JPH0782031A - Cubic boron nitride-containing sintered compact and its production - Google Patents

Cubic boron nitride-containing sintered compact and its production

Info

Publication number
JPH0782031A
JPH0782031A JP5181847A JP18184793A JPH0782031A JP H0782031 A JPH0782031 A JP H0782031A JP 5181847 A JP5181847 A JP 5181847A JP 18184793 A JP18184793 A JP 18184793A JP H0782031 A JPH0782031 A JP H0782031A
Authority
JP
Japan
Prior art keywords
titanium
cubic boron
boron nitride
nitride
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5181847A
Other languages
Japanese (ja)
Other versions
JP3476507B2 (en
Inventor
Hisashi Yamazaki
尚志 山崎
Kazuhito Uehara
一仁 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP18184793A priority Critical patent/JP3476507B2/en
Publication of JPH0782031A publication Critical patent/JPH0782031A/en
Application granted granted Critical
Publication of JP3476507B2 publication Critical patent/JP3476507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject dense sintered compact with its wear resistance retained, improved in esp. chipping resistance and fracture toughness by reactive- sintering properly selected components of the binding phase composition with regulated particle sizes. CONSTITUTION:This sintered compact is composed of 10-70vol.% of cubic boron nitride and a binding phase consisting mainly of ceramics as the residual part with inevitable impurities. The binding phase is composed of, based on the final sintered compact, 5-30vol.% of aluminum oxide <=1mum in particle diameter, 3-20vol.% of aluminum nitride and/or aluminum boride, 10-40vol.% of at least one kind selected from titanium carbide, titanium nitride and titanium carbonitride and 3-30vol.% of titanium boride. Thereby, this sintered compact has the following advantages superior to the conventional products of this kind of sintered compact: higher in fracture toughness; excellent in thermal shock resistance, chipping resistance at elevated temperatures and oxidation resistance; therefore, having longer service life when used as a cutting tool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高硬度で、かつ高破壊
靭性値を有する立方晶窒化ホウ素含有焼結体およびその
製造方法に関し、具体的には、切削工具または耐摩耗工
具として最適な立方晶窒化ホウ素含有焼結体およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cubic boron nitride-containing sintered body having a high hardness and a high fracture toughness value, and a method for producing the same. Specifically, it is most suitable as a cutting tool or wear resistant tool. The present invention relates to a cubic boron nitride-containing sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】立方晶窒化ホウ素は、ダイヤモンドに次
ぐ高い硬度と優れた熱伝導性を持ち、しかもダイヤモン
ドに比べて鉄との親和性が低いという工具材料としての
優れた長所を有している。この優れた長所を有している
立方晶窒化ホウ素と金属やセラミックスの結合相とでな
る立方晶窒化ホウ素含有焼結体についての検討が多数行
われており、その内、結合相成分組成および焼結体の組
織構造から提案されている代表的なものとして、特開昭
56−156738号公報,特開昭58−58247号
公報,特開昭58−60678号公報,特開昭58−6
0679号公報,特開昭58−60680号公報および
特開平2−208259号公報がある。
2. Description of the Related Art Cubic boron nitride has the following advantages: high hardness second only to diamond and excellent thermal conductivity, and a lower affinity for iron than diamond. . Many studies have been carried out on cubic boron nitride-containing sintered compacts composed of cubic boron nitride and a binder phase of metal or ceramics, which have these excellent advantages. As typical ones proposed from the organization structure of the ties, JP-A-56-156738, JP-A-58-58247, JP-A-58-60678, and JP-A-58-6.
There are JP-A-0679, JP-A-58-60680 and JP-A-2-208259.

【0003】[0003]

【発明が解決しようとする課題】特開昭56−1567
38号公報には、体積比で、20〜80%の立方晶窒化
ホウ素と、残り周期律表第4a,5a,6a族金属の炭
化物,窒化物,ホウ化物,ケイ化物もしくはこれらの混
合物または相互固溶体化合物の第1結合相と、Al,S
i,Ni,Co,Feまたはこれらを含む合金、化合物
の第2結合相とし、第1結合相,第2結合相が焼結体組
織中で連続した結合相をなし、前記周期律表第4a,5
a,6a族金属の化合物が結合相中の体積比で50%以
上でなる高硬度工具用焼結体について記載されている。
[Problems to be Solved by the Invention] JP-A-56-1567
No. 38, the volumetric ratio of cubic boron nitride is 20 to 80%, and the remaining periodic table 4a, 5a, 6a group metal carbides, nitrides, borides, silicides or mixtures thereof or mutual ones. First binder phase of solid solution compound, Al, S
i, Ni, Co, Fe or an alloy or a compound containing them, which is the second binder phase of the compound, and the first binder phase and the second binder phase form a continuous binder phase in the structure of the sintered body. , 5
It describes a sintered body for a high hardness tool in which a compound of group a, 6a metal is 50% or more by volume ratio in the binder phase.

【0004】同公報に記載の高硬度工具用焼結体は、原
料として用いるミクロンまたはミクロン以下の微粉には
かなり多量の酸素を含有しており、超高圧下においては
酸素が焼結性を低下させるのに対し、非化学論量組成の
Ti,Zr,Hfの炭化物,窒化物,炭窒化物を用い
て、ガス発生させないで焼結性を高めたというものであ
るが、第1結合相と第2結合相との組み合わせの仕方、
および第2結合相としてのAl化合物の種類や粒径か
ら、耐摩耗性,体欠損性がまだ満足するまでに至ってい
なく、かつ破壊靭性値が低いという問題がある。
The sintered body for a high hardness tool described in the above publication contains a considerably large amount of oxygen in micron or fine particles of micron or less used as a raw material, and oxygen deteriorates sinterability under ultrahigh pressure. On the other hand, a non-stoichiometric composition of Ti, Zr, and Hf carbides, nitrides, and carbonitrides was used to enhance the sinterability without generating gas. How to combine with the second bonding phase,
Also, there is a problem that abrasion resistance and body defectability are not yet satisfied due to the type and grain size of the Al compound as the second binding phase, and the fracture toughness value is low.

