JP2007084382A - Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same - Google Patents

Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same Download PDF

Info

Publication number
JP2007084382A
JP2007084382A JP2005275031A JP2005275031A JP2007084382A JP 2007084382 A JP2007084382 A JP 2007084382A JP 2005275031 A JP2005275031 A JP 2005275031A JP 2005275031 A JP2005275031 A JP 2005275031A JP 2007084382 A JP2007084382 A JP 2007084382A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
nitride sintered
sintered body
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275031A
Other languages
Japanese (ja)
Other versions
JP5157056B2 (en
Inventor
Kazuo Hado
和雄 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2005275031A priority Critical patent/JP5157056B2/en
Publication of JP2007084382A publication Critical patent/JP2007084382A/en
Application granted granted Critical
Publication of JP5157056B2 publication Critical patent/JP5157056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cubic boron nitride sintered compact exhibiting excellent performances in a process where the cutting edge temperature goes up at the cutting such as in a cutting process of quench-hardened steel. <P>SOLUTION: This cubic boron nitride sintered compact comprises 55-75 vol% cubic boron nitride relative to the whole cubic boron nitride sintered compact and the rest of at least one bonding phase selected from among metals, carbides, nitrides, oxides, borides of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni and Al, and mutual solid solutions thereof. The cubic boron nitride comprises 30-70 vol% fine particle cubic boron nitride with 0.5-2.0 μm particle diameter and 30-70 vol% coarse cubic boron nitride with larger than 2.0 μm to 10 μm particle diameter relative to the whole cubic boron nitride, respectively, and the average thickness value of the bonding phase is 0.5-1.0 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体に関し、その中でも特に焼入鋼用切削工具として好適な立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体に関する。 The present invention relates to a cubic boron nitride sintered body and a coated cubic boron nitride sintered body, and more particularly to a cubic boron nitride sintered body and a coated cubic boron nitride sintered body that are particularly suitable as a cutting tool for hardened steel. .

鋼の焼入れを浸炭性雰囲気で行うと鋼の表面に浸炭層が形成される。自動車のシャフトなどの機械部品に焼入鋼を使用する場合、焼入れによって焼入鋼の表面にできた浸炭層を切削加工によって除去することが多い。こうした切削加工には、立方晶窒化硼素焼結体切削工具が多く用いられる。近年、切削加工の能率を上げるため、切り込みを大きくすることが求められ、被削材の形状によっては焼入れされていない部分を切削加工しなければならず、このような切削加工において刃先温度は非常に高くなる。刃先温度が高温になると立方晶窒化硼素が酸化されて脆い酸化硼素となり耐欠損性が低下する。切削時の刃先温度を低下させるためには立方晶窒化硼素焼結体の熱伝導を良くすると好ましく、そのためには、熱伝導度が高い立方晶窒化硼素に比べて熱伝導度が低い結合相の厚みを小さくするとよいと考えられる。 When the steel is quenched in a carburizing atmosphere, a carburized layer is formed on the surface of the steel. When hardened steel is used for machine parts such as automobile shafts, the carburized layer formed on the surface of the hardened steel by quenching is often removed by cutting. For such cutting, a cubic boron nitride sintered body cutting tool is often used. In recent years, in order to increase the efficiency of cutting, it has been required to increase the depth of cut, and depending on the shape of the work material, it has been necessary to cut a portion that has not been hardened. To be high. When the cutting edge temperature becomes high, cubic boron nitride is oxidized to brittle boron oxide, and the fracture resistance is lowered. In order to lower the cutting edge temperature at the time of cutting, it is preferable to improve the thermal conductivity of the cubic boron nitride sintered body. For this purpose, a binder phase having a low thermal conductivity compared to cubic boron nitride having a high thermal conductivity. It is considered that the thickness should be reduced.

立方晶窒化硼素焼結体の従来技術としては、cBNの含有率が体積%で45−70%で、cBN粒子の平均粒度が0.01以上2μm未満であり、結合相厚みの平均値が1.0μm以下で、その標準偏差が0.7以下であることを特徴とするcBN焼結体がある(例えば、特許文献1参照。)。また、cBNの含有率が体積%で45−70%で、cBN粒子の平均粒度が2以上6μm以下であり、結合相厚みの平均値が1.5μm以下で、その標準偏差が0.9以下であることを特徴とするcBN焼結体がある(例えば、特許文献2参照。)。 As a conventional technique of a cubic boron nitride sintered body, the content of cBN is 45 to 70% by volume, the average particle size of cBN particles is 0.01 or more and less than 2 μm, and the average value of the binder phase thickness is 1 There is a cBN sintered body having a standard deviation of 0.0 μm or less and a standard deviation of 0.7 or less (see, for example, Patent Document 1). The content of cBN is 45-70% by volume, the average particle size of cBN particles is 2 to 6 μm, the average value of the binder phase thickness is 1.5 μm or less, and the standard deviation is 0.9 or less. There is a cBN sintered body characterized by being (for example, refer to Patent Document 2).

特開2000−44347号公報JP 2000-44347 A 特開2000−44350号公報JP 2000-44350 A

cBNの含有率が体積%で45−70%で、cBN粒子の平均粒度が0.01以上2μm未満であり、結合相厚みの平均値が1.0μm以下で、その標準偏差が0.7以下であることを特徴とするcBN焼結体は、立方晶窒化硼素が微粒であるため立方晶窒化硼素を保持している結合相の表面積が小さくなり立方晶窒化硼素の保持力が小さくなるという問題がある。特に高速切削領域において立方晶窒化硼素の保持が難しくなる。 The content of cBN is 45-70% by volume, the average particle size of cBN particles is 0.01 or more and less than 2 μm, the average value of the binder phase thickness is 1.0 μm or less, and its standard deviation is 0.7 or less. In the cBN sintered body characterized in that the cubic boron nitride is fine, the surface area of the binder phase holding the cubic boron nitride is reduced, and the holding power of the cubic boron nitride is reduced. There is. In particular, it becomes difficult to hold cubic boron nitride in a high-speed cutting region.

cBNの含有率が体積%で45−70%で、cBN粒子の平均粒度が2以上6μm以下であり、結合相厚みの平均値が1.5μm以下で、その標準偏差が0.9以下であることを特徴とするcBN焼結体は、立方晶窒化硼素が粗粒であるために結合相厚みの平均値が大きくなる。そこで、本発明は、切削工具として用いた場合に、特に焼入鋼の切削加工など切削時に刃先温度が高くなる加工において、優れた性能を発揮する立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体の提供を目的とする。 The content of cBN is 45-70% by volume, the average particle size of cBN particles is 2 or more and 6 μm or less, the average value of the binder phase thickness is 1.5 μm or less, and its standard deviation is 0.9 or less. In the cBN sintered body characterized by this, the average value of the binder phase thickness is large because cubic boron nitride is coarse. Therefore, the present invention provides a cubic boron nitride sintered body and a coated cubic nitriding that exhibit excellent performance when used as a cutting tool, particularly in machining where the cutting edge temperature is high during cutting, such as cutting of hardened steel. An object is to provide a boron sintered body.

立方晶窒化硼素焼結体は、熱伝導度が高い立方晶窒化硼素と、熱伝導度が低い結合相とからなる。本発明により、立方晶窒化硼素焼結体に含まれる立方晶窒化硼素を粗粒と微粒とし、それらの混合比を最適化することによって、優れた性能の立方晶窒化硼素焼結体を得ることができた。具体的には、適量の粗粒立方晶窒化硼素を含むことによって立方晶窒化硼素を保持している結合相の表面積を大きくして、立方晶窒化硼素の保持力を高めることができた。また、粗粒立方晶窒化硼素と微粒立方晶窒化硼素の混合比を最適化することで、粗粒立方晶窒化硼素と粗粒立方晶窒化硼素との間にできる厚い結合相の中に微粒立方晶窒化硼素が分散されて結合相の厚みが小さくなり、立方晶窒化硼素焼結体の熱伝導度を高くすることができた。さらには、粗粒立方晶窒化硼素と微粒立方晶窒化硼素の混合比を最適化することで立方晶窒化硼素が最密充填され、単一粒径の立方晶窒化硼素の場合よりも耐摩耗性および耐欠損性を向上させることができた。 The cubic boron nitride sintered body is composed of cubic boron nitride having a high thermal conductivity and a binder phase having a low thermal conductivity. According to the present invention, a cubic boron nitride sintered body having excellent performance can be obtained by making cubic boron nitride contained in the cubic boron nitride sintered body coarse and fine and optimizing the mixing ratio thereof. I was able to. Specifically, by including an appropriate amount of coarse cubic boron nitride, the surface area of the binder phase holding the cubic boron nitride was increased, and the retention of cubic boron nitride could be increased. In addition, by optimizing the mixing ratio of coarse cubic boron nitride and fine cubic boron nitride, the fine cubic cubic is contained in the thick binder phase formed between the coarse cubic boron nitride and the coarse cubic boron nitride. The crystalline boron nitride was dispersed, the thickness of the binder phase was reduced, and the thermal conductivity of the cubic boron nitride sintered body could be increased. Furthermore, by optimizing the mixing ratio of coarse cubic boron nitride and fine cubic boron nitride, the cubic boron nitride is closely packed and wear resistance is higher than that of single grain cubic boron nitride. And the fracture resistance could be improved.

すなわち、本発明は、立方晶窒化硼素:立方晶窒化硼素焼結体全体に対して55〜75体積%と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Co、Ni、Alの金属、炭化物、窒化物、酸化物、硼化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の結合相:残部とからなり、立方晶窒化硼素は、粒径が0.5〜2.0μmの微粒立方晶窒化硼素:立方晶窒化硼素全体に対して30〜70体積%と、粒径が2.0μm超〜10μmの粗粒立方晶窒化硼素:立方晶窒化硼素全体に対して30〜70体積%とからなり、結合相厚みの平均値は0.5〜1.0μmである立方晶窒化硼素焼結体である。 That is, the present invention relates to cubic boron nitride: 55 to 75% by volume based on the entire cubic boron nitride sintered body, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co. , Ni, Al metal, carbide, nitride, oxide, boride and at least one binder phase selected from these solid solutions: the balance, cubic boron nitride has a particle size of 0 .5 to 2.0 μm fine cubic boron nitride: 30 to 70% by volume with respect to the entire cubic boron nitride, and coarse cubic boron nitride having a particle size of more than 2.0 μm to 10 μm: the entire cubic boron nitride The cubic boron nitride sintered body is 30 to 70% by volume with an average binder phase thickness of 0.5 to 1.0 μm.

本発明の立方晶窒化硼素焼結体は、立方晶窒化硼素:立方晶窒化硼素焼結体全体に対して55〜75体積%と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Co、Ni、Alの金属、炭化物、窒化物、酸化物、硼化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の結合相:残部とからなる。これは、立方晶窒化硼素が立方晶窒化硼素焼結体全体に対して55体積%未満になると相対的に結合相が多くなり、結合相厚みの平均値が大きくなり切削性能が低下し、立方晶窒化硼素が立方晶窒化硼素焼結体全体に対して75体積%を超えて多くなると相対的に結合相が少なくなり耐摩耗性が減少するので、55〜75体積%の範囲とした。 The cubic boron nitride sintered body of the present invention has a cubic boron nitride: 55 to 75% by volume with respect to the entire cubic boron nitride sintered body, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo. , W, Fe, Co, Ni, Al metals, carbides, nitrides, oxides, borides, and mutual solid solutions thereof, and at least one binder phase: the balance. This is because when the cubic boron nitride is less than 55% by volume with respect to the entire cubic boron nitride sintered body, the binder phase is relatively increased, the average value of the binder phase thickness is increased, and the cutting performance is lowered. When the amount of crystal boron nitride exceeds 75 volume% with respect to the entire cubic boron nitride sintered body, the binder phase is relatively reduced and the wear resistance is decreased.

本発明の立方晶窒化硼素焼結体の結合相は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Co、Ni、Alの金属、炭化物、窒化物、酸化物、硼化物およびこれらの相互固溶体の中から選ばれた少なくとも1種からなる。具体的には、TiN、TiB2、AlNなどを挙げることができる。 The binder phase of the cubic boron nitride sintered body of the present invention is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Al metal, carbide, nitride, oxide. And at least one selected from borides and their mutual solid solutions. Specific examples include TiN, TiB 2 , and AlN.

立方晶窒化硼素焼結体に含まれる立方晶窒化硼素が微粒と粗粒とからなり最密充填されると、耐摩耗性および耐欠損性が向上する。本発明の立方晶窒化硼素焼結体の立方晶窒化硼素を、粒径が0.5〜2.0μmの微粒立方晶窒化硼素:立方晶窒化硼素全体に対して30〜70体積%と、粒径が2.0μm超〜10μmの粗粒立方晶窒化硼素:立方晶窒化硼素全体に対して30〜70体積%とからなると、立方晶窒化硼素が最密充填され耐摩耗性および耐欠損性が向上する。なお、微粒立方晶窒化硼素と粗粒立方晶窒化硼素との合計は100体積%になる。粒径が0.5〜2.0μmの微粒立方晶窒化硼素は立方晶窒化硼素全体に対して30体積%未満になると、相対的に粗粒立方晶窒化硼素が多くなるため、結合相厚さの平均値が1.0μmを超えて増加し、粒径が0.5〜2.0μmの微粒立方晶窒化硼素は立方晶窒化硼素全体に対して70体積%を超えて多くなると、立方晶窒化硼素を保持している結合相の表面積が小さくなり立方晶窒化硼素の保持力が小さくなる。したがって、本発明の立方晶窒化硼素焼結体に含まれる立方晶窒化硼素は、微粒立方晶窒化硼素:30〜70体積%と、粗粒立方晶窒化硼素:30〜70体積%とからなると定めた。その中でも、立方晶窒化硼素は、微粒立方晶窒化硼素:40〜60体積%と、粗粒立方晶窒化硼素:40〜60体積%とからなるとさらに好ましく、その中でも立方晶窒化硼素は、微粒立方晶窒化硼素:45〜55体積%と、粗粒立方晶窒化硼素:45〜55体積%とからなるとさらに好ましい。 When the cubic boron nitride contained in the cubic boron nitride sintered body consists of fine particles and coarse particles and is closely packed, the wear resistance and fracture resistance are improved. The cubic boron nitride of the cubic boron nitride sintered body of the present invention is a fine cubic boron nitride having a particle size of 0.5 to 2.0 μm: 30 to 70% by volume with respect to the entire cubic boron nitride, Coarse-grained cubic boron nitride having a diameter of more than 2.0 μm to 10 μm: When it is 30 to 70% by volume with respect to the entire cubic boron nitride, the cubic boron nitride is closely packed and wear resistance and fracture resistance are obtained. improves. The total of fine cubic boron nitride and coarse cubic boron nitride is 100% by volume. When the cubic cubic boron nitride having a particle size of 0.5 to 2.0 μm is less than 30% by volume with respect to the entire cubic boron nitride, the amount of coarse cubic boron nitride is relatively increased. When the average value of Cb increases beyond 1.0 μm and the amount of fine cubic boron nitride having a particle size of 0.5 to 2.0 μm increases to more than 70% by volume with respect to the entire cubic boron nitride, cubic nitriding occurs. The surface area of the binder phase holding boron is reduced, and the holding power of cubic boron nitride is reduced. Therefore, the cubic boron nitride contained in the cubic boron nitride sintered body of the present invention is determined to be composed of fine cubic boron nitride: 30 to 70% by volume and coarse cubic boron nitride: 30 to 70% by volume. It was. Among them, the cubic boron nitride is more preferably composed of fine cubic boron nitride: 40 to 60% by volume and coarse cubic boron nitride: 40 to 60% by volume. Among them, the cubic boron nitride is fine cubic cubic. More preferably, it is composed of 45 to 55% by volume of crystalline boron nitride and 45 to 55% by volume of coarse cubic boron nitride.

本発明の立方晶窒化硼素焼結体の結合相厚みの平均値は0.5〜1.0μmとした。立方晶窒化硼素焼結体が、立方晶窒化硼素:立方晶窒化硼素焼結体全体に対して55〜75体積%と、結合相:残部とで構成され、立方晶窒化硼素を粒径が0.5〜2.0μmの微粒立方晶窒化硼素:30〜70体積%と、粒径が2.0μm超〜10μmの粗粒立方晶窒化硼素:30〜70体積%とからなると結合相厚みの平均値を1.0μm以下にすることができる。しかしながら粗粒立方晶窒化硼素の割合が増加するなどにより、立方晶窒化硼素焼結体の結合相厚みの平均値が1.0μmを超えると、熱伝導度が低下し、切削時に刃先温度が高温になり立方晶窒化硼素が酸化されて脆い酸化硼素を形成するため、耐欠損性が低下する。また、立方晶窒化硼素焼結体の結合相厚みの平均値が0.5μm未満では結合相が立方晶窒化硼素を保持する力が低下し耐摩耗性が低下する。 The average value of the binder phase thickness of the cubic boron nitride sintered body of the present invention was 0.5 to 1.0 μm. The cubic boron nitride sintered body is composed of cubic boron nitride: 55 to 75% by volume with respect to the entire cubic boron nitride sintered body and a binder phase: the balance, and the cubic boron nitride has a particle size of 0. .5 to 2.0 μm fine cubic boron nitride: 30 to 70% by volume, and coarse cubic boron nitride having a particle size of more than 2.0 μm to 10 μm: 30 to 70% by volume, the average binder phase thickness The value can be 1.0 μm or less. However, if the average value of the binder phase thickness of the cubic boron nitride sintered body exceeds 1.0 μm due to an increase in the proportion of coarse-grained cubic boron nitride, the thermal conductivity decreases, and the cutting edge temperature is high during cutting. As the cubic boron nitride is oxidized to form brittle boron oxide, the fracture resistance is lowered. On the other hand, if the average value of the binder phase thickness of the cubic boron nitride sintered body is less than 0.5 μm, the force with which the binder phase holds the cubic boron nitride is lowered and the wear resistance is lowered.

本発明の立方晶窒化硼素焼結体の表面に被膜を被覆した被覆立方晶窒化硼素焼結体は、耐摩耗性、潤滑性、耐酸化性が向上するため好ましい。被膜は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Siの中の少なくとも1種の金属元素と窒素、炭素、酸素、硼素の中の少なくとも1種の非金属元素との化合物からなる。具体的には、TiN、TiC、TiN、(Ti,Al)N、(Ti,Si)N、(Ti,Al,Cr)N、(Al,Cr)N、(Al,Cr)NOなどを挙げることができる。その中でも(Al,Cr)N、(Al,Cr)NOがさらに好ましい。なお、被膜は従来からあるPVD法、CVD法によって被覆することができる。 The coated cubic boron nitride sintered body obtained by coating the surface of the cubic boron nitride sintered body of the present invention is preferable because of improved wear resistance, lubricity and oxidation resistance. The coating is composed of at least one metal element in Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and at least one nonmetal in nitrogen, carbon, oxygen, boron. Consists of compounds with elements. Specifically, TiN, TiC, TiN, (Ti, Al) N, (Ti, Si) N, (Ti, Al, Cr) N, (Al, Cr) N, (Al, Cr) NO, etc. be able to. Among these, (Al, Cr) N and (Al, Cr) NO are more preferable. The coating can be applied by conventional PVD methods and CVD methods.

本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性に優れるため、切削工具として用いられるのが好ましく、その中でも、切削時に刃先温度が高くなりやすい焼入鋼用切削工具として用いられるとさらに好ましい。 The cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are preferably used as a cutting tool because of their excellent wear resistance and fracture resistance, and among them, the cutting edge temperature is high during cutting. More preferably, it is used as a hardened steel cutting tool.

本発明の立方晶窒化硼素焼結体および被覆立方晶窒化硼素焼結体は、耐摩耗性、耐欠損性に優れるため、切削工具として用いた場合に優れた性能を示し長寿命を達成する。その中でも特に焼入鋼の切削加工など、切削時に刃先温度が高くなる切削加工において優れた性能を発揮する。 Since the cubic boron nitride sintered body and the coated cubic boron nitride sintered body of the present invention are excellent in wear resistance and fracture resistance, they exhibit excellent performance when used as a cutting tool and achieve a long life. In particular, it exhibits excellent performance in cutting processing in which the cutting edge temperature becomes high during cutting, such as cutting of hardened steel.

粒径が0.5〜2.0μmの微粒立方晶窒化硼素粉末、粒径が2.0μm超〜10μmの粗粒立方晶窒化硼素粉末、平均粒径2μmのTiN粉末、平均粒径4μmのAl粉末を用意した。体積比でTiN:Al=5:2となるように配合したものを結合相形成粉末とした。微粒立方晶窒化硼素粉末、粗粒立方晶窒化硼素粉末、結合相形成粉末を表1に示すように配合した。配合した原料粉末を湿式混合し、乾燥させた混合粉末を金属カプセルに充填した後、超高圧発生装置の容器内に挿入し、圧力6.5GPa、温度1650℃、保持時間30分の焼結条件で焼結し、発明品1〜4および従来品1〜2を得た。ここで比較品1は特開2000−44347号公報の特許請求の範囲に含まれる。比較品2は特開2000−44350号公報の特許請求の範囲に含まれる。 Fine cubic boron nitride powder having a particle size of 0.5 to 2.0 μm, coarse cubic boron nitride powder having a particle size of more than 2.0 μm to 10 μm, TiN powder having an average particle size of 2 μm, Al having an average particle size of 4 μm Powder was prepared. What was mix | blended so that it might become TiN: Al = 5: 2 by volume ratio was made into the binder phase formation powder. As shown in Table 1, fine cubic boron nitride powder, coarse cubic boron nitride powder, and binder phase forming powder were blended. The mixed raw material powder is wet-mixed, and the dried mixed powder is filled into a metal capsule, and then inserted into a container of an ultra-high pressure generator, pressure 6.5 GPa, temperature 1650 ° C., sintering time 30 minutes sintering conditions Inventive products 1-4 and conventional products 1-2 were obtained. Here, the comparative product 1 is included in the scope of claims of Japanese Patent Laid-Open No. 2000-44347. The comparative product 2 is included in the scope of claims of Japanese Patent Laid-Open No. 2000-44350.

Figure 2007084382
Figure 2007084382

各試料は研磨して、立方晶窒化硼素の粒度分布、結合相厚さ、ヌープ硬さを測定した。得られた発明品と従来品の立方晶窒化硼素の粒度分布、結合相厚さの平均値、結合相厚さの標準偏差、ヌープ硬さを表2に示す。 Each sample was polished, and the particle size distribution, binder phase thickness, and Knoop hardness of cubic boron nitride were measured. Table 2 shows the particle size distribution, the average value of the binder phase thickness, the standard deviation of the binder phase thickness, and the Knoop hardness of the obtained inventive and conventional cubic boron nitride.

Figure 2007084382
Figure 2007084382

得られた焼結体は、組成が重量%で45Ag−30Cu−25Znの銀ロウを介して超硬合金基材に接合し、JIS規格CNGA120408形状の切削チップに研磨加工して以下の切削試験を行った。切削試験結果を表3に示す。 The obtained sintered body was bonded to a cemented carbide substrate through a silver brazing alloy having a composition of 45% by weight of 30Ag-30Cu-25Zn. went. Table 3 shows the results of the cutting test.

[切削試験]
被削材:ギア材用焼入鋼SCM415(表面から深さ0.6mm未満の焼入れされている部分はHRC60〜62を示す。表面から深さ0.6mm以上の内部は焼入れされていない。)
切削速度:Vc=80m/min
切り込み:ap=0.8mm
送り:f=0.12mm/rev
切削油:なし(乾式)
寿命判定基準:切削チップに欠損を生じること
[Cutting test]
Work material: Hardened steel SCM415 for gear material (the portion hardened to a depth of less than 0.6 mm from the surface indicates HRC 60 to 62. The inside of the depth of 0.6 mm or more from the surface is not hardened)
Cutting speed: Vc = 80 m / min
Cutting depth: ap = 0.8mm
Feed: f = 0.12mm / rev
Cutting oil: None (dry type)
Life criterion: Defects in cutting tips

Figure 2007084382
Figure 2007084382

表3に示されるように、発明品1〜4は比較品1、2よりも長寿命となった。 As shown in Table 3, the inventive products 1 to 4 have a longer life than the comparative products 1 and 2.

実施例1で得られた発明品1〜4、比較品1、2の表面にPVD法によって平均膜厚2μmの(Al,Cr)NO膜を被覆して発明品5〜8、比較品3、4の被覆立方晶窒化硼素焼結体を得た。得られた試料を用いて実施例1の切削試験と同じ条件で切削試験を行った。切削試験結果を表4に示す。 Inventive products 1 to 4 obtained in Example 1 and the surfaces of comparative products 1 and 2 are coated with an (Al, Cr) NO film having an average film thickness of 2 μm by the PVD method. 4 coated cubic boron nitride sintered bodies were obtained. Using the obtained sample, a cutting test was performed under the same conditions as the cutting test of Example 1. Table 4 shows the results of the cutting test.

Figure 2007084382
Figure 2007084382

表4に示されるように、発明品5〜8は比較品3、4よりも長寿命となった。

As shown in Table 4, the inventive products 5 to 8 had a longer life than the comparative products 3 and 4.

Claims (4)

立方晶窒化硼素:立方晶窒化硼素焼結体全体に対して55〜75体積%と、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Co、Ni、Alの金属、炭化物、窒化物、酸化物、硼化物およびこれらの相互固溶体の中から選ばれた少なくとも1種の結合相:残部とからなり、立方晶窒化硼素は、粒径が0.5〜2.0μmの微粒立方晶窒化硼素:立方晶窒化硼素全体に対して30〜70体積%と、粒径が2.0μm超〜10μmの粗粒立方晶窒化硼素:立方晶窒化硼素全体に対して30〜70体積%とからなり、結合相厚みの平均値は0.5〜1.0μmである立方晶窒化硼素焼結体。 Cubic boron nitride: 55-75% by volume with respect to the entire cubic boron nitride sintered body, and metals of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Co, Ni, Al , Carbides, nitrides, oxides, borides, and their mutual solid solutions, and at least one binder phase: the balance. Cubic boron nitride has a particle size of 0.5 to 2.0 μm. Fine cubic boron nitride: 30 to 70% by volume with respect to the entire cubic boron nitride, and coarse cubic boron nitride with a particle size of more than 2.0 μm to 10 μm: 30 to 70 with respect to the entire cubic boron nitride. A cubic boron nitride sintered body having a volume percent and an average binder phase thickness of 0.5 to 1.0 μm. 請求項1に記載の立方晶窒化硼素焼結体の表面に被膜を被覆した被覆立方晶窒化硼素焼結体。 A coated cubic boron nitride sintered body obtained by coating a surface of the cubic boron nitride sintered body according to claim 1 with a film. 請求項1に記載の立方晶窒化硼素焼結体からなる焼入鋼用切削工具。 A cutting tool for hardened steel comprising the cubic boron nitride sintered body according to claim 1. 請求項2に記載の被覆立方晶窒化硼素焼結体からなる焼入鋼用切削工具。

A cutting tool for hardened steel, comprising the coated cubic boron nitride sintered body according to claim 2.

JP2005275031A 2005-09-22 2005-09-22 Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same Active JP5157056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275031A JP5157056B2 (en) 2005-09-22 2005-09-22 Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275031A JP5157056B2 (en) 2005-09-22 2005-09-22 Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same

Publications (2)

Publication Number Publication Date
JP2007084382A true JP2007084382A (en) 2007-04-05
JP5157056B2 JP5157056B2 (en) 2013-03-06

Family

ID=37971762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275031A Active JP5157056B2 (en) 2005-09-22 2005-09-22 Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same

Country Status (1)

Country Link
JP (1) JP5157056B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
EP2778146A4 (en) * 2011-11-07 2015-06-24 Tungaloy Corp Cubic boron nitride sintered body
US9381617B2 (en) 2010-07-01 2016-07-05 Diamond Innovations, Inc. Sintered cubic boron nitride cutting tool
CN110662729A (en) * 2017-05-26 2020-01-07 住友电气工业株式会社 Sintered body and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044350A (en) * 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd Cubic bn sintered compact
JP2000044347A (en) * 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd Cbn sintered compact
JP2000247746A (en) * 1999-02-26 2000-09-12 Kyocera Corp Cutting tool of cubic boron nitride-based sintered compact
JP2001179506A (en) * 1999-12-24 2001-07-03 Sumitomo Electric Ind Ltd Composite tool of high rigidity
JP2002302732A (en) * 2001-04-09 2002-10-18 Toshiba Tungaloy Co Ltd Ultrafine grained cubic bn sintered compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044350A (en) * 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd Cubic bn sintered compact
JP2000044347A (en) * 1998-07-22 2000-02-15 Sumitomo Electric Ind Ltd Cbn sintered compact
JP2000247746A (en) * 1999-02-26 2000-09-12 Kyocera Corp Cutting tool of cubic boron nitride-based sintered compact
JP2001179506A (en) * 1999-12-24 2001-07-03 Sumitomo Electric Ind Ltd Composite tool of high rigidity
JP2002302732A (en) * 2001-04-09 2002-10-18 Toshiba Tungaloy Co Ltd Ultrafine grained cubic bn sintered compact

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
US9381617B2 (en) 2010-07-01 2016-07-05 Diamond Innovations, Inc. Sintered cubic boron nitride cutting tool
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
EP2778146A4 (en) * 2011-11-07 2015-06-24 Tungaloy Corp Cubic boron nitride sintered body
US9327352B2 (en) 2011-11-07 2016-05-03 Tungaloy Corporation Cubic boron nitride sintered body
CN110662729A (en) * 2017-05-26 2020-01-07 住友电气工业株式会社 Sintered body and method for producing same

Also Published As

Publication number Publication date
JP5157056B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
US8679208B2 (en) Cubic boron nitride compact
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JP2013255986A (en) Cutting tool of cubic crystal boron nitride based sintered material
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JP2007145667A (en) Cubic boron nitride sintered compact
JP3132843B2 (en) High toughness high pressure phase boron nitride sintered body
JPS6132275B2 (en)
JP5407487B2 (en) Surface coated cutting tool
JPS644988B2 (en)
JP2006144089A (en) Hard metal made of superfine particle
JP6265097B2 (en) Sintered body, cutting tool using sintered body
JPS644989B2 (en)
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JP2004256861A (en) Cemented carbide, production method therefor, and cutting tool using the same
JP2005212048A (en) Ceramics and cutting tool using the same
JP5239061B2 (en) Coated cBN sintered body tool that suppresses damage at the lateral boundary of the cutting edge
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JP2010284759A (en) Surface coated cutting tool
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JP3132849B2 (en) High toughness high pressure phase boron nitride sintered body
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JPH09174306A (en) Cermet for cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5157056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250