JPH0783717A - Gas mass flowmeter and heating resistance element used therefor - Google Patents

Gas mass flowmeter and heating resistance element used therefor

Info

Publication number
JPH0783717A
JPH0783717A JP5233397A JP23339793A JPH0783717A JP H0783717 A JPH0783717 A JP H0783717A JP 5233397 A JP5233397 A JP 5233397A JP 23339793 A JP23339793 A JP 23339793A JP H0783717 A JPH0783717 A JP H0783717A
Authority
JP
Japan
Prior art keywords
film
temperature
heating resistance
heating
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5233397A
Other languages
Japanese (ja)
Inventor
Tadashi Isono
磯野  忠
Izumi Watanabe
渡辺  泉
Minoru Takahashi
実 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP5233397A priority Critical patent/JPH0783717A/en
Publication of JPH0783717A publication Critical patent/JPH0783717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the response caracteristics of a heating resistance element and reduce the power consumption while raising the bonding efficiency between an electrode film of the heating resistance element and leads. CONSTITUTION:The heating resistance element 10 has a rectangular plate-shaped insulation substrate 11. A heating resistance film 12 is formed on one end side along the length A of the substrate 11 on the surface of the substrate 11 and two electrode films 14 and 14 are formed on the other end side across the width B thereof 11. Both the electrode films 14 and 14 are formed side by side in the longitudinal direction A of the substrate 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気などの気体の質量
流量を計測する気体質量流量計測装置、及びこれに用い
られる発熱抵抗素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas mass flow rate measuring device for measuring a mass flow rate of a gas such as air, and a heating resistance element used for the same.

【0002】[0002]

【従来の技術】従来、空気等の気体質量流量を計測する
ために用いられる発熱抵抗素子として、セラミックス等
の絶縁基板上に膜式抵抗体を形成したものが知られてい
る。この種の発熱抵抗素子としては、例えば、特開平4-
221717号公報に開示されるものがある。この発熱抵抗素
子1は、図15に示すように、矩形状の絶縁基板2上の
長手方向(A方向)の一方の端部側に発熱抵抗膜3を形
成し、他方の端部側に2つの電極膜4,4を基板2の短
手方向(B方向)に並べて形成したものである。
2. Description of the Related Art Conventionally, as a heating resistance element used for measuring a mass flow rate of a gas such as air, there has been known one in which a film type resistor is formed on an insulating substrate such as ceramics. Examples of this type of heating resistor element include, for example, Japanese Patent Laid-Open No.
There is one disclosed in Japanese Patent No. 221717. As shown in FIG. 15, this heating resistance element 1 has a heating resistance film 3 formed on one end side in the longitudinal direction (direction A) on a rectangular insulating substrate 2 and a heating resistance film 2 formed on the other end side. The two electrode films 4 and 4 are formed side by side in the lateral direction (B direction) of the substrate 2.

【0003】通常、この種の発熱抵抗素子1は、流路中
に、基板1の板厚方向に平行な面が気体流れに対向し、
基板1の長手方向が気体流れに対してほぼ垂直になるよ
う設けられる。ところで、流路全体の気体流量を計測す
るためには、できるかぎり広範囲で発熱抵抗膜3と気体
とが接触することが好ましい。このため、基板2の長手
方向の長さlをある程度長くし、この長手方向に長くな
るよう発熱抵抗膜3を形成している。これに対して、基
板2の短手方向の長さwを長くして、この短手方向に長
くなるよう発熱抵抗膜3を形成しても、気体との効果的
接触量は増えないばかりか、抵抗膜3の面積が単に大き
くなるばかりで、却って、熱容量が大きくなり、応答性
が悪化すると共に、発熱に要する電流量の増加により、
消費電力が増加してしまう。従って、基板2の長手方向
の長さlに関しては、流路の大きさによるものの、ある
程度自由であるが、基板2の短手方向の長さwに関して
は、できるかぎり短くすることが望まれている。
Usually, in this type of heat generating resistance element 1, the plane parallel to the plate thickness direction of the substrate 1 faces the gas flow in the flow path,
The substrate 1 is provided so that its longitudinal direction is substantially perpendicular to the gas flow. By the way, in order to measure the gas flow rate of the entire flow path, it is preferable that the heating resistance film 3 and the gas come into contact with each other in the widest possible range. For this reason, the length 1 of the substrate 2 in the longitudinal direction is lengthened to some extent, and the heating resistance film 3 is formed so as to be elongated in the longitudinal direction. On the other hand, even if the length w of the substrate 2 in the lateral direction is increased and the heating resistance film 3 is formed so as to be elongated in the lateral direction, not only the effective contact amount with the gas does not increase. However, the area of the resistance film 3 is simply increased, and on the contrary, the heat capacity is increased, the response is deteriorated, and the amount of current required for heat generation is increased.
Power consumption will increase. Therefore, although the length 1 in the longitudinal direction of the substrate 2 is free to some extent depending on the size of the flow path, the length w in the lateral direction of the substrate 2 is desired to be as short as possible. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
発熱抵抗体素子1では、リード線(発熱抵抗体素子1を
動作させる駆動回路と電極膜4,4とを接続するための
もの)を電極膜4,4に接続するために、電極膜4,4
自体の大きさをあまり小さくできない関係上、この2つ
の電極膜4,4が並んでいる方向の短手方向の長さwを
あまり短くすることができない。すなわち、短手方向の
長さwをあまり短くすることができないために、発熱抵
抗膜3の熱容量が大きくなり、応答性が悪化すると共
に、発熱に要する電流量が増加する結果、消費電力が増
加してしまうと言う問題点がある。
However, in the conventional heating resistor element 1, the lead wire (for connecting the drive circuit for operating the heating resistor element 1 and the electrode films 4 and 4) to the electrode film. Electrode films 4, 4 for connecting to 4, 4,
Since the size of itself cannot be made too small, the length w in the lateral direction in which the two electrode films 4 and 4 are arranged cannot be made too short. That is, since the length w in the widthwise direction cannot be shortened so much, the heat capacity of the heating resistance film 3 increases, the responsiveness deteriorates, and the current amount required for heat generation increases, resulting in an increase in power consumption. There is a problem that it will do.

【0005】また、基板2の短手方向の長さwをできる
かぎり短くし、且つ電極膜4,4の大きさをある程度確
保しなければならない関係上、電極膜4,4相互間隔が
小さくなり、電極膜4,4とリード線との接続を効率良
く行うことができないという問題点がある。具体的に、
従来の流量計測装置では、図16に示すように、製造し
ている。まず、基板2上に発熱抵抗膜3及び電極膜4,
4を形成する(同図)。次に、リード線5,5を適当
な長さに切断した後、このリード線5,5の一端部を電
極膜4,4にパラレルギャップ溶接(抵抗溶接の一種)
する(同図)。抵抗溶接では、リード線5,5と電極
膜4,4との接触面積が小さく、両者の接続強度が不足
するため、これを補強すべく、接続部分にガラス等のペ
ースト6を塗布し(同図)、このペーストを焼成する
(同図)。そして、リード線5,5が接続された発熱
抵抗素子1を駆動回路基板7等に固定した後(同図
)、駆動回路のターミナル部8,8とリード線5,5
の他端とをロー付け等により接続している(同図)。
Further, since the length w of the substrate 2 in the lateral direction must be made as short as possible and the sizes of the electrode films 4 and 4 must be secured to some extent, the distance between the electrode films 4 and 4 becomes small. However, there is a problem that the connection between the electrode films 4 and 4 and the lead wire cannot be efficiently performed. Specifically,
The conventional flow rate measuring device is manufactured as shown in FIG. First, on the substrate 2, the heating resistance film 3 and the electrode films 4,
4 is formed (the same figure). Next, after cutting the lead wires 5 and 5 into an appropriate length, one end of the lead wires 5 and 5 is welded to the electrode films 4 and 4 by parallel gap welding (a type of resistance welding).
Yes (the same figure). In resistance welding, the contact area between the lead wires 5 and 5 and the electrode films 4 and 4 is small and the connection strength between them is insufficient. Therefore, in order to reinforce this, a paste 6 such as glass is applied to the connection portion (see Fig.), The paste is fired (the same figure). Then, after fixing the heating resistance element 1 to which the lead wires 5 and 5 are connected to the drive circuit board 7 or the like (the same figure), the terminal portions 8 and 8 of the drive circuit and the lead wires 5 and 5 are connected.
The other end is connected by brazing or the like (the same figure).

【0006】本発明は、このような従来の問題点につい
て着目してなされたもので、電極膜とリード線との接続
効率が良く、且つ応答性の向上及び消費電力の低減を図
ることができる発熱抵抗体素子、及びこれを備えている
気体質量流量計測装置を提供することを目的とする。
The present invention has been made by paying attention to such conventional problems, and it is possible to improve the connection efficiency between the electrode film and the lead wire, improve the responsiveness, and reduce the power consumption. An object is to provide a heating resistor element and a gas mass flow rate measuring device including the same.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の発熱抵抗素子は、長手方向と短手方向とを有する基板
を備え、該基板の長手方向における一方の端部側の表面
に温度依存性を有する発熱抵抗膜が形成され、他方の端
部側の表面に該発熱抵抗膜に電流を供給するための2つ
の電極膜が形成されている発熱抵抗素子において、2つ
の前記電極膜は、前記長手方向に並んで形成されている
ことを特徴とするものである。
A heating resistance element for achieving the above object includes a substrate having a longitudinal direction and a lateral direction, and a temperature dependence on a surface of one end side in the longitudinal direction of the substrate. In a heating resistance element, a heating resistance film having heat resistance is formed, and two electrode films for supplying a current to the heating resistance film are formed on the other end side surface of the heating resistance element. It is characterized in that they are formed side by side in the longitudinal direction.

【0008】[0008]

【作用】発熱抵抗素子は、従来技術において述べたよう
に、気体流れに対して垂直方向(基板の長手方向A)に
対しては、ある程度長くした方が好ましいが、気体流れ
方向(基板の短手方向B)に対しては、できるかぎり短
くした方が好ましい。本発明では、2つの電極膜を基板
の長手方向に並べたので、リード線との接続に必要な大
きさを十分に確保したとしても、2つの電極膜を基板の
短手方向に並べるよりは、遥かに基板の短手方向の長さ
を短くすることができると共に、2つの電極膜相互の間
隔を大きくすることができる。
As described in the prior art, it is preferable that the heating resistance element be elongated to a certain extent in the direction perpendicular to the gas flow (longitudinal direction A of the substrate), but in the gas flow direction (short direction of the substrate). In the hand direction B), it is preferable to make the length as short as possible. In the present invention, since the two electrode films are arranged in the longitudinal direction of the substrate, even if the size required for connection with the lead wire is sufficiently secured, it is preferable to arrange the two electrode films in the lateral direction of the substrate. In addition, the length of the substrate in the lateral direction can be shortened, and the distance between the two electrode films can be increased.

【0009】このように、基板の短手方向の長さを短く
することができるため、発熱抵抗膜の面積を小さくする
ことができる。この結果、発熱抵抗膜の熱容量が小さく
なり、応答性を高めることができる。さらに、発熱に必
要な電流量を少なくすることができるので、消費電力を
低減させることができる。また、2つの電極膜相互の間
隔を大きくすることができるために、これら電極膜にリ
ード線を効率良く接続することができる。
As described above, since the length of the substrate in the lateral direction can be shortened, the area of the heating resistance film can be reduced. As a result, the heat capacity of the heating resistance film is reduced, and the responsiveness can be improved. Furthermore, since the amount of current required for heat generation can be reduced, power consumption can be reduced. Further, since the distance between the two electrode films can be increased, the lead wire can be efficiently connected to these electrode films.

【0010】[0010]

【実施例】以下、本発明に係る各種実施例について図面
により説明する。なお、各種実施例を説明するに当た
り、同一部位については同一の符号を付し、重複した説
明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments according to the present invention will be described below with reference to the drawings. In the description of the various embodiments, the same parts are designated by the same reference numerals, and duplicate description will be omitted.

【0011】本発明の第1の実施例について、図1〜図
6を用いて説明する。本実施例の空気質量流量計測装置
は、図2に示すように、空気通路(主空気通路)25を
形成するメインボディ26と、副空気通路27を形成す
る副空気通路形成ボディ28と、副空気通路27内の質
量空気流量を検出するための発熱抵抗素子10と、発熱
抵抗素子10の温度補償用の感温抵抗素子20と、これ
らの素子10,20を動作させるための駆動回路31が
形成さている駆動回路基板30等が搭載され、駆動回路
基板30や各素子10,20等をメインボディ26に固
定するためのハウジング29とを有して構成されてい
る。
A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 2, the air mass flow rate measuring apparatus of the present embodiment includes a main body 26 forming an air passage (main air passage) 25, a sub air passage forming body 28 forming an auxiliary air passage 27, and a sub body. The heating resistor element 10 for detecting the mass air flow rate in the air passage 27, the temperature sensitive resistor element 20 for temperature compensation of the heating resistor element 10, and the drive circuit 31 for operating these elements 10, 20 are provided. The formed drive circuit board 30 and the like are mounted, and the drive circuit board 30 and the housing 29 for fixing the elements 10, 20 and the like to the main body 26 are configured.

【0012】発熱抵抗素子10は、図1及び図4に示す
ように、長方形のセラミックス等の絶縁基板11の表面
に、例えば、白金などで形成された発熱抵抗膜12、2
つの電極膜14,14、及び発熱抵抗膜12と電極膜1
4,14を接続する接続膜13,13を一体的にパター
ン印刷することで構成されている。発熱抵抗膜12は、
絶縁基板11の長手方向(A方向)の一端側に形成さ
れ、2つの電極膜14,14は、基板11の長手方向の
他端側に長手方向に並んで形成されている。また、感温
抵抗素子20も、発熱抵抗素子10と同様に形成されて
いる。すなわち、感温抵抗素子20は、基板上に、感温
抵抗膜22、接続膜、及び2つの電極膜24,24が形
成されている(図3に示す。)。発熱抵抗素子10及び
感温抵抗素子20は、これらの抵抗膜12,22が副流
路27中に有し、基板11の板厚方向に平行な面が空気
の流れに対向し、基板11の長手方向(A方向)が空気
流れに対してほぼ垂直になり、且つ基板11の短手方向
(B方向)が空気流れに対してほぼ平行になるように配
されている。発熱抵抗素子10は、感温抵抗素子20に
対して上流側にくるよう配されている。発熱抵抗素子1
0及び感温抵抗素子20は、これらの基板11の他端側
において、ハウジング29及びハウジング29内に搭載
されている駆動回路基板30に固定されている。各抵抗
素子10,20のそれぞれの電極膜14,24は、リー
ド線39,39で駆動回路基板30上に形成されている
駆動回路31と接続されている。
As shown in FIGS. 1 and 4, the heating resistor element 10 includes heating resistor films 12 and 2 made of, for example, platinum on the surface of an insulating substrate 11 made of rectangular ceramics or the like.
Electrode films 14, 14 and heating resistance film 12 and electrode film 1
It is configured by integrally pattern-printing the connection films 13 and 13 that connect the electrodes 4 and 14. The heating resistance film 12 is
The two electrode films 14, 14 are formed on one end side of the insulating substrate 11 in the longitudinal direction (direction A), and are formed side by side in the longitudinal direction on the other end side of the substrate 11 in the longitudinal direction. The temperature sensitive resistance element 20 is also formed similarly to the heat generation resistance element 10. That is, in the temperature sensitive resistance element 20, the temperature sensitive resistance film 22, the connection film, and the two electrode films 24, 24 are formed on the substrate (shown in FIG. 3). The heating resistance element 10 and the temperature-sensitive resistance element 20 have these resistance films 12 and 22 in the sub-flow path 27, and the plane parallel to the plate thickness direction of the substrate 11 faces the air flow. The longitudinal direction (direction A) is substantially perpendicular to the air flow, and the lateral direction of the substrate 11 (direction B) is substantially parallel to the air flow. The heating resistance element 10 is arranged upstream of the temperature-sensitive resistance element 20. Heating resistor element 1
The zero and the temperature sensitive resistance element 20 are fixed to the housing 29 and the drive circuit board 30 mounted in the housing 29 at the other end side of the boards 11. The respective electrode films 14 and 24 of the resistance elements 10 and 20 are connected to the drive circuit 31 formed on the drive circuit board 30 by the lead wires 39 and 39.

【0013】駆動回路31は、図3に示すように、発熱
抵抗素子10及び感温抵抗素子20とブリッジ回路を構
成する固定抵抗素子33,34と、オペアンプ35と、
トランジスタ36とを有して構成されている。感温抵抗
素子20は、気体の温度を計測するためのもので、この
計測された気体の温度に対して、常に発熱抵抗素子10
が一定の温度差を有するようにオペアンプ35及びトラ
ンジスタ36が設けられている。
As shown in FIG. 3, the drive circuit 31 includes fixed resistance elements 33 and 34 which form a bridge circuit with the heating resistance element 10 and the temperature sensitive resistance element 20, an operational amplifier 35, and
And a transistor 36. The temperature-sensitive resistance element 20 is for measuring the temperature of the gas, and the heating resistance element 10 is always provided for the measured temperature of the gas.
The operational amplifier 35 and the transistor 36 are provided so that the temperature difference has a constant temperature difference.

【0014】発熱抵抗素子10は、従来技術において述
べたように、気体流れに対して垂直方向(基板の長手方
向A)に対しては、ある程度長くした方が好ましいが、
気体流れ方向(基板の短手方向B)に対しては、できる
かぎり短くした方が好ましい。本実施例では、2つの電
極膜14,14を基板11の長手方向に並べて配したの
で、リード線39,39との接続に必要な大きさを十分
に確保したとしても、2つの電極膜14,14を基板1
1の短手方向に並べるよりは、遥かに基板11の短手方
向の長さwを短くすることができる。このため、発熱抵
抗膜12の面積を小さくすることができる。この結果、
発熱抵抗膜12の熱容量が小さくなり、応答性を高める
ことができる。さらに、発熱に必要な電流量を少なくす
ることができるので、消費電力を低減させることができ
る。
As described in the prior art, it is preferable that the heating resistance element 10 be elongated to some extent in the direction perpendicular to the gas flow (longitudinal direction A of the substrate).
In the gas flow direction (short side direction B of the substrate), it is preferable to make the length as short as possible. In this embodiment, since the two electrode films 14 and 14 are arranged side by side in the longitudinal direction of the substrate 11, the two electrode films 14 are provided even if a sufficient size required for connection with the lead wires 39 and 39 is secured. , 14 for substrate 1
The length w in the short side direction of the substrate 11 can be made much shorter than that in the short side direction 1. Therefore, the area of the heating resistance film 12 can be reduced. As a result,
The heat capacity of the heating resistance film 12 is reduced, and the responsiveness can be improved. Furthermore, since the amount of current required for heat generation can be reduced, power consumption can be reduced.

【0015】発熱抵抗膜12が流路27のほぼ中央に位
置し、電極膜14,14がハウジング29内に位置する
よう、これらを基板11上に形成した関係上、基板11
の一端側に形成された発熱抵抗膜12と他端側に形成さ
れた電極膜14,14との間には、一定の距離がある。
このため、基板11の長手方向における2つの電極膜1
4,14相互間の距離をある程度大きくしても、何ら問
題は生じない。このため、2つの電極膜14,14相互
間の距離をリード線39の接続に都合のよい間隔に設定
することができる。
Since the heating resistance film 12 is formed on the substrate 11 so that the heating resistance film 12 is located substantially in the center of the flow path 27 and the electrode films 14 and 14 are located inside the housing 29, the substrate 11 is formed.
There is a constant distance between the heat generating resistance film 12 formed on one end side of the electrode and the electrode films 14, 14 formed on the other end side.
Therefore, the two electrode films 1 in the longitudinal direction of the substrate 11 are
Even if the distance between 4 and 14 is increased to some extent, no problem occurs. Therefore, the distance between the two electrode films 14 and 14 can be set to an interval convenient for connecting the lead wire 39.

【0016】ここで、リード線接続に関して詳細に説明
するために、本実施例の空気流量計測装置の製造方法に
ついて、図6を用いて説明する。まず、多数個の絶縁基
板取りが可能な大きさのセラミック基板に、発熱抵抗膜
12を形成する導電性ペーストをスクリーン印刷により
塗布する。この際、抵抗パターンは印刷マスクにより形
成されているため、後工程でパターン形成する必要がな
い。その後、導電性ペーストの焼成、大きなセラミック
基板を各基板毎に切断して、発熱抵抗素子10を製造す
る。発熱抵抗素子10は、このように、基板上に導体ペ
ーストをスクリーン印刷しても製造できるが、図5に示
すように、セラミック基板上の全面に導電性ペーストを
塗布し、焼成後、レーザによりパターン15形成、セラ
ミック基板の切断を行っても製造可能である(図6
)。
Here, in order to explain the lead wire connection in detail, a method of manufacturing the air flow rate measuring apparatus of this embodiment will be described with reference to FIG. First, a conductive paste for forming the heating resistance film 12 is applied by screen printing to a large number of ceramic substrates capable of removing insulating substrates. At this time, since the resistance pattern is formed by the print mask, it is not necessary to form the pattern in a later step. Then, the conductive paste is fired, and a large ceramic substrate is cut into individual substrates to manufacture the heating resistance element 10. Although the heating resistance element 10 can be manufactured by screen-printing the conductive paste on the substrate as described above, as shown in FIG. 5, the conductive paste is applied to the entire surface of the ceramic substrate, and after firing, it is irradiated with laser. It can also be manufactured by forming the pattern 15 and cutting the ceramic substrate (FIG. 6).
).

【0017】次に、この発熱抵抗素子10をハウジング
29及び駆動回路基板30に固定する(図6)。そし
て、発熱抵抗素子10の電極膜14,14と駆動回路3
1のターミナル部32,32とをリード線39,39で
接続する。リード線接続方式は、超音波加振式ワイヤボ
ンディングで行う(図6)。
Next, the heating resistance element 10 is fixed to the housing 29 and the drive circuit board 30 (FIG. 6). Then, the electrode films 14 of the heating resistance element 10 and the drive circuit 3
The first terminal portions 32, 32 are connected by the lead wires 39, 39. The lead wire connection method is ultrasonic vibration type wire bonding (FIG. 6).

【0018】具体的には、図7に示すように、まず、超
音波加振用キャピラリ50にリード線39をセットす
る。このリード線39の先端には、リード線39が溶融
して形成された導体ボール39aが形成されている(図
7)。次に、キャピラリ50を電極膜14上に移動し
て、導体ボール39aを加熱しつつ超音波加振して、電
極膜14,に接続させる(図7)。続いて、キャピラ
リ50を駆動回路基板30上のターミナル部32上に移
動させる。このとき、一端が電極膜14に接続されたリ
ード線39の他端(現時点では、端部となっておらず、
ここから先にもリード線39が形成されている。)がキ
ャピラリ50の移動に伴って、ターミナル部32上に移
動する。そして、このリード線39の端部を加熱し超音
波加振して、リード線39の端部と駆動回路のターミナ
ル部32とを接続する(図7)。リード線39の接続
が終了すると、キャピラリ50を僅かに上昇させ、リー
ド線39の端部となる部分から先に形成されているリー
ド線39bを放電トーチ51で切断する。この放電トー
チ51による切断で、キャピラリ50に未だ取付けられ
ている部分のリード線39bの端部に導体ボール39c
が形成される(図7)。 なお、ここでは、リード線
39bを放電トーチ51で切断したが、カッター等を用
いてリード線39bを機械的に切断するようにしてもよ
い。この場合、リード線39の先端に導体ボール39a
が形成されないのは言うまでもない。
Specifically, as shown in FIG. 7, first, the lead wire 39 is set in the ultrasonic vibration capillary 50. A conductor ball 39a formed by melting the lead wire 39 is formed at the tip of the lead wire 39 (FIG. 7). Next, the capillary 50 is moved onto the electrode film 14 and ultrasonically vibrated while heating the conductor ball 39a to connect to the electrode film 14 (FIG. 7). Then, the capillary 50 is moved onto the terminal portion 32 on the drive circuit board 30. At this time, the other end of the lead wire 39 whose one end is connected to the electrode film 14 (at the present time, is not an end portion,
The lead wire 39 is also formed from here. ) Moves on the terminal portion 32 as the capillary 50 moves. Then, the end portion of the lead wire 39 is heated and ultrasonically vibrated to connect the end portion of the lead wire 39 and the terminal portion 32 of the drive circuit (FIG. 7). When the connection of the lead wire 39 is completed, the capillary 50 is slightly raised, and the lead wire 39b formed earlier from the end portion of the lead wire 39 is cut by the discharge torch 51. By cutting with the discharge torch 51, the conductor ball 39c is attached to the end of the lead wire 39b which is still attached to the capillary 50.
Are formed (FIG. 7). Although the lead wire 39b is cut by the discharge torch 51 here, the lead wire 39b may be mechanically cut by using a cutter or the like. In this case, the conductor ball 39a is attached to the tip of the lead wire 39.
Needless to say, no formation occurs.

【0019】発熱抵抗素子10と駆動回路31のターミ
ナル部32との接続が終了すると、同様に、感温抵抗素
子20の取り付けを行い、その後、各素子10,20及
び駆動回路基板30が取付けられたハウジング29をメ
インボディ26に固定して、計測装置が完成する。
When the connection between the heat generating resistance element 10 and the terminal portion 32 of the drive circuit 31 is completed, the temperature sensitive resistance element 20 is similarly attached, and then the respective elements 10, 20 and the drive circuit board 30 are attached. The housing 29 is fixed to the main body 26, and the measuring device is completed.

【0020】ところで、2つの電極膜14,14のう
ち、一方の電極膜14にリード線39を接続した後、他
方の電極膜14にリード線39を接続する際、2つの電
極膜14,14相互間が近いと、先に接続したリード線
39が邪魔になって、キャピラリ50を用いることがで
きなくなる。しかしながら、本実施例では、電極膜1
4,14相互間の距離がある程度確保されているので、
以上のように、キャピラリ50を用いて、超音波加振式
ワイヤボンディングを行うことができる。この結果、従
来技術のように、接続前にリード線5を予め適当な長さ
に切断し、これを保持しつつ、このリード線5の端部を
電極膜4,4に接続するような面倒なことを避けること
ができる。また、電極膜14及び駆動回路31のターミ
ナル部32とリード線39の接続を一連の動作で行うこ
とができる。すなわち、従来技術のように、リード線5
と電極膜4とを接続した後、リード線5と駆動回路のタ
ーミナル部8とを接続する間に、発熱抵抗素子1を駆動
回路基板7に固定するような工程を入れる必要が無くな
る。従って、リード線39を効率良く接続することがで
き、製造コストを低減することができる。
When the lead wire 39 is connected to one of the two electrode films 14 and 14 and then the lead wire 39 is connected to the other electrode film 14, the two electrode films 14 and 14 are connected. If they are close to each other, the lead wire 39 previously connected becomes an obstacle and the capillary 50 cannot be used. However, in this embodiment, the electrode film 1
Since a certain distance between 4 and 14 is secured,
As described above, the ultrasonic vibration type wire bonding can be performed using the capillary 50. As a result, as in the prior art, the lead wire 5 is cut into an appropriate length in advance before connection, and while holding this, the end portion of the lead wire 5 is connected to the electrode films 4 and 4, which is troublesome. You can avoid things. Further, the electrode film 14 and the terminal portion 32 of the drive circuit 31 and the lead wire 39 can be connected by a series of operations. That is, as in the prior art, the lead wire 5
After connecting the electrode film 4 with the electrode film 4, it is not necessary to include a step of fixing the heating resistance element 1 to the drive circuit board 7 while connecting the lead wire 5 and the terminal portion 8 of the drive circuit. Therefore, the lead wire 39 can be efficiently connected, and the manufacturing cost can be reduced.

【0021】なお、発熱抵抗素子10に電流を供給する
リード線39は、抵抗が小さく、且つ比較的多くの電流
を流す必要があるため、その直径は0.2mmから0.3
mmと、半導体素子関係に用いるものよりも太い。このた
め、超音波加振式ワイヤボンディングに用いるキャピラ
リ50も比較的大きくなり、電極膜14,14間隙は
1.5mm以上必要になる。本実施例では、この電極膜1
4,14間隙を約10mmとして、超音波加振式ワイヤボ
ンディングを実行できるようにしている。
The diameter of the lead wire 39 for supplying a current to the heating resistance element 10 is 0.2 mm to 0.3 mm because the resistance is small and a relatively large amount of current needs to flow.
mm, which is thicker than that used for semiconductor devices. Therefore, the capillary 50 used for ultrasonic vibration type wire bonding also becomes relatively large, and the gap between the electrode films 14 and 14 needs to be 1.5 mm or more. In this embodiment, this electrode film 1
The gap between 4 and 14 is set to about 10 mm so that ultrasonic vibration type wire bonding can be performed.

【0022】以上、本発明に係る空気質量流量計測装置
の一実施例について説明したが、本実施例の空気質量流
量計測装置は、主空気通路25を形成するメインボディ
26と、副空気通路27を形成する副空気通路形成ボデ
ィ28とを備えているが、これらは必ずしも必要なもの
ではない。
An embodiment of the air mass flow rate measuring device according to the present invention has been described above. However, the air mass flow rate measuring device of this embodiment has a main body 26 forming a main air passage 25 and a sub air passage 27. The auxiliary air passage forming body 28 is formed, but these are not always necessary.

【0023】次に、図8〜図10を用いて、本発明の第
2の実施例について説明する。本実施例は、第1の実施
例における発熱抵抗素子10の変形例である。本実施例
の発熱抵抗素子10aは、図8及び図9に示すように、
電極膜14a,14a及び接続膜13a,13aを形成
する材料と発熱抵抗膜12を形成する材料とを、それぞ
れ別材料で形成している。具体的には、本実施例におい
ては、発熱抵抗膜12をPtで形成し、接続膜13a,
13a及び電極膜14a,14aをAgPdで形成して
いる。接続膜13a,13aと発熱抵抗膜12とは、両
者の端部相互が重なり合うようにして、接続されてい
る。なお、電極膜14a,14a及び接続膜13a,1
3aは、一体物として形成されている。
Next, a second embodiment of the present invention will be described with reference to FIGS. This embodiment is a modification of the heating resistor element 10 in the first embodiment. As shown in FIGS. 8 and 9, the heating resistor element 10a of the present embodiment is
The material forming the electrode films 14a, 14a and the connection films 13a, 13a and the material forming the heating resistance film 12 are formed of different materials. Specifically, in this embodiment, the heating resistance film 12 is formed of Pt, and the connection film 13a,
13a and electrode films 14a and 14a are formed of AgPd. The connection films 13a, 13a and the heating resistance film 12 are connected so that their ends overlap each other. The electrode films 14a, 14a and the connection films 13a, 1
3a is formed as one piece.

【0024】このように構成することにより、発熱抵抗
膜12で生じた熱量のうち、接続膜13a,13aを通
じて逃げる熱量を発熱抵抗膜12と接続膜13a,13
aとの境界面で遮断することができるので、第一の実施
例の発熱抵抗素子10よりも、支持部方向への熱逃げを
抑えることができる。従って、本実施例では、第1の実
施例のものよりも、さらに応答性を向上させることがで
きる。ここで、本実施例の発熱抵抗素子10aと従来の
発熱抵抗素子1の応答時間について、図10を用いて説
明する。空気流量計測装置に流れる空気量を低流量(Q
Low)から高流量(QHigh)に急変させた場合、高流量
(QHigh)に到達する時間は、従来品ではtb時間かか
るのに対して、本実施例品ではta時間で済み、応答時
間を約2/3に低減できる。
With this structure, of the amount of heat generated in the heating resistor film 12, the amount of heat that escapes through the connecting films 13a and 13a is the heating resistor film 12 and the connecting films 13a and 13a.
Since the heat can be cut off at the boundary surface with “a”, it is possible to suppress heat escape toward the support portion as compared with the heating resistance element 10 of the first embodiment. Therefore, in this embodiment, it is possible to further improve the responsiveness as compared with the first embodiment. Here, the response times of the heating resistance element 10a of this embodiment and the conventional heating resistance element 1 will be described with reference to FIG. The amount of air flowing through the air flow rate measuring device is set to a low flow rate (Q
When the flow rate is rapidly changed from Low) to high flow rate (QHigh), it takes tb time to reach the high flow rate (QHigh) in the conventional product, but in the product of this embodiment, it is ta time, and the response time is about It can be reduced to 2/3.

【0025】次に、本発明の第3の実施例について、図
11〜図13を用いて説明する。本実施例の発熱抵抗素
子10cは、絶縁基板11の一方の表面に発熱抵抗膜1
2が形成され、他方の表面に感温抵抗膜22cが形成さ
れて、感温抵抗素子の機能も兼ね備えているものであ
る。
Next, a third embodiment of the present invention will be described with reference to FIGS. The heating resistor element 10c of the present embodiment has the heating resistor film 1 on one surface of the insulating substrate 11.
2 is formed, and the temperature-sensitive resistance film 22c is formed on the other surface, which also has the function of the temperature-sensitive resistance element.

【0026】絶縁基板11の一方の表面には、図11に
示すように、発熱抵抗膜12と、この膜12に電流を供
給するための2つの電極膜14,14と、発熱抵抗膜1
2と電極膜14,14とを電気的に接続する接続膜1
3,13と、絶縁基板11の他方の表面に形成されてい
る感温抵抗膜22cに電流を供給する2つの電極膜24
c,24cとが形成されている。発熱抵抗膜12は、絶
縁基板11の長手方向における一方の端部側に形成さ
れ、発熱抵抗膜12の2つの電極膜14,14は、絶縁
基板11の長手方向における他方の端部側に長手方向に
並んで形成されている。発熱抵抗膜12、発熱抵抗膜1
2の2つの電極膜14,14、及びこれらを接続する接
続膜13,13は、一体形成されている。感温抵抗膜2
2cの2つの電極膜24c,24cは、発熱抵抗膜12
の電極膜14,14と発熱抵抗膜12との間に、絶縁基
板11の長手方向に並んで形成されている。
As shown in FIG. 11, on one surface of the insulating substrate 11, a heat generating resistance film 12, two electrode films 14 and 14 for supplying a current to the film 12, and the heat generating resistance film 1 are formed.
Connection film 1 for electrically connecting 2 and the electrode films 14, 14
3, 13 and two electrode films 24 for supplying current to the temperature-sensitive resistance film 22c formed on the other surface of the insulating substrate 11.
c and 24c are formed. The heating resistance film 12 is formed on one end side in the longitudinal direction of the insulating substrate 11, and the two electrode films 14 and 14 of the heating resistance film 12 extend longitudinally to the other end side in the longitudinal direction of the insulating substrate 11. They are formed side by side in the direction. Heating resistance film 12 and heating resistance film 1
The two two electrode films 14 and 14 and the connection films 13 and 13 that connect them are integrally formed. Temperature-sensitive resistance film 2
The two electrode films 24c and 24c of 2c are the heating resistance film 12
Are formed side by side in the longitudinal direction of the insulating substrate 11 between the electrode films 14 and 14 and the heating resistance film 12.

【0027】絶縁基板11の他方の表面には、図13に
示すように、感温抵抗膜22cと、この感温抵抗膜22
cと絶縁基板11の一方の表面に形成されている感温抵
抗膜22cの2つの電極膜24c,24cとを接続する
接続膜23c,23cとが、一体形成さている。感温抵
抗膜22cは、絶縁基板11の長手方向の一方の端部側
に形成されている。絶縁基板11の一方の表面に形成さ
れている感温抵抗膜22cの2つの電極膜24c,24
cと、絶縁基板11の他方の表面に形成されている感温
抵抗膜22cの接続膜23c,23cとは、図12に示
すように、導電材で形成されているスルーホール25
c,25cを介して、電気的に接続されている。
On the other surface of the insulating substrate 11, as shown in FIG. 13, a temperature sensitive resistance film 22c and this temperature sensitive resistance film 22c are provided.
c and the connection films 23c and 23c for connecting the two electrode films 24c and 24c of the temperature-sensitive resistance film 22c formed on one surface of the insulating substrate 11 are integrally formed. The temperature-sensitive resistance film 22c is formed on one end side of the insulating substrate 11 in the longitudinal direction. Two electrode films 24c, 24 of the temperature-sensitive resistance film 22c formed on one surface of the insulating substrate 11
c and the connection films 23c and 23c of the temperature-sensitive resistance film 22c formed on the other surface of the insulating substrate 11, as shown in FIG. 12, through holes 25 formed of a conductive material.
It is electrically connected via c and 25c.

【0028】本実施例においても、電極膜14,24c
を絶縁基板11の長手方向に並べて形成したので、以上
の実施例と同様に、消費電力の低減、応答性の向上、電
極膜14,24cとリード線39との接続効率の向上を
図ることができる。また、発熱抵抗素子に感温抵抗素子
の機能も付加したので、流量計測装置の小型化を図るこ
とができる。なお、発熱抵抗膜12の電極膜14と感温
抵抗膜22cの電極膜24cとを絶縁基板11の同じ側
の面に形成したのは、電極膜14,24cにリード線3
9を接続する際、絶縁基板11を裏返すことなく、発熱
抵抗膜12の電極膜14とリード線39との接続、及び
感温抵抗膜22cの電極膜24cとリード線39との接
続を一連の動作で行うことができ、接続効率を高めるこ
とができるからである。
Also in this embodiment, the electrode films 14 and 24c
Since they are formed side by side in the longitudinal direction of the insulating substrate 11, power consumption can be reduced, responsiveness can be improved, and connection efficiency between the electrode films 14 and 24c and the lead wires 39 can be improved, as in the above embodiments. it can. Further, since the function of the temperature sensitive resistance element is added to the heating resistance element, the flow rate measuring device can be downsized. The electrode film 14 of the heat generation resistance film 12 and the electrode film 24c of the temperature sensitive resistance film 22c are formed on the same surface of the insulating substrate 11 because the lead wires 3 are formed on the electrode films 14 and 24c.
9 is connected to the electrode film 14 of the heating resistance film 12 and the lead wire 39, and the connection of the electrode film 24c of the temperature sensitive resistance film 22c and the lead wire 39 without turning over the insulating substrate 11. This is because the operation can be performed and the connection efficiency can be improved.

【0029】次に、本発明の第4の実施例について、図
14を用いて説明する。本実施例の発熱抵抗素子10d
は、絶縁基板11dの表面上に、発熱抵抗膜12を2つ
形成したものである。
Next, a fourth embodiment of the present invention will be described with reference to FIG. Heating resistor element 10d of the present embodiment
Is one in which two heating resistance films 12 are formed on the surface of the insulating substrate 11d.

【0030】絶縁基板11dの長手方向(A方向)の一
方の端部側に、2つの発熱抵抗膜12,12が絶縁基板
11dの短手方向(B方向)に並んで形成されている。
絶縁基板11の長手方向の他方の端部側には、2つの発
熱抵抗膜12,12に電流を供給する電極膜14,1
4,14,14がそれぞれ2つづつ形成されている。組
を成す2つの電極膜14,14は、絶縁基板11の長手
方向に並んで形成されている。
Two heat generating resistance films 12, 12 are formed side by side in the lateral direction (B direction) of the insulating substrate 11d on one end side in the longitudinal direction (A direction) of the insulating substrate 11d.
On the other end side of the insulating substrate 11 in the longitudinal direction, electrode films 14 and 1 for supplying current to the two heating resistance films 12 and 12 are provided.
Two, four, fourteen and fourteen are formed respectively. The two electrode films 14, 14 forming a set are formed side by side in the longitudinal direction of the insulating substrate 11.

【0031】一般的に、発熱抵抗素子を用いた気体質量
流量計は、抵抗素子の発熱量から気体の質量流量を求め
るため、流れの方向を把握することができない。ところ
で、本実施例において、絶縁基板11dの短手方向B
は、空気流れに対してほぼ平行になる。このため、基板
11dの短手方向Bに並んでいる2つの発熱抵抗膜1
2,12のうち、下流側の発熱抵抗膜12の発熱量は、
ここに至った気体が上流側の発熱抵抗膜12で既に暖め
られているため、上流側の発熱抵抗膜12の発熱量とは
異なることになる。従って、この発熱量の差が正か負か
により、気体の流れ方向を把握することができる。
In general, a gas mass flowmeter using a heat generating resistance element cannot determine the flow direction because the mass flow rate of gas is obtained from the amount of heat generated by the resistance element. By the way, in the present embodiment, the short-side direction B of the insulating substrate 11d is
Is approximately parallel to the air flow. Therefore, the two heating resistance films 1 arranged in the lateral direction B of the substrate 11d are arranged.
Of 2, 2 and 12, the heat generation amount of the heat generation resistance film 12 on the downstream side is
Since the gas reaching this point has already been warmed in the upstream heating resistor film 12, the amount of heat generated is different from that of the upstream heating resistor film 12. Therefore, the flow direction of the gas can be grasped depending on whether the difference in the amount of heat generation is positive or negative.

【0032】また、本実施例においても、以上の実施例
と同様に、消費電力の低減、応答性の向上、電極膜14
とリード線39との接続効率の向上を図ることができる
ことは言うまでもない。
Also in this embodiment, similarly to the above embodiments, the power consumption is reduced, the response is improved, and the electrode film 14 is used.
It goes without saying that the connection efficiency between the lead wire 39 and the lead wire 39 can be improved.

【0033】なお、以上の第2、第3及び第4の実施例
は、いずれも発熱抵抗素子に関するものであるが、この
素子を用いて、第1の実施例のように構成することによ
り、空気質量流量計測装置を構成することは可能であ
る。また、以上の実施例は、いずれも空気流量を計測す
るものであるが、本発明は、空気流量の計測に限定され
るものではなく、他の気体流量の計測にも適用すること
ができることは言うまでもない。
The second, third and fourth embodiments described above are all related to the heat generating resistance element. By using this element and constructing as in the first embodiment, It is possible to construct an air mass flow measuring device. In addition, although the above embodiments are all for measuring the air flow rate, the present invention is not limited to the measurement of the air flow rate, and can be applied to the measurement of other gas flow rates. Needless to say.

【0034】[0034]

【発明の効果】本発明では、発熱抵抗素子が、気体流れ
に対してほぼ垂直方向になる基板の長手方向の長さをあ
る程度長くしても特に問題がないという特性に着目し
て、発熱抵抗膜に電流を供給するための2つの電極膜を
基板の長手方向に並べて形成したので、基板の短手方向
の長さを短くすることができると共に、2つの電極膜相
互の間隔を大きくすることができる。
The present invention focuses on the characteristic that the heating resistor element has no particular problem even if the length in the longitudinal direction of the substrate, which is substantially perpendicular to the gas flow, is lengthened to some extent. Since two electrode films for supplying a current to the film are formed side by side in the longitudinal direction of the substrate, the length of the substrate in the lateral direction can be shortened and the distance between the two electrode films can be increased. You can

【0035】従って、基板の短手方向の長さを短くする
ことができることにより、発熱抵抗膜の面積を小さくす
ることができる結果、発熱抵抗膜の熱容量が小さくな
り、応答性を高めることができる。さらに、発熱に必要
な電流量を少なくすることができるので、消費電力を低
減させることができる。また、2つの電極膜相互の間隔
を大きくすることができることにより、これら電極膜に
リード線を効率良く接続することができる。
Therefore, since the length of the substrate in the lateral direction can be shortened, the area of the heating resistance film can be reduced, and as a result, the heat capacity of the heating resistance film can be reduced and the responsiveness can be improved. . Furthermore, since the amount of current required for heat generation can be reduced, power consumption can be reduced. Further, since the distance between the two electrode films can be increased, the lead wire can be efficiently connected to these electrode films.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1の実施例の発熱抵抗素子の斜
視図である。
FIG. 1 is a perspective view of a heating resistor element according to a first embodiment of the present invention.

【図2】本発明に係る第1の実施例の空気質量流量計測
装置の断面図である。
FIG. 2 is a sectional view of an air mass flow rate measuring device according to a first embodiment of the present invention.

【図3】本発明に係る第1の実施例の空気質量流量計測
装置の回路図である。
FIG. 3 is a circuit diagram of an air mass flow rate measuring device according to a first embodiment of the present invention.

【図4】本発明に係る第1の実施例の発熱抵抗素子の正
面図である。
FIG. 4 is a front view of the heating resistance element according to the first embodiment of the present invention.

【図5】本発明に係る第1の実施例の製作過程における
発熱抵抗素子の正面図である。
FIG. 5 is a front view of the heating resistance element in the manufacturing process of the first embodiment according to the present invention.

【図6】本発明に係る第1の実施例の空気質量流量計測
装置の製造工程を示す説明図である。
FIG. 6 is an explanatory diagram showing a manufacturing process of the air mass flow rate measuring device according to the first embodiment of the present invention.

【図7】本発明に係る第1の実施例の超音波加振式ワイ
ヤボンディング工程を示す説明図である。
FIG. 7 is an explanatory diagram showing an ultrasonic vibration type wire bonding step of the first example according to the present invention.

【図8】本発明に係る第2の実施例の発熱抵抗素子の正
面図である。
FIG. 8 is a front view of a heating resistor element according to a second embodiment of the present invention.

【図9】図8におけるIX−IX線断面図である。9 is a sectional view taken along line IX-IX in FIG.

【図10】本発明に係る第2の実施例の発熱抵抗素子を
用いた場合の応答特性を示すグラフである。
FIG. 10 is a graph showing response characteristics when the heating resistance element according to the second embodiment of the present invention is used.

【図11】本発明に係る第3の実施例の発熱抵抗素子の
正面図である。
FIG. 11 is a front view of a heating resistor element according to a third embodiment of the present invention.

【図12】図11におけるXII−XII線断面図である。12 is a sectional view taken along line XII-XII in FIG.

【図13】本発明に係る第3の実施例の発熱抵抗素子の
背面図である。
FIG. 13 is a rear view of the heating resistance element of the third embodiment according to the present invention.

【図14】本発明に係る第4の実施例の発熱抵抗素子の
正面図である。
FIG. 14 is a front view of a heating resistance element according to a fourth exemplary embodiment of the present invention.

【図15】従来の発熱抵抗素子の正面図である。FIG. 15 is a front view of a conventional heating resistance element.

【図16】従来の空気質量流量計測装置の製造工程を示
す説明図である。
FIG. 16 is an explanatory view showing a manufacturing process of a conventional air mass flow rate measuring device.

【符号の説明】[Explanation of symbols]

10,10a,10c,10d…発熱抵抗素子、11,
11d…絶縁基板、12…発熱抵抗膜、13,13a…
(発熱抵抗膜の)接続膜、14,14a…(発熱抵抗膜
の)電極膜、20…感温抵抗素子、22,22c…感温
抵抗膜、23c…(感温抵抗膜の)接続膜、24,24
c…(感温抵抗膜の)電極膜、25c…スルーホール、
25…主空気通路、26…メインボディ、27…副空気
通路、28…副空気通路形成ボディ、29…ハウジン
グ、30…駆動回路基板、31…駆動回路、32…ター
ミナル部、33,34…固定抵抗、35…オペアンプ、
36…トランジスタ、39…リード線、50…キャピラ
リ。
10, 10a, 10c, 10d ... Heating resistor element, 11,
11d ... Insulating substrate, 12 ... Heating resistance film, 13, 13a ...
Connection film (of heating resistance film), 14, 14a ... Electrode film (of heating resistance film), 20 ... Temperature-sensitive resistance element, 22, 22c ... Temperature-sensitive resistance film, 23c ... Connection film (of temperature-sensitive resistance film), 24, 24
c ... Electrode film (of temperature sensitive resistance film), 25c ... Through hole,
25 ... Main air passage, 26 ... Main body, 27 ... Sub air passage, 28 ... Sub air passage forming body, 29 ... Housing, 30 ... Drive circuit board, 31 ... Drive circuit, 32 ... Terminal part, 33, 34 ... Fixed Resistance, 35 ... operational amplifier,
36 ... Transistor, 39 ... Lead wire, 50 ... Capillary.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 泉 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 高橋 実 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Izumi Watanabe 2477 Kashima Yatsu, Takaba, Katsuta-shi, Ibaraki Prefecture 3 Hitachi Automotive Engineering Co., Ltd. (72) Minor Takahashi 2520, Takata, Katsuta-shi, Ibaraki Stocks Company Hitachi, Ltd. Automotive Equipment Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】長手方向と短手方向とを有する基板を備
え、該基板の表面の長手方向における一方の端部側に温
度依存性を有する発熱抵抗膜が形成され、該基板の表面
の該長手方向における他方の端部側に該発熱抵抗膜に電
流を供給するための2つの電極膜が形成されている発熱
抵抗素子において、 2つの前記電極膜は、前記長手方向に並んで形成されて
いることを特徴とする発熱抵抗素子。
1. A substrate having a longitudinal direction and a lateral direction is provided, and a heating resistance film having temperature dependency is formed on one end side in the longitudinal direction of the surface of the substrate, and the heating resistance film on the surface of the substrate is formed. In a heating resistance element in which two electrode films for supplying a current to the heating resistance film are formed on the other end side in the longitudinal direction, the two electrode films are formed side by side in the longitudinal direction. A heat-generating resistor element characterized in that
【請求項2】前記基板の表面には、前記長手方向の前記
一方の端部側に形成されている前記発熱抵抗膜と、該長
手方向の前記他方の端部側に形成されている2つの前記
電極膜とを電気的に接続する接続膜が形成され、 前記接続膜及び前記電極膜と、前記発熱抵抗膜とは、共
に導電性を有するものの、異なる材料で形成されている
ことを特徴とする請求項1記載の発熱抵抗素子。
2. A heating resistance film formed on the one end side in the longitudinal direction and two heating resistance films formed on the other end side in the longitudinal direction on the surface of the substrate. A connection film that electrically connects the electrode film is formed, and the connection film and the electrode film, and the heating resistance film, although both having conductivity, are formed of different materials, The heating resistance element according to claim 1.
【請求項3】前記基板の表面には、前記長手方向の前記
一方の端部側に、複数の前記発熱抵抗膜が前記短手方向
に並んで形成され、該長手方向の前記他方の端部側に、
各発熱抵抗膜にそれぞれ電流を供給するための電極膜が
2つづつ該長手方向に並んで形成されていることを特徴
とする請求項1又は2記載の発熱抵抗素子。
3. A plurality of heat generating resistance films are formed on the surface of the substrate on the one end side in the longitudinal direction side by side in the lateral direction, and the other end section in the longitudinal direction is formed. On the side,
3. The heating resistor element according to claim 1, wherein two electrode films for supplying a current to each heating resistor film are formed side by side in the longitudinal direction.
【請求項4】前記基板の前記発熱抵抗膜が形成されてい
る側と反対側の表面に、温度依存性を有する感温抵抗膜
が形成され、 前記基板の前記発熱抵抗膜が形成されている側の表面に
は、前記感温抵抗膜に電流を供給するための2つの電極
膜が形成され、 前記感温抵抗膜と該感温抵抗膜の2つの電極膜とは、前
記基板を貫通するスルーホールを介して電気的に接続さ
れ、 感温抵抗素子としての機能も兼ね備えていることを特徴
とする請求項1、2又は3記載の発熱抵抗素子。
4. A temperature-sensitive resistance film having temperature dependence is formed on a surface of the substrate opposite to a side where the heat generation resistance film is formed, and the heat generation resistance film of the substrate is formed. Two electrode films for supplying a current to the temperature-sensitive resistance film are formed on the side surface, and the temperature-sensitive resistance film and the two electrode films of the temperature-sensitive resistance film penetrate the substrate. The heating resistor element according to claim 1, 2 or 3, which is electrically connected through a through hole and has a function as a temperature-sensitive resistor element.
【請求項5】所定の流路内を流れる気体の質量流量を計
測する気体質量流量計測装置において、 請求項1、2又は3記載の発熱抵抗素子と、 前記発熱抵抗素子に供給する電流量を前記気体の温度に
応じて温度補償すべく、該気体の温度を検出するための
感温抵抗膜を有する感温抵抗素子と、 前記発熱抵抗素子と前記感温抵抗素子とに電流を供給し
て、それぞれを駆動させる駆動回路と、 前記駆動回路を搭載すると共に、前記発熱抵抗素子の前
記発熱抵抗膜及び前記感温抵抗素子の前記感温抵抗膜が
前記流路中に有するよう、該発熱抵抗素子及び該感温抵
抗素子を支持する支持部材と、 を備えていることを特徴とする気体質量流量計測装置。
5. A gas mass flow rate measuring device for measuring a mass flow rate of a gas flowing in a predetermined flow path, wherein the heating resistance element according to claim 1, 2 or 3 and the amount of current supplied to the heating resistance element are set. In order to perform temperature compensation according to the temperature of the gas, a temperature-sensitive resistance element having a temperature-sensitive resistance film for detecting the temperature of the gas, a current is supplied to the heating resistance element and the temperature-sensitive resistance element. A driving circuit for driving each of the heating circuits, the driving circuit being mounted, and the heating resistance film of the heating resistance element and the temperature-sensitive resistance film of the temperature-sensitive resistance element being provided in the flow path. A gas mass flow rate measuring device, comprising: an element and a supporting member that supports the temperature-sensitive resistance element.
【請求項6】所定の流路内を流れる気体の質量流量を計
測する気体質量流量計測装置において、 請求項4記載の発熱抵抗素子と、 前記発熱抵抗素子の前記発熱抵抗膜に2つの前記電極膜
を介して電流を供給すると共に、前記感温抵抗膜に2つ
の前記電極膜を介して電流を供給する駆動回路と、 前記駆動回路を搭載すると共に、前記発熱抵抗素子の前
記発熱抵抗膜及び前記感温抵抗膜が前記流路中に有する
よう、該発熱抵抗素子を支持する支持部材と、 を備えていることを特徴とする気体質量流量計測装置。
6. A gas mass flow rate measuring device for measuring a mass flow rate of a gas flowing in a predetermined flow path, wherein the heating resistance element according to claim 4, and the two electrodes on the heating resistance film of the heating resistance element. A drive circuit that supplies a current through the film and also supplies a current to the temperature-sensitive resistance film through the two electrode films, and the drive circuit is mounted, and the heating resistance film of the heating resistance element and A gas mass flow rate measuring device, comprising: a support member that supports the heating resistance element so that the temperature-sensitive resistance film is provided in the flow path.
JP5233397A 1993-09-20 1993-09-20 Gas mass flowmeter and heating resistance element used therefor Pending JPH0783717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5233397A JPH0783717A (en) 1993-09-20 1993-09-20 Gas mass flowmeter and heating resistance element used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5233397A JPH0783717A (en) 1993-09-20 1993-09-20 Gas mass flowmeter and heating resistance element used therefor

Publications (1)

Publication Number Publication Date
JPH0783717A true JPH0783717A (en) 1995-03-31

Family

ID=16954448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5233397A Pending JPH0783717A (en) 1993-09-20 1993-09-20 Gas mass flowmeter and heating resistance element used therefor

Country Status (1)

Country Link
JP (1) JPH0783717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620784A (en) * 2011-01-28 2012-08-01 贺利氏传感技术有限公司 Flow sensors having a flow duct in the cover, and sensor tip as intermediate product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620784A (en) * 2011-01-28 2012-08-01 贺利氏传感技术有限公司 Flow sensors having a flow duct in the cover, and sensor tip as intermediate product
JP2012159505A (en) * 2011-01-28 2012-08-23 Heraeus Sensor Technology Gmbh Flow sensors having bushing in cover, flow sensor production method, and sensor tip
US8943913B2 (en) 2011-01-28 2015-02-03 Heraeus Sensor Technology Gmbh Flow sensors having a flow duct in the cover, and sensor tip as intermediate product
CN102620784B (en) * 2011-01-28 2015-11-18 贺利氏传感技术有限公司 There is the fluid sensor of fluid through portion and the sensor probe as intermediate product in lid

Similar Documents

Publication Publication Date Title
US5421943A (en) Pulsed current resistive heating for bonding temperature critical components
JP2002057009A (en) Resistor and method of manufacturing the same
US5548269A (en) Chip resistor and method of adjusting resistance of the same
US5033299A (en) Flow sensor
JP3929705B2 (en) Semiconductor device and chip carrier
EP1870681B1 (en) Thermal type flow rate measuring apparatus
JPH0783717A (en) Gas mass flowmeter and heating resistance element used therefor
JP2011089859A (en) Temperature sensor
JP2764517B2 (en) Chip resistor, and current detection circuit and current detection method using the same
JP2585661Y2 (en) Electric soldering iron
JP2000216013A (en) Resistor for high pressure and resistance value adjusting method thereof
JPH07318578A (en) Acceleration sensor and its manufacture
JP2002075714A (en) Low resistor and its manufacturing method
JPS62266419A (en) Device for measuring flow rate of medium and manufacture thereof
JP2767356B2 (en) Chip resistor, current detection circuit and current detection method using the same
JP2002057010A (en) Resistor and method of manufacturing the same
JP2003197403A (en) Low-resistance resistor
JPH04367369A (en) Soldering device
JP2006278786A (en) Temperature detection element
JP2004247506A (en) Resistor circuit
JP2003179276A (en) Platinum thin-film element
JP2002286521A (en) Method for manufacturing flow measuring instrument
JP3333264B2 (en) Heater element and manufacturing method thereof
JPH11327337A (en) Heater for fixing
JPH09218066A (en) Flow rate sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees