The control information is set as a pressure increasing mode with a large tee (a time series pressure increasing valve opening is low). After that, the energization duty is sequentially updated to be smaller each time the "gradual change process" (56) is performed (562 to 564, 565B). Then, when the timer times out (a certain time has elapsed), the control information for setting the wheel brake with the minimum control amount to the connection of the "foot brake pressure system" is set (566). According to the third modified example, when the brake pedal 3 is depressed and the stop switch 45 is turned on, the braking force distribution control for one wheel brake is gradually stopped, and the driver's brake is controlled based on this wheel. The braking force distribution control is compatible while securing the operation amount. FIG. 14 shows on / off of the solenoid valve by the braking force distribution control of the third modification and the wheel brake pressure caused thereby. In this example, as shown in FIG.
The pressure of the wheel brake for stopping the braking force distribution control rises smoothly within a fixed time, and the fluctuation of the brake pressure at the time of switching the wheel brake pressure is small. The gradual change process of the third modified example is performed when the symmetrical wheel of the wheel with the minimum control amount (the FR wheel with respect to the FL wheel in the example of FIG. 14) is in the hold.

【0050】〈第4変形例〉この変形例は、上述の実施
例の内、図4に示す「制動力配分制御処理」(5)を図
15に示すものに変更したものであり、他は上述の実施
例と同じである。図15に示す「制動力配分制御処理」
(5)の中の「制御輪選択」(52)までの処理は、図
4に示すものと同じである。この第4実施例では、スト
ップスイッチ45のオン,オフ(ブレ−キペダル踏込有
り,無し)に係わらず「制御輪選択」(52)に従って
最大4輪に対して制御を継続する。ただし、制動力配分
制御の制御フラグがある場合はHSV1〜4をオンにす
る(57)ため、ドライバのブレ−キペダル操作によっ
てマスタシリンダ圧が、制御量最小の車輪制御圧と同一
になったときに、HSVの働きによってその輪のみ自動
的にフットブレ−キ圧系に切り替わる。他の車輪ブレ−
キに関しては、「制御輪選択」(52)で算出した制御
量に、フットブレ−キ圧系に切り替わった車輪の実スリ
ップ率から算出した制動力を上載せした制御量を割り当
てて制御情報を設定する。これによりこの第4変形例で
は、制動力配分制御に関して最大4輪を制御し、ドライ
バのブレ−キ操作があり制御圧を上回った時には、ドラ
イバ操作量を加算した制御圧となる。この第4変形例の
制動力配分制御による電磁弁のオン/オフと、それによ
ってもたらされる車輪ブレ−キ圧を、図16に示す。
<Fourth Modification> In this modification, the “braking force distribution control processing” (5) shown in FIG. 4 is changed to that shown in FIG. This is the same as the above embodiment. "Braking force distribution control process" shown in FIG.
The process up to "control wheel selection" (52) in (5) is the same as that shown in FIG. In the fourth embodiment, control is continued for a maximum of four wheels according to "control wheel selection" (52) regardless of whether the stop switch 45 is on or off (with or without the brake pedal depressed). However, when the control flag for the braking force distribution control is present, HSV1 to 4 are turned on (57), so when the master cylinder pressure becomes the same as the wheel control pressure with the minimum control amount by the driver's operation of the brake pedal. Moreover, only the wheel is automatically switched to the foot brake pressure system by the action of HSV. Other wheel blur
Regarding the key, control information is set by allocating the control amount calculated by the “control wheel selection” (52) to the control amount in which the braking force calculated from the actual slip ratio of the wheel switched to the foot brake pressure system is overlaid. To do. As a result, in this fourth modified example, a maximum of four wheels are controlled with respect to the braking force distribution control, and when there is a brake operation of the driver and the control pressure is exceeded, the control pressure is the addition of the driver operation amount. FIG. 16 shows ON / OFF of the solenoid valve by the braking force distribution control of the fourth modification and the wheel brake pressure caused thereby.

【0051】なお、図8(実施例),図10(第1変形
例),図13(第2変形例),図14(第3変形例)お
よび図16(第4変形例)に示す車輪ブレ−キ圧は、制
動力配分制御量が一定のままであり、時刻t1にストッ
プスイッチ45がオンになりそこからマスタシリンダM
/Cのブレ−キ圧が一定速度で上昇していく場合の変化
を模式的に表現したものである。実際には、制動力配分
制御量が時間経過に従って遂次変化するので時刻t1
での車輪ブレ−キ圧は一定とは限らない。しかも、マス
タシリンダM/Cのブレ−キ圧も一定速度で上昇する場
合の他に上昇速度が変化する場合や下降する場合もある
ので、時刻t1以降の車輪ブレ−キ圧は直線状に上昇す
るとは限らない。
Wheels shown in FIG. 8 (embodiment), FIG. 10 (first modification), FIG. 13 (second modification), FIG. 14 (third modification) and FIG. 16 (fourth modification). As for the brake pressure, the braking force distribution control amount remains constant, and at time t 1 , the stop switch 45 is turned on and the master cylinder M is turned on.
This is a schematic representation of the change when the brake pressure of / C rises at a constant speed. Actually, since the braking force distribution control amount changes sequentially with the passage of time, the wheel brake pressure is not always constant until time t 1 . Moreover, since the brake pressure of the master cylinder M / C also increases at a constant speed, the increase speed may change or decrease, so that the wheel brake pressure after time t 1 becomes linear. It does not always rise.

【0052】以上に説明した実施例,第1変形例,第2
変形例および第3変形例においては、電磁開閉弁HSV
1〜4は制御しないので、省略してよいものである。第
4変形例では、ストップスイッチ45のオン/オフに連
動して電磁開閉弁HSV1〜4を弁開/閉と制御するの
で必要不可欠である。
The embodiment, the first modification, and the second embodiment described above
In the modified example and the third modified example, the solenoid opening / closing valve HSV is used.
Since 1 to 4 are not controlled, they may be omitted. The fourth modification is indispensable because the electromagnetic on-off valves HSV1 to HSV4 are controlled to open / close in conjunction with turning on / off of the stop switch 45.

【0053】[0053]

【発明の効果】以上のように、本発明の制動力配分制御
装置によれば、アンチスキッド(ABS)制御,トラク
ションコントロ−ル(TRC)制御および制動力配分制
御を実施しうる。これらの制御のいずれにおいても、
前,後および左,右の、全車輪ブレ−キのブレ−キ圧を
個別に調整しうる。また、特に制動力配分制御において
は、ブ−スタ圧(第2圧力)に代えて定圧力源(21,22)
が発生する実質上一定の高圧(第3圧力)を車輪ブレ−
キのそれぞれに個別に供給しうるので、ドライバのブレ
−キ操作によるブレ−キ圧が低くても、方向安定性およ
び操舵性を確保するためのブレ−キ圧を、前,後および
左,右の、全車輪ブレ−キに供給することができ、より
高い方向安定性および操舵性をもたらすことができる。
加えて、ドライバのブレ−キ操作によるブレ−キ圧とは
別個の、定圧力源(21,22)が発生する高圧を増減圧手段
(312,334,356,378)に与えるので、ドライバによるブレ
−キ操作がない急発進や急旋回などでも、方向安定性お
よび操舵性を高く維持するために、前後左右4車輪のブ
レ−キ圧のそれぞれを個別に制御しうる。
As described above, according to the braking force distribution control device of the present invention, anti-skid (ABS) control, traction control (TRC) control and braking force distribution control can be carried out. In any of these controls,
The brake pressure of all wheel brakes, front, rear and left, right can be adjusted individually. In particular, in the braking force distribution control, the constant pressure source (21, 22) is used instead of the booster pressure (second pressure).
A substantially constant high pressure (third pressure) that causes
Since the brake pressure can be supplied individually to each of the keys, even if the brake pressure by the driver's brake operation is low, the brake pressure for securing the directional stability and the steerability can be supplied to the front, rear and left sides. It can be fed to the right, all-wheel brakes, resulting in higher directional stability and steerability.
In addition, the high pressure generated by the constant pressure source (21, 22), which is separate from the brake pressure generated by the driver's brake operation, is increased or decreased.
(312, 334, 356, 378), the brake pressure of each of the front, rear, left and right wheels is individually maintained in order to maintain high directional stability and steerability even during sudden starts or turns where there is no brake operation by the driver. Controllable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an exemplary embodiment of the present invention.

【図2】 図1に示す車輪ブレ−キ圧系統の電磁弁等の
通電を制御する電子制御装置の構成概要を示すブロック
図である。
FIG. 2 is a block diagram showing a schematic configuration of an electronic control unit that controls energization of solenoid valves and the like of the wheel brake pressure system shown in FIG.

【図3】 図2に示すマイクロコンピュ−タ11の車輪
ブレ−キ圧制御の内容の概要を示すフロ−チャ−トであ
る。
3 is a flowchart showing an outline of the contents of wheel brake pressure control of the microcomputer 11 shown in FIG.

【図4】 図3に示す「制動力配分制御処理」(5)の
内容を示すフロ−チャ−トである。
FIG. 4 is a flowchart showing the contents of a “braking force distribution control process” (5) shown in FIG.

【図5】 図4に示す「ヨ−レ−ト偏差演算」(51)
の内容を示すフロ−篠ャ−トである。
FIG. 5: "Yaw rate deviation calculation" (51) shown in FIG.
Is a flow chart showing the contents of.

【図6】 図4に示す「制御輪選択」(52)の内容を
示すフロ−チャ−トである。
FIG. 6 is a flowchart showing the contents of “control wheel selection” (52) shown in FIG.

【図7】 図3に示す「電磁弁制御」(8)の内容を示
すフロ−チャ−トである。
FIG. 7 is a flowchart showing the contents of “solenoid valve control” (8) shown in FIG.

【図8】 図4に示す「制動力配分制御処理」(5)に
よる図1に示す各種電磁弁のオン/オフタイミングおよ
びそれによって現われる車輪ブレ−キ圧を模式的に示す
タイムチャ−トである。
8 is a time chart schematically showing the on / off timings of the various solenoid valves shown in FIG. 1 and the wheel brake pressure that appears due to the "braking force distribution control process" (5) shown in FIG. .

【図9】 上記実施例の第1変形例の、「制動力配分制
御処理」(5)の内容を示すフロ−チャ−トである。
FIG. 9 is a flow chart showing the contents of “braking force distribution control processing” (5) in the first modification of the above embodiment.

【図10】 図9に示す「制動力配分制御処理」(5)
による図1に示す各種電磁弁のオン/オフタイミングお
よびそれによって現われる車輪ブレ−キ圧を模式的に示
すタイムチャ−トである。
[FIG. 10] “Braking force distribution control processing” shown in FIG. 9 (5)
2 is a time chart schematically showing on / off timings of various solenoid valves shown in FIG. 1 and wheel brake pressures that appear thereby.

【図11】 上記実施例の第2変形例の、「制動力配分
制御処理」(5)の内容を示すフロ−チャ−トである。
FIG. 11 is a flowchart showing the contents of the “braking force distribution control process” (5) of the second modification of the above embodiment.

【図12】 図11に示す「徐変処理」(56)の内容
を示すフロ−チャ−トである。
FIG. 12 is a flowchart showing the contents of “gradual change processing” (56) shown in FIG. 11.

【図13】 図11に示す「制動力配分制御処理」
(5)による図1に示す各種電磁弁のオン/オフタイミ
ングおよびそれによって現われる車輪ブレ−キ圧を模式
的に示すタイムチャ−トである。
FIG. 13 is a “braking force distribution control process” shown in FIG. 11.
6 is a time chart schematically showing (5) on / off timings of various solenoid valves shown in FIG. 1 and wheel brake pressures generated thereby.

【図14】 図12に示す「制御量最小輪の減圧時間を
インクリメント」(565A」を同図に示す「制御量最
小輪の増圧時間をインクリメント」(565B)に置換
した第3変形例による、図1に示す各種電磁弁のオン/
オフタイミングおよびそれによって現われる車輪ブレ−
キ圧を模式的に示すタイムチャ−トである。
14 is a third modification example in which “Increase depressurization time of minimum control amount wheel” (565A) shown in FIG. 12 is replaced with “Increase pressure increase time of minimum control amount wheel” (565B) shown in FIG. , ON / OFF of various solenoid valves shown in FIG.
Off-timing and wheel blurring that appears
It is a time chart which shows a key pressure typically.

【図15】 上記実施例の第4変形例の、「制動力配分
制御処理」(5)の内容を示すフロ−チャ−トである。
FIG. 15 is a flowchart showing the content of “braking force distribution control processing” (5) of the fourth modification of the above embodiment.

【図16】 図15に示す「制動力配分制御処理」
(5)による図1に示す各種電磁弁のオン/オフタイミ
ングおよびそれによって現われる車輪ブレ−キ圧を模式
的に示すタイムチャ−トである。
16 is a "braking force distribution control process" shown in FIG.
6 is a time chart schematically showing (5) on / off timings of various solenoid valves shown in FIG. 1 and wheel brake pressures generated thereby.

【符号の説明】[Explanation of symbols]

2:ブレ−キマスタシリンダ 3:ブレ−
キペダル 4:ブレ−キ液リザ−バ 5:ハイド
ロブ−スタ 6:比例制御弁 10:電子
制御装置 11:マイクロコンピュ−タ 12:入力
インタ−フェイス 13:出力インタ−フェイス 14:CP
U 15:ROM 16:RA
M 17:タイマ 18a〜1
8m:信号処理回路 19a〜19r:モ−タドライバおよびソレノイドドラ
イバ 20:高圧力源 21:ポン
プ 22:アキュムレ−タ 23:リリ
−フバルブ 24:電気モ−タ 25:チェ
ックバルブ 31,33,35,37:増圧用電磁弁 32,34,36,38:減圧用電磁弁 312,334,356,378:増減圧弁ユニット 41〜44:車輪速度センサ 45:スト
ップスイッチ 46:圧力センサ 47:低圧
スイッチ 48:パワ−圧スイッチ YA:ヨ−
レ−トセンサ θF:前輪舵角センサ θR:後輪
舵角センサ GX:前後加速度センサ GY:横加
速度センサ 51〜54:車輪ブレ−キ 61〜6
5:電磁切換弁 HSV1〜4:開閉弁
2: Brake master cylinder 3: Brake
Key pedal 4: Break liquid reservoir 5: Hydro booster 6: Proportional control valve 10: Electronic control device 11: Micro computer 12: Input interface 13: Output interface 14: CP
U 15: ROM 16: RA
M 17: Timer 18a-1
8m: Signal processing circuit 19a-19r: Motor driver and solenoid driver 20: High pressure source 21: Pump 22: Accumulator 23: Relief valve 24: Electric motor 25: Check valve 31, 33, 35, 37 : Solenoid valve for increasing pressure 32, 34, 36, 38: solenoid valve for reducing pressure 312, 334, 356, 378: pressure increasing / reducing valve unit 41-44: wheel speed sensor 45: stop switch 46: pressure sensor 47: low pressure switch 48: power -Pressure switch YA: Yo
Rate sensor θF: Front wheel steering angle sensor θR: Rear wheel steering angle sensor GX: Longitudinal acceleration sensor GY: Lateral acceleration sensor 51 to 54: Wheel brakes 61 to 6
5: Solenoid switching valve HSV1 to 4: Open / close valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三 原 純 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 伊 藤 孝 之 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 杉 浦 慎 吾 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 山 崎 憲 雄 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 稲 垣 匠 二 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 山 本 真 規 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Mihara 2-1-1 Asahi-cho, Kariya city, Aichi Prefecture Aisin Seiki Co., Ltd. (72) Takayuki Ito 2-1-1 Asahi-cho, Kariya city, Aichi prefecture Aisin Seiki Co., Ltd. (72) Inventor Shingo Sugiura 2-1-1 Asahi-cho, Kariya City, Aichi Prefecture In-house Aisin Seiki Co., Ltd. (72) 2--1-1 Asahi-cho, Kariya City, Aichi Prefecture Aisin Seiki Co., Ltd. (72) Inventor Takumi Inagaki, 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Masaki Yamamoto, 1 Toyota Town, Aichi Prefecture Toyota Motor Corporation In the company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ドライバによって操作され、操作力対応の
第1圧力を発生するマスタシリンダ(2)および第1圧力
より高い第2圧力を発生するブ−スタ(5);実質上一定
高圧の第3圧力を発生する定圧力源(21,22);第2圧力
と第3圧力の一方を選択する第1切換手段(64,65);第
1切換手段(64,65)が選択した圧力と第1圧力の一方を
選択する第2切換手段(61〜63);第2切換手段(61〜63)
が選択した圧力と低圧を選択的に、前右車輪ブレ−キ(5
1)に供給するための第1増減圧手段(312);前記切換手
段(61〜63)が選択した圧力と低圧を選択的に、前左車輪
ブレ−キ(52)に供給するための第2増減圧手段(334);
前記切換手段(61〜63)が選択した圧力と低圧を選択的
に、後右車輪ブレ−キ(53)に供給するための第3増減圧
手段(356);および、 前記切換手段(61〜63)が選択した圧力と低圧を選択的
に、後左車輪ブレ−キ(54)に供給するための第4増減圧
手段(378);を備える制動力配分制御装置。
1. A master cylinder (2) which is operated by a driver to generate a first pressure corresponding to an operating force and a booster (5) which generates a second pressure higher than the first pressure; Constant pressure source (21,22) for generating three pressures; first switching means (64,65) for selecting one of the second pressure and the third pressure; and the pressure selected by the first switching means (64,65) Second switching means (61-63) for selecting one of the first pressures; second switching means (61-63)
Select the pressure and low pressure selected by the front right wheel brake (5
A first pressure increasing / decreasing means (312) for supplying the pressure to the front left wheel brake (52) selectively to the pressure and the low pressure selected by the switching means (61 to 63). 2 pressure increasing / decreasing means (334);
Third pressure increasing / reducing means (356) for selectively supplying the pressure and low pressure selected by the switching means (61 to 63) to the rear right wheel brake (53); and the switching means (61 to 63). A braking force distribution control device comprising fourth pressure increasing / decreasing means (378) for selectively supplying the pressure and low pressure selected by 63) to the rear left wheel brake (54).
【請求項2】更に、車輪ブレ−キから圧力が抜ける方向
の流体の通流は阻止しかつ第1圧力を車輪ブレ−キに供
給する弁開と、この供給を遮断する弁閉を選択的に行な
う開閉手段(HSV1〜4)を、第1圧力ラインと車輪ブレ−
キ圧ラインの間に介挿した、請求項1記載の制動力配分
制御装置。
2. A valve opening for blocking the flow of fluid in the direction of pressure release from the wheel brake and selectively opening the valve for supplying the first pressure to the wheel brake, and a valve closing for shutting off the supply. Opening and closing means (HSV1 to 4) for the first pressure line and wheel brake
The braking force distribution control device according to claim 1, which is inserted between the pressure lines.
【請求項3】ドライバによって操作され、操作力対応の
第1圧力を発生するマスタシリンダ(2)および第1圧力
より高い第2圧力を発生するブ−スタ(5);実質上一定
高圧の第3圧力を発生する定圧力源(21,22);第2圧力
と第3圧力の一方を選択する第1切換手段(64,65);第
1切換手段(64,65)が選択した圧力と第1圧力の一方を
選択する第2切換手段(61〜63);第2切換手段(61〜63)
が選択した圧力と低圧を選択的に、前右車輪ブレ−キ(5
1)に供給するための第1増減圧手段(312);前記切換手
段(61〜63)が選択した圧力と低圧を選択的に、前左車輪
ブレ−キ(52)に供給するための第2増減圧手段(334);
前記切換手段(61〜63)が選択した圧力と低圧を選択的
に、後右車輪ブレ−キ(53)に供給するための第3増減圧
手段(356);前記切換手段(61〜63)が選択した圧力と低
圧を選択的に、後左車輪ブレ−キ(54)に供給するための
第4増減圧手段(378);車輪の回転速度を検出する車輪
速度検出手段(41〜44);車両のステアリング角度を検出
する角度検出手段(θF,θR);車両のヨ−レ−トを検出
するヨ−レ−ト検出手段(YA);車体の前後加速度および
横加速度を検出する加速度検出手段(GX,GY);前記車輪
速度検出手段(41〜44)が検出する速度に基づいて、車輪
スリップ率を所定範囲内とするための各車輪ブレ−キの
増,減圧の要否を判定し、要と判定したとき、第2切換
手段(61〜63)を第1切換手段(64,65)が選択した圧力の
選択、に切換え、増減圧手段(312,334,356,378)を介し
て車輪ブレ−キ圧を増,減圧するアンチスキッド制御手
段(10);および、 前記ステアリング角度,ヨ−レ−ト,前後加速度および
横加速度に基づいて、車両の走行安定性を確保するため
の各車輪ブレ−キの目標制動力配分を演算し、少くとも
一車輪ブレ−キの制動要のときには、第1切換手段(64,
65)を第3圧力の選択に切換え、かつ第2切換手段(61〜
63)を第1切換手段(64,65)が選択した圧力の選択に切換
え、増減圧手段(312,334,356,378)を介して車輪ブレ−
キ圧を増,減圧する制動力配分制御手段(10);を備える
制動力配分制御装置。
3. A master cylinder (2) which is operated by a driver and which generates a first pressure corresponding to an operating force, and a booster (5) which generates a second pressure higher than the first pressure; Constant pressure source (21,22) for generating three pressures; first switching means (64,65) for selecting one of the second pressure and the third pressure; and the pressure selected by the first switching means (64,65) Second switching means (61-63) for selecting one of the first pressures; second switching means (61-63)
Select the pressure and low pressure selected by the front right wheel brake (5
A first pressure increasing / decreasing means (312) for supplying the pressure to the front left wheel brake (52) selectively to the pressure and the low pressure selected by the switching means (61 to 63). 2 pressure increasing / decreasing means (334);
Third pressure increasing / reducing means (356) for selectively supplying the pressure and low pressure selected by the switching means (61 to 63) to the rear right wheel brake (53); the switching means (61 to 63) Fourth pressure increasing / reducing means (378) for selectively supplying the pressure and low pressure selected by the rear left wheel brake (54); Wheel speed detecting means (41-44) for detecting the rotational speed of the wheel Angle detecting means (θF, θR) for detecting the steering angle of the vehicle; yaw rate detecting means (YA) for detecting the yaw rate of the vehicle; acceleration detection for detecting the longitudinal acceleration and lateral acceleration of the vehicle body Means (GX, GY): It is determined whether or not each wheel brake is increased or reduced in order to keep the wheel slip ratio within a predetermined range based on the speed detected by the wheel speed detection means (41 to 44). However, when it is determined that the vehicle is required, the second switching means (61 to 63) is switched to the selection of the pressure selected by the first switching means (64, 65), and the vehicle is controlled via the pressure increasing / decreasing means (312, 334, 356, 378). Anti-skid control means (10) for increasing and reducing the brake pressure; and each wheel for ensuring vehicle running stability based on the steering angle, yaw rate, longitudinal acceleration and lateral acceleration. The target braking force distribution of the brake is calculated, and when the braking of at least one wheel brake is required, the first switching means (64,
65) is switched to the selection of the third pressure, and the second switching means (61 ~
63) is switched to the selection of the pressure selected by the first switching means (64, 65), and the wheel brake is operated via the pressure increasing / decreasing means (312, 334, 356, 378).
A braking force distribution control device comprising a braking force distribution control means (10) for increasing and decreasing the pressure.
【請求項4】ドライバによって操作され、操作力対応の
第1圧力を発生するマスタシリンダ(2)および第1圧力
より高い第2圧力を発生するブ−スタ(5);実質上一定
高圧の第3圧力を発生する定圧力源(21,22);第2圧力
と第3圧力の一方を選択する第1切換手段(64,65);第
1切換手段(64,65)が選択した圧力と第1圧力の一方を
選択する第2切換手段(61〜63);第2切換手段(61〜63)
が選択した圧力と低圧を選択的に、前右車輪ブレ−キ(5
1)に供給するための第1増減圧手段(312);前記切換手
段(61〜63)が選択した圧力と低圧を選択的に、前左車輪
ブレ−キ(52)に供給するための第2増減圧手段(334);
前記切換手段(61〜63)が選択した圧力と低圧を選択的
に、後右車輪ブレ−キ(53)に供給するための第3増減圧
手段(356);前記切換手段(61〜63)が選択した圧力と低
圧を選択的に、後左車輪ブレ−キ(54)に供給するための
第4増減圧手段(378);前記第1圧力および第2圧力を
発生するドライバの操作を検知するブレ−キ操作検知手
段(45);第1圧力ラインと車輪ブレ−キ圧ラインの間に
介挿され、車輪ブレ−キから圧力が抜ける方向の流体の
通流は阻止しかつ第1圧力を車輪ブレ−キに供給する弁
開と、この供給を遮断する弁閉を選択的に行なう開閉手
段(HSV1〜4);前記第1圧力および第2圧力を発生する
ドライバの操作を検知するブレ−キ操作検知手段(45);
車輪の回転速度を検出する車輪速度検出手段(41〜44);
車両のステアリング角度を検出する角度検出手段(θF,
θR);車両のヨ−レ−トを検出するヨ−レ−ト検出手段
(YA);車体の前後加速度および横加速度を検出する加速
度検出手段(GX,GY);前記車輪速度検出手段(41〜44)が
検出する速度に基づいて、車輪スリップを所定範囲内と
するための各車輪ブレ−キの増,減圧の要否を判定し、
要と判定したとき、第2切換手段(61〜63)を第1切換手
段(64,65)が選択した圧力の選択、に切換え、増減圧手
段(312,334,356,378)を介して車輪ブレ−キ圧を増,減
圧するアンチスキッド制御手段(10);および、 前記ステアリング角度,ヨ−レ−ト,前後加速度および
横加速度に基づいて、車両の走行安定性を確保するため
の各車輪ブレ−キの目標制動力配分を演算し、少くとも
一車輪ブレ−キの制動要のときには、第1切換手段(64,
65)を第3圧力の選択に切換え、かつ第2切換手段(61〜
63)を第1切換手段(64,65)が選択した圧力の選択に切換
え、増減圧手段(312,334,356,378)を介して車輪ブレ−
キ圧を増,減圧し、ブレ−キ操作検知手段(45)のドライ
バの操作の検知に応答して前記開閉手段(HSV1〜4)を弁
開に切換える制動力配分制御手段(10);を備える制動力
配分制御装置。
4. A master cylinder (2) which is operated by a driver to generate a first pressure corresponding to an operating force and a booster (5) which generates a second pressure higher than the first pressure; Constant pressure source (21,22) for generating three pressures; first switching means (64,65) for selecting one of the second pressure and the third pressure; and the pressure selected by the first switching means (64,65) Second switching means (61-63) for selecting one of the first pressures; second switching means (61-63)
Select the pressure and low pressure selected by the front right wheel brake (5
A first pressure increasing / decreasing means (312) for supplying the pressure to the front left wheel brake (52) selectively to the pressure and the low pressure selected by the switching means (61 to 63). 2 pressure increasing / decreasing means (334);
Third pressure increasing / reducing means (356) for selectively supplying the pressure and low pressure selected by the switching means (61 to 63) to the rear right wheel brake (53); the switching means (61 to 63) Fourth pressure increasing / decreasing means (378) for selectively supplying the pressure and low pressure selected by the rear left wheel brake (54); detecting the operation of a driver generating the first pressure and the second pressure A brake operation detecting means (45) which is interposed between the first pressure line and the wheel brake pressure line to prevent the flow of fluid in the direction in which the pressure is released from the wheel brake and the first pressure. Opening and closing means (HSV1 to 4) for selectively opening and closing the valve for supplying the wheel brake to the wheel brake; and for detecting the operation of the driver that generates the first pressure and the second pressure. -Key operation detection means (45);
Wheel speed detecting means (41-44) for detecting the rotational speed of the wheels;
Angle detection means (θF,
θR); yaw rate detecting means for detecting the yaw rate of the vehicle
(YA); acceleration detecting means (GX, GY) for detecting longitudinal acceleration and lateral acceleration of the vehicle body; for keeping wheel slip within a predetermined range based on the speed detected by the wheel speed detecting means (41 to 44) Whether or not each wheel brake is increased or decreased is determined,
When it is judged to be necessary, the second switching means (61 to 63) is switched to the selection of the pressure selected by the first switching means (64, 65), and the wheel brake pressure is applied via the pressure increasing / decreasing means (312, 334, 356, 378). Anti-skid control means (10) for increasing / decreasing pressure; and a target of each wheel brake for ensuring vehicle running stability based on the steering angle, yaw rate, longitudinal acceleration and lateral acceleration. The braking force distribution is calculated, and when the braking of at least one wheel brake is required, the first switching means (64,
65) is switched to the selection of the third pressure, and the second switching means (61 ~
63) is switched to the selection of the pressure selected by the first switching means (64, 65), and the wheel brake is operated via the pressure increasing / decreasing means (312, 334, 356, 378).
Braking force distribution control means (10) for switching the opening / closing means (HSV1 to 4) to open the valve in response to the detection of the driver's operation of the brake operation detection means (45). A braking force distribution control device provided.
JP23701693A 1993-09-22 1993-09-24 Braking force distribution control device Pending JPH0789426A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23701693A JPH0789426A (en) 1993-09-24 1993-09-24 Braking force distribution control device
EP94114776A EP0644093B1 (en) 1993-09-22 1994-09-20 Apparatus for controlling brake pressure to wheels
DE69431862T DE69431862T2 (en) 1993-09-22 1994-09-20 Radbremsdrucksteuergerät
US08/310,729 US5560690A (en) 1993-09-22 1994-09-22 Distribution system for selectively controlling and supplying brake pressure to wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23701693A JPH0789426A (en) 1993-09-24 1993-09-24 Braking force distribution control device

Publications (1)

Publication Number Publication Date
JPH0789426A true JPH0789426A (en) 1995-04-04

Family

ID=17009144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23701693A Pending JPH0789426A (en) 1993-09-22 1993-09-24 Braking force distribution control device

Country Status (1)

Country Link
JP (1) JPH0789426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193776A (en) * 1996-01-16 1997-07-29 Toyota Motor Corp Behavior control device of vehicle
JPH09301148A (en) * 1996-05-20 1997-11-25 Denso Corp Anti-skid control device
JPH10194101A (en) * 1997-01-08 1998-07-28 Mitsubishi Motors Corp Turn control device for vehicle
JP2002160617A (en) * 2000-11-28 2002-06-04 Aisin Seiki Co Ltd Motion control device for vehicle
JP2010076623A (en) * 2008-09-26 2010-04-08 Toyota Motor Corp Automatic vehicle braking system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193776A (en) * 1996-01-16 1997-07-29 Toyota Motor Corp Behavior control device of vehicle
JPH09301148A (en) * 1996-05-20 1997-11-25 Denso Corp Anti-skid control device
JPH10194101A (en) * 1997-01-08 1998-07-28 Mitsubishi Motors Corp Turn control device for vehicle
JP2002160617A (en) * 2000-11-28 2002-06-04 Aisin Seiki Co Ltd Motion control device for vehicle
JP2010076623A (en) * 2008-09-26 2010-04-08 Toyota Motor Corp Automatic vehicle braking system

Similar Documents

Publication Publication Date Title
US5560690A (en) Distribution system for selectively controlling and supplying brake pressure to wheels
EP0879747B1 (en) Brake control apparatus
US7165818B2 (en) Vehicle attitude control system
JPH11139273A (en) Brake control device of vehicle
JPH09136627A (en) Braking force controller for vehicle
JPS59206248A (en) Brake gear with slip control mechanism
US4986611A (en) Anti-lock brake control system for use in motor vehicle
JPH10250548A (en) Automatic brake device of vehicle
JP3239724B2 (en) Vehicle behavior control device
JP2005035448A (en) Motion control device of vehicle
JPH0789426A (en) Braking force distribution control device
US20060208566A1 (en) Braking force control apparatus of wheeled vehicle
JP4389294B2 (en) Brake control device for vehicle
JP3248272B2 (en) Braking force distribution control device
JP3726455B2 (en) Brake control device for vehicle
JP2002104155A (en) Motion control device for vehicle
JP2001294144A (en) Vehicle controller and storage medium
JP3522157B2 (en) Vehicle braking operation state determining means and front / rear braking force distribution control device provided with the braking operation state determining means
JP3885361B2 (en) Brake control device for vehicle
JP3554569B2 (en) Braking force distribution control device
JPH11129884A (en) Anti-skid control device
JP3268613B2 (en) Wheel brake pressure control device
JPH06107156A (en) Antiskid controller
US5447364A (en) Anti-skid control system for rear wheels
JP2000185635A (en) Brake control device for vehicle