【0005】特開平2−208259号公報には、立方
晶窒化ホウ素および/またはウルツ鉱型窒化ホウ素の硬
質相20〜90体積%と、残りが結合相と不可避不純物
とからなり、該結合相が周期律表の4a,5a,6a族
金属の窒化物およびこれらの相互固溶体の中の少なくと
も1種と、周期律表の4a,5a,6a族金属のホウ化
物およびこれらの相互固溶体の中の少なくとも1種と、
他に酸化アルミニウム,ホウ化アルミニウム,窒化アル
ミニウム,炭化ケイ素,窒化ケイ素の中の少なくとも1
種を含む高密度相窒化ホウ素反応焼結体について記載さ
れている。
JP-A-2-208259 discloses that the hard phase of cubic boron nitride and / or wurtzite type boron nitride is 20 to 90% by volume, and the rest is a binder phase and inevitable impurities. At least one of nitrides of 4a, 5a and 6a metals of the periodic table and mutual solid solutions thereof, and at least one of borides of 4a, 5a and 6a metals of the periodic table and mutual solid solutions thereof. One kind,
At least one of aluminum oxide, aluminum boride, aluminum nitride, silicon carbide and silicon nitride
A dense phase boron nitride reactive sintered body including seeds is described.

【0006】同公報に記載の高密度相窒化ホウ素反応焼
結体は、窒化ホウ素と周期律表の4a,5a,6a族の
金属およびこれらの2種以上の合金とを反応焼結して高
密度な窒化ホウ素焼結体としているのであるが、上述の
特開昭56−156738号公報のような酸素に対する
積極的な配慮がなされていなく、高硬度な焼入網や合金
鋳鉄を被削材として切削した場合には、耐摩耗性,耐欠
損性が満足するに至っていないという問題がある。
The high-density phase boron nitride reaction sintered body described in the above publication is highly sintered by reacting boron nitride with a metal of groups 4a, 5a, 6a of the periodic table and an alloy of two or more of these metals. Although the boron nitride sintered body has a high density, it does not give a positive consideration to oxygen as in the above-mentioned Japanese Patent Laid-Open No. 56-156738, and a high hardness quenching net or alloy cast iron is used as a work material. When it is cut as above, there is a problem that the wear resistance and the chipping resistance are not satisfied.

【0007】特開昭58−58247号公報および特開
昭58−60680号公報には、0.1〜2μmの平均
層厚さでなるTi,Zr,Hf,Moのホウ化物で立方
晶窒化ホウ素を包囲し、他にセラミックスおよび金属の
含有した立方晶窒化ホウ素焼結体について記載されてお
り、特開昭58−60678号公報および特開昭58−
60680号公報には、0.1〜2μmの平均層厚さで
なるTi,Hf,Siの窒化物で立方晶窒化ホウ素を包
囲し、他にセラミックスおよび金属の含有した立方晶窒
化ホウ素焼結体について記載されている。
In JP-A-58-58247 and JP-A-58-60680, cubic boron nitride is formed from a boride of Ti, Zr, Hf and Mo having an average layer thickness of 0.1 to 2 μm. And a cubic boron nitride sintered body containing ceramics and a metal are described in JP-A-58-60678 and JP-A-58-58.
Japanese Patent No. 60680 discloses a cubic boron nitride sintered body in which a cubic boron nitride is surrounded by a nitride of Ti, Hf, and Si having an average layer thickness of 0.1 to 2 μm, and other ceramics and a metal are contained. Is described.

【0008】これら4件の公報に記載されている立方晶
窒化ホウ素焼結体は、立方晶窒化ホウ素粒子の表面を結
合相で包囲することにより、立方晶窒化ホウ素粒子の表
面における微小な凹み等によるボイドがなくなり、立方
晶窒化ホウ素と結合相との密着性に優れ、靭性と耐摩耗
性を兼ね備えた焼結体になっているというものである
が、破壊靭性値および高温時における耐欠損性がまだ充
分でなく、短寿命になるという問題がある。
In the cubic boron nitride sintered bodies described in these four publications, the surface of the cubic boron nitride particles is surrounded by a binder phase so that minute recesses on the surface of the cubic boron nitride particles are formed. It is said that the sintered body has no voids caused by the above, has excellent adhesion between cubic boron nitride and the binder phase, and has both toughness and wear resistance, but it has a fracture toughness value and fracture resistance at high temperatures. However, there is a problem that the life is not sufficient and the life becomes short.

【0009】本発明は、上述のような問題点を解決した
もので、具体的には、立方晶窒化ホウ素と反応焼結する
ような結合相前駆体物質を選定し、反応焼結により緻密
な焼結体にすると共に、結合相組成成分の選定およびそ
の粒径の調製から耐摩耗性を低下させずに、耐欠損性お
よび破壊靭性値を高めることに成功した立方晶窒化ホウ
素含有焼結体およびその製造方法の提供を目的とする。
The present invention solves the above-mentioned problems. Specifically, a binder phase precursor substance that reacts with cubic boron nitride to react and sinter is selected. A cubic boron nitride-containing sintered body which was made into a sintered body and succeeded in increasing the fracture resistance and the fracture toughness value without lowering the wear resistance by selecting the binder phase composition component and adjusting the grain size thereof. And a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、立方晶窒
化ホウ素と結合相とでなる焼結体の耐摩耗性および耐欠
損性の向上について検討していたところ、焼結体を作製
するための出発物質として、立方晶窒化ホウ素と反応焼
結する結合相前駆体物質、具体的には、Tiの炭酸化
物,窒酸化物,炭窒酸化物の1種以上とAlとの結合相
前駆体物質を用いて、結合相前駆体物質と立方晶窒化ホ
ウ素とでもって反応焼結を起させると、緻密で耐摩耗
性,耐欠損性および破壊靭性値に優れた焼結体が得られ
るという知見を得て、本発明を完成するに至ったもので
ある。
Means for Solving the Problems The inventors of the present invention have studied the improvement of wear resistance and fracture resistance of a sintered body composed of cubic boron nitride and a binder phase. As a starting material for this, a binder phase precursor material that reacts and sinters with cubic boron nitride, specifically, a binder phase of Al with at least one of Ti carbonate, nitrous oxide, and oxycarbonitride. When a precursor material is used and reactive sintering is carried out with a binder phase precursor material and cubic boron nitride, a dense sintered body having excellent wear resistance, fracture resistance and fracture toughness value can be obtained. The present invention has been completed based on the knowledge.

【0011】すなわち、本発明の焼結体は、体積比で、
10〜70%の立方晶窒化ホウ素と、残りセラミックス
を主成分とする結合相と不可避不純物とからなる焼結体
であって、該結合相が焼結体の全体比で、酸化アルミニ
ウム5〜30%と、窒化アルミニウムおよび/またはホ
ウ化アルミニウム3〜20%と、炭化チタン,窒化チタ
ンまたは炭窒化チタンの中の1種以上10〜40%と、
ホウ化チタン3〜30%とからなり、かつ該酸化アルミ
ニウムが1μm以下の粒径でなることを特徴とするもの
である。
That is, the sintered body of the present invention has a volume ratio of
A sintered body comprising 10 to 70% of cubic boron nitride, a binder phase containing the remaining ceramics as a main component, and unavoidable impurities, the binder phase being 5 to 30% of aluminum oxide in a total ratio of the sintered body. %, Aluminum nitride and / or aluminum boride 3 to 20%, and one or more of titanium carbide, titanium nitride or titanium carbonitride 10 to 40%,
It is characterized in that it is composed of 3 to 30% of titanium boride and that the aluminum oxide has a particle diameter of 1 μm or less.

【0012】本発明の焼結体における結合相は、酸化ア
ルミニウムと、窒化アルミニウムおよび/またはホウ化
アルミニウムと、炭化チタン,窒化チタンまたは炭窒化
チタンの中の1種以上と、ホウ化チタンとからなり、さ
らに必要に応じて周期律表4a,5a,6a族金属の炭
化物,窒化物,ホウ化物,ケイ化物およびこれらの相互
固溶体(但し、Tiの炭化物,窒化物,炭窒化物は除
く)の中の1種以上を40体積%以下またはFe,C
o,Ni,Cr,Mo,W等の金属、合金の中の1種以
上の含有したものである。この内、結合相中に金属,合
金を含有させる場合には、耐摩耗性の低下が顕著になる
ことから、結合相中の30体積%以下、好ましくは10
体積%以下である。
The binder phase in the sintered body of the present invention comprises aluminum oxide, aluminum nitride and / or aluminum boride, one or more of titanium carbide, titanium nitride or titanium carbonitride, and titanium boride. In addition, if necessary, it is possible to add carbides, nitrides, borides, silicides of metals of groups 4a, 5a and 6a of the periodic table and their mutual solid solutions (excluding carbides, nitrides and carbonitrides of Ti). 40% by volume or less, or Fe, C
One or more kinds of metals and alloys such as o, Ni, Cr, Mo and W are contained. Of these, when a metal or alloy is contained in the binder phase, the wear resistance is markedly reduced, so that the content of the binder phase is 30% by volume or less, preferably 10% by volume or less.
Volume% or less.

【0013】結合相の構成成分の内、酸化アルミニウム
が、焼結体の全体比で5体積%未満になると、耐摩耗性
および耐熱性の低下が著しく、逆に30体積%を超えて
多くなると、靭性の低下が著しくなり、窒化アルミニウ
ムおよび/またはホウ化アルミニウムが3体積%未満に
なると、緻密な焼結体になり難く、逆に20体積%を超
えて多くなると、強度および靭性の低下が著しくなり、
炭化チタン,窒化チタン,炭窒化チタンの1種以上が1
0体積%未満になると、強度および靭性の低下が著し
く、逆に40体積%を超えて多くなると、他の結合相成
分含有量が相対的に少なくなり、耐熱性および耐摩耗性
の低下が著しく、ホウ化チタンが3体積%未満になる
と、高温における強度低下が著しく、逆に30体積%を
超えて多くなると、あまり高くない温度領域での強度お
よび靭性の低下が著しくなる。
Of the constituents of the binder phase, when the aluminum oxide content is less than 5% by volume of the sintered body, the wear resistance and heat resistance are significantly deteriorated, and conversely, the aluminum oxide content is more than 30% by volume. When the aluminum nitride and / or aluminum boride is less than 3% by volume, it becomes difficult to form a dense sintered body, and conversely, when it exceeds 20% by volume, the strength and toughness are deteriorated. Becomes noticeable,
1 or more of titanium carbide, titanium nitride, titanium carbonitride
If it is less than 0% by volume, the strength and toughness are remarkably deteriorated. On the contrary, if it is more than 40% by volume, the content of other binder phase components is relatively small, and the heat resistance and wear resistance are remarkably deteriorated. When the content of titanium boride is less than 3% by volume, the strength is significantly decreased at high temperature, and when it is more than 30% by volume, the strength and toughness are significantly decreased in a temperature range not so high.

【0014】本発明の焼結体における立方晶窒化ホウ素
は、70体積%を超えて多くなると、相対的に結合相が
30体積%未満となり、結合相の組成成分を考慮した効
果が弱く、特に、できるだけ多くの立方晶窒化ホウ素の
粒子をホウ化チタンおよび/または窒化チタンのTi化
合物で囲繞して焼結体の強度および靭性を高めるために
は、粒径との関係もあることながら、立方晶窒化ホウ素
の含有量は70体積%が好ましく、逆に立方晶窒化ホウ
素が10体積%未満になると、立方晶窒化ホウ素の高硬
度が充分に生かしきれなく、焼結体の耐摩耗性の低下が
顕著になる。
If the cubic boron nitride content in the sintered body of the present invention exceeds 70% by volume, the binder phase will be relatively less than 30% by volume, and the effect in consideration of the composition components of the binder phase will be weak. In order to increase the strength and toughness of a sintered body by surrounding as many cubic boron nitride particles as possible with a titanium boride and / or titanium nitride Ti compound, the cubic particles have a relationship with the particle size, The content of cubic boron nitride is preferably 70% by volume, and conversely, when the content of cubic boron nitride is less than 10% by volume, the high hardness of cubic boron nitride cannot be fully utilized and the wear resistance of the sintered body decreases. Becomes noticeable.

【0015】本発明の焼結体を作製するには、従来から
行われている各種の製造方法でもって作製することもで
きるが、次の方法で行うと緻密で高強度高靭性の焼結体
が得られやすく好ましいことである。
The sintered body of the present invention can be manufactured by various conventional manufacturing methods. However, when the following method is used, the sintered body is dense and has high strength and high toughness. Is easily obtained, which is preferable.

【0016】本発明の焼結体の製造方法は、立方晶窒化
ホウ素粉末と、Tiの炭酸化物,窒酸化物,炭窒酸化物
の中の少なくとも1種の酸素含有化合物粉末と、Al粉
末とでなる混合粉末を圧粉成形体とする第1工程、必要
に応じて、該圧粉成形体を1×10-3Torr以上の真
空中、700℃〜1000℃で熱処理する第2工程、次
いで圧力4〜6GPa,温度1400〜1600℃の超
高圧高温でもって反応焼結する第3工程とからなるもの
である。
The method for producing a sintered body according to the present invention comprises a cubic boron nitride powder, at least one oxygen-containing compound powder of Ti carbonate, oxynitride and oxycarbonitride, and Al powder. The first step of forming the powder mixture into a powder compact, the second step of heat treating the powder compact at 700 ° C. to 1000 ° C. in a vacuum of 1 × 10 −3 Torr or more, if necessary. It comprises a third step of reacting and sintering at a pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. at ultrahigh pressure and high temperature.

【0017】本発明の焼結体の製造方法における酸素含
有化合物粉末は、立方晶窒化ホウ素粉末とAl粉末とに
よる反応焼結を行わせる重要な因子であり、具体的に
は、酸素含有化合物粉末とAl粉末との反応焼結でもっ
て、酸素含有化合物粉末中の酸素とAlとが結合し、酸
化アルミニウムとなり、さらに酸素含有化合物粉末中の
酸素を除いた他の元素と立方晶窒化ホウ素との反応焼
結、または酸素含有化合物粉末中の酸素を除いた他の元
素と立方晶窒化ホウ素とAlとの反応焼結を行わせるこ
とにより、焼結体中の結合相として、酸化アルミニウム
と、窒化アルミニウムおよび/またはホウ化アルミニウ
ムと、炭化チタン,窒化チタン,炭窒化チタンの中の1
種以上と、ホウ化チタンとを含有するものである。
The oxygen-containing compound powder in the method for producing a sintered body of the present invention is an important factor for performing reaction sintering with cubic boron nitride powder and Al powder. Specifically, the oxygen-containing compound powder is used. And Al powder, the oxygen and Al in the oxygen-containing compound powder are combined with each other to form aluminum oxide, and the other elements other than oxygen in the oxygen-containing compound powder are combined with cubic boron nitride. By performing reaction sintering or reaction sintering of cubic boron nitride and Al with other elements other than oxygen in the oxygen-containing compound powder, aluminum oxide and nitriding as a binder phase in the sintered body are obtained. Aluminum and / or aluminum boride and 1 of titanium carbide, titanium nitride, titanium carbonitride
It contains one or more seeds and titanium boride.

【0018】この反応焼結によって得られる焼結体中の
立方晶窒化ホウ素は、立方晶窒化ホウ素と酸素含有化合
物との反応焼結によって形成されたホウ化チタンおよび
/または窒化チタンのTi化合物により囲繞されること
になり、さらに反応焼結により形成された1μm以下の
微細な酸化アルミニウムが結合相中に分散し、強度およ
び靭性を一層高めることになる。この反応焼結の関係か
ら、立方晶窒化ホウ素は、平均粒径3μm以上のものが
好ましい。
The cubic boron nitride in the sintered body obtained by this reactive sintering is the titanium compound of titanium boride and / or titanium nitride formed by the reactive sintering of cubic boron nitride and an oxygen-containing compound. As a result, the fine aluminum oxide particles having a size of 1 μm or less formed by reaction sintering are dispersed in the binder phase, and the strength and toughness are further enhanced. In view of this reaction sintering, the cubic boron nitride preferably has an average particle size of 3 μm or more.

【0019】反応焼結を行わせるための酸素含有化合物
は、周期律表の4aの金属であるTi,Zr,Hfの炭
酸化物,窒酸化物,炭窒酸化物を用いることも可能であ
るが、中でもTiの炭酸化物,窒酸化物,炭窒酸化物が
好ましい。この酸素含有化合物の酸素含有量は、同時に
用いるAl粉末の含有量にも影響するが、酸素含有化合
物中の非金属元素を1モルとした場合に約0.8モル以
下、好ましくは0.6モル以下である。この酸素含有化
合物は、非化学量論組成からなることが好ましく、特
に、亜化学量論組成からなることが好ましい。
As the oxygen-containing compound for carrying out the reactive sintering, it is possible to use the metal oxides of Ti, Zr and Hf which are metals 4a in the periodic table, such as carbon oxides, oxynitrides and oxycarbonitrides. Of these, Ti carbonates, oxynitrides, and oxycarbonitrides are preferable. The oxygen content of the oxygen-containing compound affects the content of Al powder used at the same time, but when the non-metal element in the oxygen-containing compound is 1 mol, the oxygen content is about 0.8 mol or less, preferably 0.6 mol or less. It is less than or equal to mol. The oxygen-containing compound preferably has a non-stoichiometric composition, and particularly preferably a substoichiometric composition.

【0020】[0020]

【作用】本発明の焼結体は、反応焼結により形成された
1μm以下の粒径からなる酸化アルミニウムと、他の結
合相成分とによって、結合相の靭性および強度向上作用
をし、特に立方晶窒化ホウ素を囲繞した状態に形成され
るホウ化チタンおよび/または窒化チタンのTi化合物
が立方晶窒化ホウ素と結合相と境界を緻密にする作用、
および結合を強化する作用をしている。
The sintered body of the present invention has an effect of improving the toughness and strength of the binder phase by the aluminum oxide formed by the reaction sintering and having a grain size of 1 μm or less, and other binder phase components, and is particularly cubic. An action of titanium boride and / or a titanium compound of titanium nitride formed in a state of surrounding crystalline boron nitride to densify the boundary with cubic boron nitride, the bonding phase,
And acts to strengthen the bond.

【0021】また、本発明の焼結体の製造方法は、出発
物質として用いる酸素含有化合物とAlと立方晶窒化ホ
ウ素が反応焼結を誘発する大きな役割をし、中でも酸素
含有化合物が酸素含有化合物とAlとの反応、酸素含有
化合物と立方晶窒化ホウ素との反応、Alと立方晶窒化
ホウ素との反応という複合反応を誘発する作用をしてい
る。
Further, in the method for producing a sintered body of the present invention, the oxygen-containing compound used as a starting material, Al and cubic boron nitride play a major role in inducing reactive sintering. Among them, the oxygen-containing compound is the oxygen-containing compound. It has the function of inducing a complex reaction of a reaction between Al and Al, a reaction between an oxygen-containing compound and cubic boron nitride, and a reaction between Al and cubic boron nitride.

【0022】[0022]

【実施例】平均粒径4μmのcBN粉末、平均粒径1μ
mの炭酸化物粉末,窒酸化物粉末,平均粒径1μmのA
l粉末,平均粒径1μmのTiの炭化物粉末,窒化物粉
末,Hfの炭化物粉末,Taの窒化物粉末,Zrの炭化
物粉末,平均粒径0.5μmのAl23粉末を用いて表
1に示す組成に配合し、これを超硬合金製ボールとメタ
ノール溶媒でもって混合粉砕して得た混合粉末を型押し
成形して圧粉体にした後、1×10-5Torr、850
℃の条件で脱パラフィン処理し、次いで、超高圧高温装
置に設置し、5.5GPaの圧力、1500℃の温度、
30分の保持時間の条件でもって焼結し、本発明品1〜
8および比較品1〜4を得た。
Example: cBN powder having an average particle size of 4 μm, average particle size of 1 μ
m carbonate oxide powder, nitrous oxide powder, A with an average particle size of 1 μm
1 powder, Ti carbide powder, nitride powder, Hf carbide powder, Ta nitride powder, Zr carbide powder, and Al 2 O 3 powder having an average particle size of 0.5 μm having an average particle size of 1 μm. Compounded with the composition shown in Table 1 and mixed and crushed with a cemented carbide ball and a methanol solvent to obtain a mixed powder, which is pressed into a green compact, and then 1 × 10 −5 Torr, 850
Deparaffinization treatment under the condition of ℃, then installed in the ultra-high pressure high temperature apparatus, the pressure of 5.5GPa, the temperature of 1500 ℃,
Sintered under the condition of holding time of 30 minutes, the product of the present invention 1
8 and comparative products 1-4 were obtained.

【0023】こうして得た本発明品1〜8および比較品
1〜4をX線回折により測定し、その組成成分を表2に
示した。また、これらの焼結体の硬さおよび破壊靭性値
を求めて表2に併記した。次に、顕微鏡でもって焼結体
の組織観察を行ったところ、本発明品1,4,6は、T
i化合物が立方晶窒化ホウ素を囲繞した状態になってお
り、その平均層厚さは、約1μmであった。また、本発
明品1〜8は、平均粒径0.1μm〜0.2μmの酸化
アルミニウムが均一に分散していた。
The products 1 to 8 of the present invention and the comparative products 1 to 4 thus obtained were measured by X-ray diffraction, and the composition components thereof are shown in Table 2. Further, the hardness and fracture toughness value of these sintered bodies were determined and shown in Table 2. Next, when the structure of the sintered body was observed with a microscope, the products of the present invention 1, 4, 6 were
The i compound was in a state of surrounding cubic boron nitride, and its average layer thickness was about 1 μm. Further, in the products 1 to 8 of the present invention, aluminum oxide having an average particle diameter of 0.1 μm to 0.2 μm was uniformly dispersed.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 次いで、本発明品1〜8および比較品1〜4を用いて、
下記条件による切削試験を行い、その結果を表3に示し
た。
[Table 2] Then, using the present invention products 1 to 8 and the comparative products 1 to 4,
A cutting test was conducted under the following conditions, and the results are shown in Table 3.

【0026】(A)切削試験条件 被削材 : SCM415(HRC60.9〜61.
7) 外周連続乾式切削 切削速度 : 150m/min 切込量 : 0.5mm 送り : 0.1mm/rev チップ形状: TNMA160408 ホルダー : CTGNR2020 評価 : 平均逃げ面摩耗量VB=0.2mmにな
るまでの切削時間または途中欠損の切削時間(なお、V
Bは5minごとに測定) (B)切削試験条件 被削材 : FC30(HB210〜230) 外周連続湿式切削 切削速度 : 500m/min 切り込み量: 0.5mm 送り : 0.15mm/rev チップ形状: TNMA160408 ホルダー : CSBNR2020 評価 : 平均逃げ面摩耗量VB=0.2mmにな
るまでの切削時間または途中欠損の切削時間(なお、V
Bは10minごとに測定)
(A) Cutting test conditions Work material: SCM415 (HRC60.9 to 61.
7) Peripheral continuous dry cutting Cutting speed: 150 m / min Depth of cut: 0.5 mm Feed: 0.1 mm / rev Tip shape: TNMA160408 Holder: CTGNR2020 Evaluation: Until average flank wear amount V B = 0.2 mm Cutting time or cutting time for intermediate defects (V
B is measured every 5min) (B) Cutting Test Conditions Workpiece: FC30 (H B 210~230) outer peripheral continuous wet cutting Cutting speed: 500 meters / min Depth of cut: 0.5mm Feed: 0.15 mm / rev chip shape : TNMA160408 Holder: CSBNR2020 Evaluation: Cutting time until the average flank wear amount V B = 0.2 mm or cutting time in the middle (V
(B is measured every 10 minutes)

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】本発明の焼結体は、従来の立方晶窒化ホ
ウ素含有焼結体に比べて、破壊靭性値が高く、耐熱衝撃
性,高温での耐欠損性および耐酸化性等に優れているこ
とから、切削工具として用いた場合に長寿命となり、特
に立方晶窒化ホウ素がTi化合物で囲繞された焼結体の
場合には、よりその効果が高くなる傾向にある。
EFFECTS OF THE INVENTION The sintered body of the present invention has a higher fracture toughness value, superior thermal shock resistance, fracture resistance at high temperatures, and oxidation resistance, etc., as compared with the conventional cubic boron nitride-containing sintered body. Therefore, when it is used as a cutting tool, it has a long life, and particularly in the case of a sintered body in which cubic boron nitride is surrounded by a Ti compound, the effect tends to be higher.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 体積比で、10〜70%の立方晶窒化ホ
ウ素と、残りセラミックスを主成分とする結合相と不可
避不純物とからなる焼結体において、該結合相が焼結体
の全体比で、酸化アルミニウム5〜30%と、窒化アル
ミニウムおよび/またはホウ化アルミニウム3〜20%
と、炭化チタン,窒化チタンまたは炭窒化チタンの中の
1種以上10〜40%と、ホウ化チタン3〜30%とか
らなり、かつ該酸化アルミニウムが1μm以下の粒径で
なることを特徴とする立方晶窒化ホウ素含有焼結体。
1. A sintered body composed of 10 to 70% by volume of cubic boron nitride, a binder phase composed mainly of the remaining ceramics, and unavoidable impurities, wherein the binder phase is the entire ratio of the sintered body. And aluminum oxide 5 to 30% and aluminum nitride and / or aluminum boride 3 to 20%
And 10 to 40% of one or more of titanium carbide, titanium nitride or titanium carbonitride and 3 to 30% of titanium boride, and the aluminum oxide has a particle size of 1 μm or less. A cubic boron nitride-containing sintered body.
【請求項2】 上記立方晶窒化ホウ素は、平均層厚0.
1〜2.0μmのホウ化チタンおよび/または窒化チタ
ンのTi化合物により囲繞されていることを特徴とする
請求項1記載の立方晶窒化ホウ素含有焼結体。
2. The cubic boron nitride has an average layer thickness of 0.
The cubic boron nitride-containing sintered body according to claim 1, which is surrounded by a Ti compound of 1 to 2.0 μm of titanium boride and / or titanium nitride.
【請求項3】 体積比で、10〜70%の立方晶窒化ホ
ウ素と、残りセラミックスを主成分とする結合相と不可
避不純物とからなる焼結体において、該結合相が焼結体
の全体比で、酸化アルミニウム5〜30%と、窒化アル
ミニウムおよび/またはホウ化アルミニウム3〜20%
と、炭化チタン,窒化チタンまたは炭窒化チタンの中の
1種以上10〜40%と、ホウ化チタン3〜30%と、
周期律表4a,5a,6a族金属の炭化物,窒化物およ
びこれらの相互固溶体40%以下(但し、Tiの炭化
物,窒化物,炭窒化物は除く)からなり、かつ該酸化ア
ルミニウムが1μm以下の粒径でなることを特徴とする
立方晶窒化ホウ素含有焼結体。
3. A sintered body comprising 10 to 70% by volume of cubic boron nitride, a binder phase containing the remaining ceramics as a main component, and unavoidable impurities, wherein the binder phase is the overall ratio of the sintered body. And aluminum oxide 5 to 30% and aluminum nitride and / or aluminum boride 3 to 20%
And 10 to 40% of one or more of titanium carbide, titanium nitride or titanium carbonitride, and 3 to 30% of titanium boride,
Consists of 40% or less (excluding Ti carbide, nitride and carbonitride) of carbides and nitrides of metals of groups 4a, 5a and 6a of the periodic table and mutual solid solutions thereof, and the aluminum oxide is 1 μm or less. A cubic boron nitride-containing sintered body characterized by having a grain size.
【請求項4】 上記立方晶窒化ホウ素は、平均層厚0.
1〜2.0μmのホウ化チタンおよび/または窒化チタ
ンのTi化合物により囲繞されていることを特徴とする
請求項3記載の立方晶窒化ホウ素含有焼結体。
4. The cubic boron nitride has an average layer thickness of 0.
The cubic boron nitride-containing sintered body according to claim 3, which is surrounded by a Ti compound of 1 to 2.0 μm of titanium boride and / or titanium nitride.
【請求項5】 立方晶窒化ホウ素粉末と、Tiの炭酸化
物,窒酸化物,炭窒酸化物の中の少なくとも1種の酸素
含有化合物粉末と、Al粉末とでなる混合粉末を圧粉成
形体とする第1工程、必要に応じて、該圧粉成形体を1
×10-3Torr以上の真空中、700℃〜1000℃
で熱処理する第2工程、次いで圧力4〜6GPa,温度
1400〜1600℃の超高圧高温でもって反応焼結
し、体積比で、10〜70%の立方晶窒化ホウ素と、酸
化アルミニウム5〜30%と、窒化アルミニウムおよび
/またはホウ化アルミニウム3〜20%と、炭化チタ
ン,窒化チタンまたは炭窒化チタンの中の1種以上10
〜40%と、ホウ化チタン3〜30%とからなり、かつ
該酸化アルミニウムが1μm以下の粒径でなる焼結体と
する第3工程からなる立方晶窒化ホウ素含有焼結体の製
造方法。
5. A powder compact formed from a cubic boron nitride powder, a powder of Ti carbonate, at least one oxygen-containing compound powder of oxycarbonitride, and an Al powder. The first step, which is to
700 ° C to 1000 ° C in a vacuum of × 10 -3 Torr or more
In the second step of heat treatment in the next step, followed by reaction sintering at a pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. at an ultrahigh pressure and a high temperature, cubic boron nitride of 10 to 70% by volume and aluminum oxide of 5 to 30%. And 3 to 20% of aluminum nitride and / or aluminum boride and one or more of titanium carbide, titanium nitride or titanium carbonitride 10
-40% and titanium boride 3-30%, and a method for producing a cubic boron nitride-containing sintered body, which comprises a third step of forming a sintered body in which the aluminum oxide has a grain size of 1 µm or less.
【請求項6】 上記酸素含有化合物粉末は、非金属元素
中の酸素元素の含有比が0.2〜0.8モルでなること
を特徴とする請求項5記載の立方晶窒化ホウ素含有焼結
体の製造方法。
6. The cubic boron nitride-containing sintered material according to claim 5, wherein the oxygen-containing compound powder has a content ratio of oxygen element in the non-metal element of 0.2 to 0.8 mol. Body manufacturing method.
【請求項7】 立方晶窒化ホウ素粉末と、Tiの炭酸化
物,窒酸化物,炭窒酸化物の中の少なくとも1種の酸素
含有化合物粉末と、Al粉末と、周期律表4a,5a,
6a族金属の炭化物,窒化物およびこれらの相互固溶体
の中の少なくとも1種の粉末とでなる混合粉末を圧粉成
形体とする第1工程、必要に応じて、該圧粉成形体を1
×10-3Torr以上の真空中、700℃〜1000℃
で熱処理する第2工程、次いで圧力4〜6GPa,温度
1400〜1600℃の超高圧高温でもって反応焼結
し、体積比で、10〜70%の立方晶窒化ホウ素と、酸
化アルミニウム5〜30%と、窒化アルミニウムおよび
/またはホウ化アルミニウム3〜20%と、炭化チタ
ン,窒化チタンまたは炭窒化チタンの中の1種以上10
〜40%と、ホウ化チタン3〜30%と、周期律表4
a,5a,6a族金属の炭化物,窒化物およびこれらの
相互固溶体40%以下(但し、Tiの炭化物,窒化物,
炭窒化物は除く)とからなり、かつ該酸化アルミニウム
が1μm以下の粒径でなる焼結体とする第3工程からな
る立方晶窒化ホウ素含有焼結体の製造方法。
7. A cubic boron nitride powder, a carbon oxide of Ti, at least one oxygen-containing compound powder among oxycarbonitrides, an Al powder, and a periodic table 4a, 5a,
A first step of forming a powder compact with a mixed powder consisting of a carbide or nitride of a Group 6a metal and at least one kind of powder among these mutual solid solutions, and if necessary, the powder compact 1
700 ° C to 1000 ° C in a vacuum of × 10 -3 Torr or more
In the second step of heat treatment in the next step, followed by reaction sintering at a pressure of 4 to 6 GPa and a temperature of 1400 to 1600 ° C. at an ultrahigh pressure and a high temperature. And 3 to 20% of aluminum nitride and / or aluminum boride and one or more of titanium carbide, titanium nitride or titanium carbonitride 10
-40%, titanium boride 3-30%, and Periodic Table 4
Carbides and nitrides of a, 5a and 6a group metals and their mutual solid solutions of 40% or less (however, Ti carbides, nitrides,
(Excluding carbonitride) and a cubic boron nitride-containing sintered body comprising a third step of forming a sintered body having the aluminum oxide particle size of 1 μm or less.
【請求項8】 上記酸素含有化合物粉末は、非金属元素
中の酸素元素の含有比が0.2〜0.8モルでなること
を特徴とする請求項7記載の立方晶窒化ホウ素含有焼結
体の製造方法。
8. The cubic boron nitride-containing sintered material according to claim 7, wherein the oxygen-containing compound powder has a content ratio of oxygen element in the non-metal element of 0.2 to 0.8 mol. Body manufacturing method.
JP18184793A 1993-06-28 1993-06-28 Method for producing cubic boron nitride-containing sintered body Expired - Fee Related JP3476507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18184793A JP3476507B2 (en) 1993-06-28 1993-06-28 Method for producing cubic boron nitride-containing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18184793A JP3476507B2 (en) 1993-06-28 1993-06-28 Method for producing cubic boron nitride-containing sintered body

Publications (2)

Publication Number Publication Date
JPH0782031A true JPH0782031A (en) 1995-03-28
JP3476507B2 JP3476507B2 (en) 2003-12-10

Family

ID=16107866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18184793A Expired - Fee Related JP3476507B2 (en) 1993-06-28 1993-06-28 Method for producing cubic boron nitride-containing sintered body

Country Status (1)

Country Link
JP (1) JP3476507B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635593B1 (en) 1999-02-12 2003-10-21 Sumitomo Electric Industries, Ltd. High strength sintered impact having excellent resistance to cratering
WO2005056495A1 (en) 2003-12-03 2005-06-23 Diamond Innovations, Inc. Cubic boron nitride sintered body and method for making the same
WO2010119962A1 (en) 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
US7932199B2 (en) 2004-02-20 2011-04-26 Diamond Innovations, Inc. Sintered compact
WO2012053375A1 (en) * 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 Tool comprising sintered cubic boron nitride
WO2012105710A1 (en) 2011-02-04 2012-08-09 株式会社タンガロイ cBN SINTERED MATERIAL TOOL AND COATED cBN SINTERED MATERIAL TOOL
US8354353B2 (en) 2008-09-17 2013-01-15 Diamond Innovations, Inc. Cubic boron nitride ceramic composites and methods of making thereof
US8500834B2 (en) 2004-02-20 2013-08-06 Diamond Innovations, Inc. Sintered compact
WO2015060320A1 (en) 2013-10-22 2015-04-30 株式会社タンガロイ Cubic boron nitride sintered body, and coated cubic boron nitride sintered body
JP2015193072A (en) * 2014-03-28 2015-11-05 三菱マテリアル株式会社 Cutting tool comprising sintered body of cubic boron nitride
WO2019087481A1 (en) * 2017-10-30 2019-05-09 住友電気工業株式会社 Sintered body and cutting tool including same
US10744569B2 (en) * 2016-03-07 2020-08-18 Mitsubishi Materials Corporation Surface-coated cubic boron nitride sintered material tool
GB2591616A (en) * 2020-01-28 2021-08-04 Element Six Uk Ltd Polycrystalline cubic boron nitride material
CN114845975A (en) * 2019-12-16 2022-08-02 住友电工硬质合金株式会社 Cubic boron nitride sintered body and method for producing same
CN114867700A (en) * 2019-12-16 2022-08-05 住友电工硬质合金株式会社 Cubic boron nitride sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293669B2 (en) * 2011-12-05 2018-03-14 ダイヤモンド イノヴェーションズ インコーポレイテッド Sintered cubic boron nitride cutting tool

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635593B1 (en) 1999-02-12 2003-10-21 Sumitomo Electric Industries, Ltd. High strength sintered impact having excellent resistance to cratering
WO2005056495A1 (en) 2003-12-03 2005-06-23 Diamond Innovations, Inc. Cubic boron nitride sintered body and method for making the same
US8500834B2 (en) 2004-02-20 2013-08-06 Diamond Innovations, Inc. Sintered compact
US7932199B2 (en) 2004-02-20 2011-04-26 Diamond Innovations, Inc. Sintered compact
US8067323B2 (en) 2004-02-20 2011-11-29 Diamond Innovations, Inc. Sintered compact
US8354353B2 (en) 2008-09-17 2013-01-15 Diamond Innovations, Inc. Cubic boron nitride ceramic composites and methods of making thereof
JP5660034B2 (en) * 2009-04-17 2015-01-28 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2010119962A1 (en) 2009-04-17 2010-10-21 株式会社タンガロイ Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
WO2012053375A1 (en) * 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 Tool comprising sintered cubic boron nitride
CN102712048A (en) * 2010-10-19 2012-10-03 住友电工硬质合金株式会社 Tool comprising sintered cubic boron nitride
JP5771883B2 (en) * 2010-10-19 2015-09-02 住友電工ハードメタル株式会社 Cubic boron nitride sintered tool
US8822361B2 (en) 2010-10-19 2014-09-02 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body tool
WO2012105710A1 (en) 2011-02-04 2012-08-09 株式会社タンガロイ cBN SINTERED MATERIAL TOOL AND COATED cBN SINTERED MATERIAL TOOL
WO2015060320A1 (en) 2013-10-22 2015-04-30 株式会社タンガロイ Cubic boron nitride sintered body, and coated cubic boron nitride sintered body
US20160236988A1 (en) * 2013-10-22 2016-08-18 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body
US9950962B2 (en) 2013-10-22 2018-04-24 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP2015193072A (en) * 2014-03-28 2015-11-05 三菱マテリアル株式会社 Cutting tool comprising sintered body of cubic boron nitride
US10744569B2 (en) * 2016-03-07 2020-08-18 Mitsubishi Materials Corporation Surface-coated cubic boron nitride sintered material tool
WO2019087481A1 (en) * 2017-10-30 2019-05-09 住友電気工業株式会社 Sintered body and cutting tool including same
JPWO2019087481A1 (en) * 2017-10-30 2020-09-24 住友電気工業株式会社 Sintered body and cutting tools containing it
CN114845975A (en) * 2019-12-16 2022-08-02 住友电工硬质合金株式会社 Cubic boron nitride sintered body and method for producing same
CN114867700A (en) * 2019-12-16 2022-08-05 住友电工硬质合金株式会社 Cubic boron nitride sintered body
CN114867700B (en) * 2019-12-16 2023-06-27 住友电工硬质合金株式会社 Cubic boron nitride sintered body
CN114845975B (en) * 2019-12-16 2023-08-22 住友电工硬质合金株式会社 Cubic boron nitride sintered body and method for producing same
GB2591616A (en) * 2020-01-28 2021-08-04 Element Six Uk Ltd Polycrystalline cubic boron nitride material

Also Published As

Publication number Publication date
JP3476507B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
KR100219930B1 (en) Superhard composite member and its production
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
US7615185B2 (en) Multicomponent ceramics powder, method of manufacturing multicomponent ceramics powder, sintered body, and method of manufacturing sintered body
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
JP4065666B2 (en) High crater resistance High strength sintered body
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
JP3949181B2 (en) Diamond sintered body using hard alloy as binder and method for producing the same
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JPH05310474A (en) High-toughness boron nitride sintered compact with high-pressure phase
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JPS644988B2 (en)
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
JPH07172924A (en) Highly tough sintered compact for tool and its production
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JPS644989B2 (en)
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP3976285B2 (en) Cermet tool having a hard nitrided layer and method for producing the same
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2001179508A (en) Cutting tool
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JP2006291299A (en) Hard metal, coated hard metal, and method for manufacturing them

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees