JPH0780897B2 - Method for producing ribofuranoside derivative - Google Patents

Method for producing ribofuranoside derivative

Info

Publication number
JPH0780897B2
JPH0780897B2 JP60220186A JP22018685A JPH0780897B2 JP H0780897 B2 JPH0780897 B2 JP H0780897B2 JP 60220186 A JP60220186 A JP 60220186A JP 22018685 A JP22018685 A JP 22018685A JP H0780897 B2 JPH0780897 B2 JP H0780897B2
Authority
JP
Japan
Prior art keywords
group
formula
hydroxyl
derivative
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60220186A
Other languages
Japanese (ja)
Other versions
JPS6281397A (en
Inventor
良治 野依
芳宏 早川
啓一 内田
新 安田
義富 森澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60220186A priority Critical patent/JPH0780897B2/en
Publication of JPS6281397A publication Critical patent/JPS6281397A/en
Publication of JPH0780897B2 publication Critical patent/JPH0780897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】 本発明はフッ素原子を有するリボフラノシド誘導体の製
造法に関するものである。
The present invention relates to a method for producing a ribofuranoside derivative having a fluorine atom.

フッ素原子を有する糖は、医薬や生化学用薬剤などの重
要な構成単位として、また糖自身がもつ生理活性の面か
ら近年注目されている。たとえば、含フッ素糖を有する
ヌクレオシドは抗ウィスル剤や抗腫瘍剤として知られて
いる。具体的には、2−デオキシ−2,2−ジフルオロ−
リボフラノシド誘導体(特開昭59−175498号公報参照)
や3−デオキシ−3−フルオロ−α−D−キシロフラノ
シド誘導体(J.A,Wright他,Carbohydrate Research,18,
345−347(1971),およびY,Fouron他,J.Org.chem.,3
9,1564−1570(1974)参照)が知られている。また、3
−デオキシ−3−フルオロ−D−アラビノース類および
それを用いて3−デオキシ−3−フルオロウリジンを製
造する方法も知られている(G.kowollik他,J.CARBOHYDR
ATES・NUCLEOSIDES・NUCLEOTIDES,2(3),191−195(1
975))。
Sugars having a fluorine atom have been attracting attention in recent years as important constituent units of medicines, biochemical agents, and the like because of the physiological activity of the sugars themselves. For example, nucleosides having a fluorinated sugar are known as anti-virus agents and anti-tumor agents. Specifically, 2-deoxy-2,2-difluoro-
Ribofuranoside derivative (see JP-A-59-175498)
And 3-deoxy-3-fluoro-α-D-xylofuranoside derivative (JA, Wright et al., Carbohydrate Research, 18 ,
345-347 (1971), and Y, Fouron et al., J. Org. Chem., 3
9 , 1564-1570 (1974)) is known. Also, 3
-Deoxy-3-fluoro-D-arabinoses and a method for producing 3-deoxy-3-fluorouridine using the same are also known (G.kowollik et al., J. CARBOHYDR.
ATES ・ NUCLEOSIDES ・ NUCLEOTIDES, 2 (3), 191-195 (1
975)).

フッ素原子は水酸基に比較して炭素原子に対する結合力
が極めて大きく、不活性で、かつ疎水性であり、しかも
水酸基に近似した原子サイズを有する。従って、糖の水
酸基をフッ素原子に置換すると代謝括抗作用などの面で
優れた効果を期待しうる。一方、糖としては、ヌクレオ
シドの構成単位であるリボースや2−デオキシリボース
が応用範囲が広い。しかし、上記公知の含フッ素糖は、
リボースや2−デオキシリボースの水酸基の立体的位置
のみにフッ素原子が置換されていない。たとえば、2−
デオキシ−2,2−ジフルオロリボフラノシド誘導体であ
っては本来水酸基の存在しなかった位置にもフッ素原子
が存在し、3−デオキシ−3−フルオロ−β−D−キシ
ロフラノシド誘導体(下記式[III]参照)にあって
は、リボースの水酸基の存在する位置にフッ素原子が存
在していない。
The fluorine atom has a much larger binding force to the carbon atom than the hydroxyl group, is inactive and hydrophobic, and has an atom size similar to that of the hydroxyl group. Therefore, if the hydroxyl group of the sugar is replaced with a fluorine atom, an excellent effect in terms of metabolic antidote and the like can be expected. On the other hand, as sugars, ribose and 2-deoxyribose, which are constituent units of nucleosides, have a wide range of applications. However, the above-mentioned known fluorine-containing sugar is
The fluorine atom is not substituted only in the steric position of the hydroxyl group of ribose or 2-deoxyribose. For example, 2-
In the deoxy-2,2-difluororibofuranoside derivative, a fluorine atom also exists at a position where a hydroxyl group originally did not exist, and a 3-deoxy-3-fluoro-β-D-xylofuranoside derivative (the following formula [III ])), The fluorine atom does not exist at the position where the hydroxyl group of ribose exists.

さらに、3−デオキシ−3−フルオロ−D−アラビノー
ス類から3−デオキシ−3−フルオロウリジンを製造す
る方法においては、D−アラビノース類の2位の水酸基
とウラシルの2位の炭素原子との間が結合した中間体を
経由することが必要であること、およびその後に糖の2
位の水酸基の位置の転換が必要なことより、この方法に
より製造できるヌクレオシドの種類が限定される。
Furthermore, in the method for producing 3-deoxy-3-fluorouridine from 3-deoxy-3-fluoro-D-arabinose, a compound between the 2-position hydroxyl group of D-arabinose and the 2-position carbon atom of uracil is used. Is required to go through a linked intermediate, and then the sugar 2
Since it is necessary to change the position of the hydroxyl group at the position, the types of nucleosides that can be produced by this method are limited.

本発明者は、リボースの3位の水酸基の立体的位置にフ
ッ素原子を導入すべく研究検討した結果、新規な含フッ
素糖である3−デオキシ−3−フルオロ−D−リボフラ
ノシド誘導体の製造法を見い出すに至った。この方法で
得られる含フッ素糖はフッ素ヌクレオシド類の合成中間
体として有用であり、それを糖部分とする含フッ素ヌク
レオシド類を容易に製造することができる。本発明はこ
の方法に係る以下の発明である。
The present inventor conducted research and studies to introduce a fluorine atom into the steric position of the hydroxyl group at the 3-position of ribose, and as a result, found a method for producing a novel fluorine-containing sugar, 3-deoxy-3-fluoro-D-ribofuranoside derivative. I came to find out. The fluorine-containing sugar obtained by this method is useful as a synthetic intermediate for fluorine nucleosides, and fluorine-containing nucleosides having the sugar moiety as the sugar moiety can be easily produced. The present invention is the following invention related to this method.

下記式[II]で表わされるフラノシド誘導体をフッ素化
して3位にフッ素原子を導入することを特徴とする下記
式[I′]で表わされる3−デオキシ−3−フルオロ−
D−リボフラノシド誘導体の製造法。
3-Deoxy-3-fluoro-represented by the following formula [I '] characterized by fluorinating a furanoside derivative represented by the following formula [II] to introduce a fluorine atom at the 3-position.
Process for producing D-ribofuranoside derivative.

本発明により得られた化合物は、次いで核酸塩基類の導
入を行うことで下記式[I]で表わされる3−デオキシ
−3−フルオロ−D−リボフラノシド誘導体を製造する
ことができる。
The compound obtained by the present invention can be introduced with nucleobases to produce a 3-deoxy-3-fluoro-D-ribofuranoside derivative represented by the following formula [I].

ただし、式[I]、式[I′]、式[II]において R:核酸塩基類の残基。 However, in the formula [I], the formula [I ′], and the formula [II], R is a residue of nucleobases.

R1,R2:水素原子、あるいは水酸基の保護基。R 1 and R 2 : hydrogen atom or a hydroxyl-protecting group.

R3:アルコキシ基。R 3 : an alkoxy group.

R4,R5:水酸基の保護基。R 4 , R 5 : Protecting group for hydroxyl group.

Y:脱離基。Y: Leaving group.

上記式[I]で表わされる3−デオキシ−3−フルオロ
−D−リボフラノシド誘導体は含フッ素ヌクレオシド類
であり、上記式[I′]で表わされる3−デオキシ−3
−フルオロ−D−リボフラノシド類は含フッ素ヌクレオ
シド類合成の中間体として有用な含フッ素リボフラノシ
ド類である。Rは核酸塩基類の残基であり、Rの位置は
β位(前記式[I]において図上方)にある。ただし、
Rが導入されるまでの1位のR3などの位置は反応経路の
途中ではα位あるいはβ位とα位の混合物となってもよ
い。
The 3-deoxy-3-fluoro-D-ribofuranoside derivative represented by the above formula [I] is a fluorinated nucleoside, and 3-deoxy-3 represented by the above formula [I ′].
-Fluoro-D-ribofuranosides are fluorinated ribofuranosides useful as an intermediate in the synthesis of fluorinated nucleosides. R is a residue of nucleobases, and the position of R is at the β position (the upper side of the figure in the above formula [I]). However,
The position such as R 3 at the 1-position until R is introduced may be α-position or a mixture of β-position and α-position in the middle of the reaction route.

Rは核酸塩基類であり、プリン残基、ピリミジン残基、
およびハロゲン原子、ハロアルキル基、アルキル基、そ
の他の置換基を有するプリン残基あるいはピリミジン残
基からなる。たとえば、アデニン、グアニン、シトシ
ン、チミン、ウラシル、5−フルオロウラシル、5−フ
ルオロシトシン、2−フルオロアデニン、5−トリフル
オロメチルウラシル、5−ヨードウラシルなどの化合物
から環の窒素原子に結合した水素原子を除いた残基であ
る。好ましくは、置換基を有しない上記5種の核酸塩基
あるいは5−フルオロウラシルの残基である。
R is a nucleobase, a purine residue, a pyrimidine residue,
And a purine residue or a pyrimidine residue having a halogen atom, a haloalkyl group, an alkyl group, and other substituents. For example, a hydrogen atom bonded to a ring nitrogen atom from a compound such as adenine, guanine, cytosine, thymine, uracil, 5-fluorouracil, 5-fluorocytosine, 2-fluoroadenine, 5-trifluoromethyluracil, 5-iodouracil. Is the residue except. Preferred are residues of the above-mentioned 5 kinds of nucleobases or 5-fluorouracil having no substituent.

式[I]において、R1とR2は水素原子あるいは保護基か
らなり、最終的にはR1とR2はいずれも水素原子からな
る。R1とR2が保護基である式[I]で表わされる化合物
は脱保護により容易にR1とR2が水酸基である式[I]で
表わされる化合物に変換できる。しかし式[I]で表わ
される3−デオキシ−3−フルオロ−D−リボフラノシ
ド誘導体からさらに誘導体を合成する場合にはR1やR2
保護基である化合物を用いることができる。R1とR2が保
護基である場合、両者は互いに異なっていてもよい。
In the formula [I], R 1 and R 2 are each a hydrogen atom or a protective group, and finally both R 1 and R 2 are each a hydrogen atom. A compound represented by the formula [I] in which R 1 and R 2 are protective groups can be easily converted to a compound represented by the formula [I] in which R 1 and R 2 are hydroxyl groups by deprotection. However, when a derivative is further synthesized from the 3-deoxy-3-fluoro-D-ribofuranoside derivative represented by the formula [I], a compound in which R 1 or R 2 is a protecting group can be used. When R 1 and R 2 are protecting groups, they may be different from each other.

式[I′]、式[II]において、R3はアルコキシ基であ
り、R4とR5はいずれも保護基である。アルコキシ基とし
ては、低級アルコキシ基(炭素数4以下のものをい
う)、特にメトキシ基、が好ましい。フッ素化反応にお
いて2位や3位の水酸基部分がフッ素化等の影響を受け
ないためにはR4とR5はいずれも保護基である必要があ
る。同様の理由でR3はアルコキシ基である。また、その
位置はβ位であることが好ましい。
In the formulas [I ′] and [II], R 3 is an alkoxy group, and R 4 and R 5 are both protecting groups. As the alkoxy group, a lower alkoxy group (meaning one having 4 or less carbon atoms), particularly a methoxy group is preferable. In the fluorination reaction, both R 4 and R 5 must be protecting groups so that the 2- and 3-position hydroxyl groups are not affected by fluorination and the like. For the same reason, R 3 is an alkoxy group. Further, the position thereof is preferably β position.

水酸基の保護基である場合のR1とR2、およびR4とR5は公
知の水酸基の保護基である。そのような保護基として
は、たとえば、トリオルガノシリル基、アシル基、アル
アルキル基などがある。トリオルガノシリル基における
有機基としてはアルキル基、アリール基、アルアルキル
基がある。アリール基やアルアルキル基の芳香核はアル
キル基やアルコキシ基などの置換基を有していてもよ
い。また、ケイ素原子に結合する3個の上記有機基は同
一でも互いに異なっていてもよい。保護基としては具体
的には、たとえば、トリメチルシリル基、トリエチルシ
リル基、t−ブチルジメチルシリル基、フェニルジメチ
ルシリル基、アセチル基、ベンゾイル基、ベンジル基、
トリチル基、トリス(P−メトキシフェニル)メチル基
などがある。さらに、ある場合には、アルキル基を保護
基として使用しうる。このアルキル基としては低級アル
キル基、特にメチル基が適当である。
When it is a hydroxyl-protecting group, R 1 and R 2 , and R 4 and R 5 are known hydroxyl-protecting groups. Examples of such a protecting group include a triorganosilyl group, an acyl group and an aralkyl group. Examples of the organic group in the triorganosilyl group include an alkyl group, an aryl group and an aralkyl group. The aromatic nucleus of the aryl group or aralkyl group may have a substituent such as an alkyl group or an alkoxy group. Further, the three organic groups bonded to the silicon atom may be the same or different from each other. Specific examples of the protecting group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a phenyldimethylsilyl group, an acetyl group, a benzoyl group, a benzyl group,
Examples include a trityl group and a tris (P-methoxyphenyl) methyl group. Furthermore, in some cases alkyl groups may be used as protecting groups. As the alkyl group, a lower alkyl group, particularly a methyl group is suitable.

前記のようにR4とR5はいずれも水酸基の保護基であり、
両者は同一であっても異っていてもよい。その内、R5
アルキル基やアルアルキル基が好ましく、特にベンジル
基などのアルアルキル基が好ましい。R4はアルキル基以
外の保護基、たとえばトリアルキルシリル基やアルアル
キル基が好ましく、特にt−ブチルジメチルシリル基が
好ましい。
As described above, R 4 and R 5 are both hydroxyl-protecting groups,
Both may be the same or different. Among them, R 5 is preferably an alkyl group or an aralkyl group, and particularly preferably an aralkyl group such as a benzyl group. R 4 is preferably a protective group other than an alkyl group, for example, a trialkylsilyl group or an aralkyl group, and particularly preferably a t-butyldimethylsilyl group.

Yは脱離基である。この脱離基は3位の水酸基を活性化
した後フッ素化を容易にする基であり、たとえば、メタ
ンスルホニル基、トリフルオロメタンスルホニル基、p
−トルエンスルホニル基、イミダゾリルスルホニル基、
アセチル基、トリメチルシリル基などがある。特にトリ
フルオロメタンスルホニル基が活性化作用が高く、好ま
しい脱離基として使用される。
Y is a leaving group. This leaving group is a group that facilitates fluorination after activating the hydroxyl group at the 3-position, and includes, for example, methanesulfonyl group, trifluoromethanesulfonyl group, p
-Toluenesulfonyl group, imidazolylsulfonyl group,
Examples include acetyl group and trimethylsilyl group. Particularly, a trifluoromethanesulfonyl group has a high activation effect and is used as a preferable leaving group.

本発明における出発原料である前記式[II]で表わされ
るフラノシド誘導体は立体特異的に合成される必要があ
る。また、3位の水酸基を除く他の水酸基はフッ素化反
応を受けないように選択的に保護されていなくてはなら
ない。これらの理由により、式[II]で表わされるフラ
ノシド誘導体は下記の経路で合成されることが好まし
い。なお、この場合のR3はアルコキシ基であるとする。
The furanoside derivative represented by the above formula [II], which is the starting material in the present invention, needs to be stereospecifically synthesized. In addition, the other hydroxyl groups except the hydroxyl group at the 3-position must be selectively protected so as not to undergo a fluorination reaction. For these reasons, the furanoside derivative represented by the formula [II] is preferably synthesized by the following route. In this case, R 3 is an alkoxy group.

R6はアルキリデン基を表わし、炭素数7以下のアルキリ
デン基が好ましく、特にイソプロピリデン基が好まし
い。式(1)の化合物は3位と5位の水酸基がこのアル
キリデン基で保護されたβ−D−キシロフラノシド誘導
体であり、この化合物の2位の水酸基を前記R5、特にベ
ンジル基、で保護して式(2)で表されるキシロフラノ
シド誘導体とする。次にR6を外して、3位と5位の水酸
基を脱保護する。この脱保護は酸触媒存在下で容易に行
いうる。
R 6 represents an alkylidene group, preferably an alkylidene group having 7 or less carbon atoms, and particularly preferably an isopropylidene group. The compound of formula (1) is a β-D-xylofuranoside derivative in which the hydroxyl groups at the 3- and 5-positions are protected by this alkylidene group, and the hydroxyl group at the 2-position of this compound is protected by the aforementioned R 5 , especially a benzyl group. To obtain a xylofuranoside derivative represented by the formula (2). Next, R 6 is removed to deprotect the hydroxyl groups at the 3 and 5 positions. This deprotection can be easily performed in the presence of an acid catalyst.

酸触媒としては硫酸や塩酸などの無機酸や酢酸などの有
機酸を使用しうるが、酢酸を用いるのが簡便である。こ
のとき、R5は脱離してはならず、従って前記のような保
護基が採用される。得られた式(3)で表わされる化合
物の5位の水酸基を選択的に保護基R4、特にt−ブチル
ジメチルシリル基で保護することにより、式(4)で表
わされる化合物が得られる。
As the acid catalyst, inorganic acids such as sulfuric acid and hydrochloric acid and organic acids such as acetic acid can be used, but acetic acid is convenient. At this time, R 5 must not be eliminated, and thus the protecting group as described above is adopted. The compound represented by the formula (4) is obtained by selectively protecting the hydroxyl group at the 5-position of the obtained compound represented by the formula (3) with a protecting group R 4 , particularly a t-butyldimethylsilyl group.

次に、3位の水酸基に脱離基Y′を導入して目的とする
式(5)で表わされる化合物を得る。これら式(4)お
よび(5)で表わされる化合物は前記式[II]で表わさ
れる化合物の1種である。このような反応経路を採用す
る理由は、2位と3位の水酸基の反応性が近似している
ため、2位の水酸基のみに保護基を導入する必要がある
ことと、3位の水酸基の立***置を保持させる必要があ
ることによる。
Next, a leaving group Y'is introduced into the hydroxyl group at the 3-position to obtain the desired compound represented by the formula (5). The compounds represented by the formulas (4) and (5) are one kind of the compounds represented by the formula [II]. The reason for adopting such a reaction route is that the reactivity of the hydroxyl groups at the 2-position and the 3-position is similar, and therefore it is necessary to introduce a protecting group only at the hydroxyl group at the 2-position and that of the hydroxyl group at the 3-position. This is because it is necessary to maintain the three-dimensional position.

本発明における、式[II]で表わされるフラノシド誘導
体をフッ素化して3位にフッ素原子を導入する反応は、
フッ素化剤を用いて行われる。フッ素化により式
[I′]で表わされるリボフラノシド類が得られる。こ
の反応時下記のように式[II]で表わされる化合物にお
けるR4とR5の一部〜全部が脱保護され、水素原子であっ
てもよい対応するR1とR2になる。
The reaction of fluorinating the furanoside derivative represented by the formula [II] to introduce a fluorine atom at the 3-position in the present invention is
It is carried out using a fluorinating agent. Fluorination gives ribofuranosides of the formula [I ']. During this reaction, a part to all of R 4 and R 5 in the compound represented by the formula [II] are deprotected as described below to become corresponding R 1 and R 2 which may be hydrogen atoms.

フッ素化剤としては、公知のフッ素化剤を使用しうる
が、特にフッ素化テトラアルキル(あるいはアルアルキ
ル)アンモニウムが適当である。アルキル基としては低
級アルキル基、アルアルキル基としてはベンジル基が適
当であり、4個のアルキル基やアルアルキル基は異って
いてもよく、アルキル基とアルアルキル基の両者からな
っていてもよい。好ましくは、フッ素化テトラブチルア
ンモニウムが使用される、これらフッ素化剤は通常テト
ラビドロフランなどの不活性溶媒に溶解して使用され
る。フッ素か反応は通常不活性溶媒中数十度以下の温度
で行なわれ、特に約0℃〜室温下で行なわれることが好
ましい。
As the fluorinating agent, a known fluorinating agent can be used, but fluorinated tetraalkyl (or aralkyl) ammonium is particularly suitable. A lower alkyl group is suitable as the alkyl group, and a benzyl group is suitable as the aralkyl group, and the four alkyl groups and the aralkyl groups may be different from each other, and may be composed of both the alkyl group and the aralkyl group. Good. Preferably, tetrabutylammonium fluoride is used. These fluorinating agents are usually used by dissolving them in an inert solvent such as tetravidrofuran. The fluorine reaction is usually carried out in an inert solvent at a temperature of several tens of degrees or less, preferably about 0 ° C. to room temperature.

前記式[II]で表わされるフラノシド誘導体をフッ素化
することにより、フッ素原子がOY基の立体的に反対の側
に結合し、OYが脱離する。通常、このフッ素化と同時
に、5位の水酸基の保護基が外れ、R1が水素原子である
式[I′]で表わされる3−デオキシ−3−フルオロ−
D−リボフラノシド類が得られる。その後必要により2
位の保護基R2を脱保護することができる。
By fluorinating the furanoside derivative represented by the formula [II], the fluorine atom is bonded to the sterically opposite side of the OY group, and OY is eliminated. Usually, at the same time as this fluorination, the protecting group of the 5-position hydroxyl group is removed, and R 1 is a hydrogen atom.
D-ribofuranosides are obtained. Then 2 if necessary
The protecting group R 2 at the position can be deprotected.

式[I′]で表わされる3−デオキシ−3−フルオロ−
D−リボフラノシド類に核酸塩基類の導入を行うことに
より前記式[I]で表わされる3−デオキシ−3−フル
オロ−D−リボフラノシド誘導体が得られる。この反応
を行う際、2位と5位の水酸基は通常保護されている必
要がある。したがって、前記フッ素化反応で得られた式
[I′]で表わされる化合物の2位や5位の水酸基が保
護されていない場合には、その保護をまず行う。上記の
ようにフッ素化反応では通常は5位の水酸基が保護され
ていない化合物が生成するためこの5位の水酸基の保護
を行う。また、前述のように2位の水酸基の保護基が脱
保護しにくい保護基(たとえば、ベンジル基)である場
合にはこの段階で脱保護しやすい保護基に変換しておく
ことが好ましい。すなわち、5位が水酸基である状態で
2位の水酸基の脱保護を行い、次いで2位と5位の水酸
基を保護することが好ましい。
3-deoxy-3-fluoro-represented by the formula [I ']
By introducing nucleobases into D-ribofuranosides, the 3-deoxy-3-fluoro-D-ribofuranoside derivative represented by the above formula [I] can be obtained. When carrying out this reaction, the hydroxyl groups at the 2- and 5-positions usually need to be protected. Therefore, when the 2- or 5-position hydroxyl group of the compound represented by the formula [I '] obtained by the fluorination reaction is not protected, the protection is first performed. As described above, in the fluorination reaction, a compound in which the hydroxyl group at the 5-position is not protected is usually produced, and therefore the hydroxyl group at the 5-position is protected. Further, as described above, when the protective group for the hydroxyl group at the 2-position is a protective group that is difficult to deprotect (for example, benzyl group), it is preferable to convert it to a protective group that is easy to deprotect at this stage. That is, it is preferable to deprotect the 2-position hydroxyl group in the state where the 5-position is a hydroxyl group, and then to protect the 2-position and 5-position hydroxyl groups.

具体的には、例えば前記式(5)で表される化合物のフ
ッ素化により下記式(6)で表される化合物を得て、次
に、2位の水酸基を脱保護し、下記式(7)のジオール
とする。2位の水酸基の保護基R5の脱離は水素添加など
によって行なわれる。たとえば、R5がベンジル基の場
合、パラジウム黒などを触媒として水素添加により脱離
される。その後2位と5位の水酸基を再び保護する。こ
の保護基としては、アセチル基やベンゾイル基などのア
シル基を採用しうる。
Specifically, for example, the compound represented by the following formula (6) is obtained by fluorinating the compound represented by the above formula (5), and then the hydroxyl group at the 2-position is deprotected to obtain the compound represented by the following formula (7) ) Diol. The elimination of the protective group R 5 for the hydroxyl group at the 2-position is performed by hydrogenation or the like. For example, when R 5 is a benzyl group, it is eliminated by hydrogenation using palladium black or the like as a catalyst. Then, the hydroxyl groups at the 2nd and 5th positions are protected again. As this protective group, an acyl group such as an acetyl group or a benzoyl group can be adopted.

核酸塩基類の残基の導入は種々の方法で行いうる。たと
えば、前記Wrightの文献に記載の方法などを採用しう
る。この方法は、1位の水酸基やその誘導基を臭素原子
に置換し、この水素原子を核酸塩基類の残基に置換する
方法である。具体的には、上記式(7)で表わされる化
合物の2個の水酸基を保護し、これを臭化水素−酢酸溶
液でそのR3を臭素原子に変換し、次いでこのブロミドと
6−ベンズアミノプリンなどの反応性プリン誘導体とを
シアン化第2水銀存在下ニトロメタン中で反応させて臭
素原子をプリン残基に置換する。同様にピロジン残基の
導入を行うことができる。最後に保護基を外すことによ
り、式[I]で表わされる含フッ素ヌクレオシド類が得
られる。
Introduction of residues of nucleobases can be performed by various methods. For example, the method described in the above Wright document may be adopted. In this method, the hydroxyl group at the 1-position and its derivative group are replaced with bromine atoms, and the hydrogen atoms are replaced with residues of nucleobases. Specifically, two hydroxyl groups of the compound represented by the above formula (7) are protected, and this R 3 is converted to a bromine atom with a hydrobromide-acetic acid solution, and then this bromide and 6-benzamino are combined. A reactive purine derivative such as purine is reacted in nitromethane in the presence of mercuric cyanide to replace a bromine atom with a purine residue. Similarly, the introduction of a pyrazine residue can be performed. Finally, by removing the protecting group, the fluorine-containing nucleoside represented by the formula [I] can be obtained.

以下、本発明は実施例等により具体的の説明するが、本
発明はこれら実施例に限られるものではない。なお、合
成例は、前記式[II]で表わされる化合物の合成例であ
り、実施例1は式[II]で表わされる化合物のフッ素化
とその生成物である式[I′]で表わされる化合物(よ
り具体的には前記式(6)で表わされる化合物)の例で
あり、参考例1以下は実施例1の生成物より含フッ素ヌ
クレオシド類を合成する例である。
Hereinafter, the present invention will be specifically described with reference to Examples and the like, but the present invention is not limited to these Examples. The synthesis example is a synthesis example of the compound represented by the above formula [II], and Example 1 is represented by the formula [I '] which is a fluorination of the compound represented by the formula [II] and its product. It is an example of a compound (more specifically, a compound represented by the above formula (6)), and Reference Example 1 and the following are examples of synthesizing fluorine-containing nucleosides from the product of Example 1.

合成例 メチル2−0−ベンジル−3,5−0−イソプロピリ
デン−β−D−キシロフラノシド[式(2)において、
R3がメトキシ基、R5がベンジル基、R6がイソプロピリデ
ン基である化合物]の合成。
Synthesis Example Methyl 2-0-benzyl-3,5-0-isopropylidene-β-D-xylofuranoside [in the formula (2),
R 3 is a methoxy group, R 5 is a benzyl group, and R 6 is an isopropylidene group].

メチル3,5−0−イソプロピリデン−β−D−キシロフ
ラノシド12.6g(61.6mmol)と、酸化銀(15.0g)のN,N
−ジメチルホルムアミド懸濁液にベンジルブロミド(2
1.1g)を加え、室温で36時間攪拌した。反応液を濾過
し、水を加え、クロロホルム抽出した。有機層を水で洗
浄後、硫酸マグネシウムで乾燥し、濃縮した。カラムク
ロマトグラフ精製して、ベンジルエーテル12.6g(収率6
9%)を得た。1 H−NMR(CDCl3):δ 1.38(s,6H),3.41(s,3H),3.8
−4.5(m,5H),4.59(s,2H),4.98(s,1H),7.32(s,5
H)。
Methyl 3,5-0-isopropylidene-β-D-xylofuranoside 12.6 g (61.6 mmol) and silver oxide (15.0 g) N, N
-Add benzyl bromide (2
1.1 g) was added and the mixture was stirred at room temperature for 36 hours. The reaction solution was filtered, water was added, and the mixture was extracted with chloroform. The organic layer was washed with water, dried over magnesium sulfate, and concentrated. Column chromatographic purification yielded 12.6 g of benzyl ether (yield 6
9%). 1 H-NMR (CDCl 3 ): δ 1.38 (s, 6H), 3.41 (s, 3H), 3.8
−4.5 (m, 5H), 4.59 (s, 2H), 4.98 (s, 1H), 7.32 (s, 5
H).

メチル2−0−ベンジル−β−D−キシロフラノシ
ド[式(3)において、R3がメトキシ基、R5がベンジル
基である化合物]の合成。
Synthesis of methyl 2-0-benzyl-β-D-xylofuranoside [compound in which R 3 is a methoxy group and R 5 is a benzyl group in the formula (3)].

メチル2−0−ベンジル−3,5−0−イソプロピリデン
−β−D−キシロフラノシド30.1g(0.10mol)を酢酸
(60ml)−水(24ml)溶液に溶かし、50℃の湯浴上で1
時間反応させた。湯浴を50℃に保ったままで低沸点物を
溜出させた。カラムマトグラフで精製し、ジオール20.9
g(收率80%)を得た。
Methyl 2-0-benzyl-3,5-0-isopropylidene-β-D-xylofuranoside 30.1 g (0.10 mol) was dissolved in acetic acid (60 ml) -water (24 ml) solution, and the mixture was dissolved in a hot water bath at 50 ° C to give 1
Reacted for hours. The low boiling point substances were distilled off while maintaining the water bath at 50 ° C. Purified by column chromatography, diol 20.9
I got g (80% yield).

Rf0.40(ベンゼン−酢酸エチル=1:1)。 Rf 0.40 (benzene-ethyl acetate = 1: 1).

メチル2−0−ベンジル−5−0−t−ブチルジメ
チル−β−D−キシロフラノシド[式(4)において、
R3がメトキシ基、R4がt−ブチルジメチルシリル基、R5
がベンジル基である化合物]の合成。
Methyl 2-0-benzyl-5-0-t-butyldimethyl-β-D-xylofuranoside [in the formula (4),
R 3 is a methoxy group, R 4 is a t-butyldimethylsilyl group, R 5
Is a benzyl group].

で得られたジオール20.9g(82mmol)を、N,N−ジメチ
ルホルムアミド(80ml)に溶解し、イミダゾール(16.8
g)を加えた。この溶液に、t−ブチルジメチルクロロ
シラン12.4gのN,N−ジメチルホルムアミド(60ml)溶液
を0℃で30分かけて滴下した。3時間攪拌の後常法に従
い後処理した。カラムクロマトグラフ精製して、シリル
エーテル30.2g(収率100%)を得た。1 H−NMR(CDCl3):δ 0.10(s,6H),0.91(s,9H),3.3
7(s,3H),3.9−4.1(m,3H),4.2−4.4(m,3H),4.61
(s,2H),4.93(s,1H),7.32(s,5H)。
20.9 g (82 mmol) of the diol obtained in 1. was dissolved in N, N-dimethylformamide (80 ml), and imidazole (16.8
g) was added. A solution of 12.4 g of t-butyldimethylchlorosilane in N, N-dimethylformamide (60 ml) was added dropwise to this solution at 0 ° C. over 30 minutes. After stirring for 3 hours, post-treatment was carried out according to a conventional method. Purification by column chromatography gave 30.2 g of silyl ether (yield 100%). 1 H-NMR (CDCl 3 ): δ 0.10 (s, 6H), 0.91 (s, 9H), 3.3
7 (s, 3H), 3.9-4.1 (m, 3H), 4.2-4.4 (m, 3H), 4.61
(S, 2H), 4.93 (s, 1H), 7.32 (s, 5H).

実施例1 メチル2−0−ベンジル−3−デオキシ−3−フルオロ
−β−D−リボフラノシド[式(6)において、R3がメ
トキシ基、R5がベンジル基である化合物]の合成。
Example 1 Synthesis of methyl 2-0-benzyl-3-deoxy-3-fluoro-β-D-ribofuranoside [a compound of the formula (6), wherein R 3 is a methoxy group and R 5 is a benzyl group].

前記合成例で合成したメチル2−0−ベンジル−5−0
−t−ブチルジメチルシリル−β−D−キシロフラノシ
ド13.0g(35.0mmol)のジクロロメタン(80ml)溶液に
2,6−ルチジン11.4gを加え0℃に冷却した。ここへ無水
トリフルオロメタンスルホン酸(20.0g)を15分かけて
滴下し、さらに30分反応させた。氷を加えて後処理し、
ショートカラムクロマトグラフで粗生成物を16.8glを取
り出した。
Methyl 2-0-benzyl-5-0 synthesized in the above synthesis example
To a solution of 13.0 g (35.0 mmol) of -t-butyldimethylsilyl-β-D-xylofuranoside in dichloromethane (80 ml) was added.
11.4 g of 2,6-lutidine was added and cooled to 0 ° C. Trifluoromethanesulfonic anhydride (20.0 g) was added dropwise over 15 minutes, and the reaction was continued for 30 minutes. Post-treatment by adding ice,
16.8 gl of the crude product was taken out by short column chromatography.

この粗生成物をテトラヒドロフラン(60ml)に溶解し、
フッ素化テトラブチルアンモニウムのテトラヒドロフラ
ン溶液(f=1.0)92mlを0℃で20分かけて滴下した。
0℃で24時間、室温で3時間攪拌の後、テトラヒドロフ
ランを留去し、飽和硫酸アンモニウム水溶液で処理し
た。カラムクロマトグラフ精製し、標記のフッ素化体を
5.4g得た。19 F−NMR(CDCl3):(CCl3F基準)−207.1(ddd,j=5
3.7,22.0,13.4Hz)。1 H−NMR(CDCl3):δ 3.47(s,3H),4.0−4.2(m,2
H),4.55(s,2H),4.6−5.2(m,5H),7.33(s,5H)。
This crude product was dissolved in tetrahydrofuran (60 ml),
92 ml of a tetrahydrofuran solution (f = 1.0) of tetrabutylammonium fluoride was added dropwise at 0 ° C. over 20 minutes.
After stirring at 0 ° C. for 24 hours and at room temperature for 3 hours, tetrahydrofuran was distilled off and the mixture was treated with a saturated ammonium sulfate aqueous solution. Purify by column chromatography to obtain the fluorinated product.
5.4 g was obtained. 19 F-NMR (CDCl 3 ): (CCl 3 F standard) -207.1 (ddd, j = 5
3.7, 22.0, 13.4Hz). 1 H-NMR (CDCl 3 ): δ 3.47 (s, 3H), 4.0-4.2 (m, 2
H), 4.55 (s, 2H), 4.6-5.2 (m, 5H), 7.33 (s, 5H).

IR(CHCl3)3300cm-1IR (CHCl 3 ) 3300 cm -1 .

参考例1 9−(3−デオキシ−3−フルオロ−β−D−リボフラ
ノシル)アデニン[式[I]において、Rがβ位の結合
したアデニン残基であり、R1とR2が水素原子である化合
物]の合成。
Reference Example 1 9- (3-deoxy-3-fluoro-β-D-ribofuranosyl) adenine [in the formula [I], R is a β-bonded adenine residue, and R 1 and R 2 are hydrogen atoms. Certain compounds].

実施例1で合成したベンジルエーテル5.4g(21.1mmol)
をエタノール70mlに溶解し、5%−パラジウム黒5.5g存
在下、室温、常圧で水素添加した。10時間後セライト54
5を通し濾過して濃縮した。
5.4 g (21.1 mmol) of benzyl ether synthesized in Example 1
Was dissolved in 70 ml of ethanol and hydrogenated at room temperature and atmospheric pressure in the presence of 5.5 g of 5% palladium black. 10 hours later Celite 54
It was filtered through 5 and concentrated.

粗生成物をピリジン35mlに溶解し、ベンゾイルクロリド
6.1gを加え室温で36時間反応させた。ビリジン留去後、
カラムクロマトグラフ精製し、メチル2,5−ジ−0−ベ
ンゾイル−3−フルオロ−β−D−リボフラノシドを2.
2g得た。このジベンゾイル体は式(7)の化合物(R3
メトキシ基)の2位と5位の水酸基をベンゾイル基で保
護した化合物である。19 F−NMR(CDCl3):(CCl3F基準)−211.6(ddd,j=5
3.2,18.1,4.9Hz)。
The crude product was dissolved in 35 ml of pyridine and benzoyl chloride was added.
6.1 g was added and the reaction was carried out at room temperature for 36 hours. After distilling off viridine,
Purify by column chromatography to obtain methyl 2,5-di-0-benzoyl-3-fluoro-β-D-ribofuranoside 2.
2g was obtained. This dibenzoyl compound is a compound in which the hydroxyl groups at the 2- and 5-positions of the compound of formula (7) (R 3 is a methoxy group) are protected with a benzoyl group. 19 F-NMR (CDCl 3 ): (CCl 3 F standard) −211.6 (ddd, j = 5)
3.2, 18.1, 4.9Hz).

このジベンゾイル体2.2g(5.9mmol)を酢酸(15ml)−
無水酢酸(0.4ml)溶液に溶解した。ここに30%臭化水
素−酢酸溶液を加えて室温で3時間攪拌した。酢酸、無
水、酢酸などを完全に留去後、ニトロメタン(10ml)に
溶解し、アデニンモノベンゾエート1.3gのニトロメタン
溶液(80ml)に加え、さらにシアン化第2水銀2gを加
え、1時間加熱還流した。ニトロメタンを留去後、30%
ヨウ化カリウム水溶液と水で洗浄し濃縮した。ショート
カラムクロマトグラフで粗分離し、次の反応に用いた。
2.2 g (5.9 mmol) of this dibenzoyl derivative was added to acetic acid (15 ml)-
It was dissolved in acetic anhydride (0.4 ml) solution. A 30% hydrogen bromide-acetic acid solution was added thereto, and the mixture was stirred at room temperature for 3 hours. After completely distilling off acetic acid, anhydrous, acetic acid, etc., the product was dissolved in nitromethane (10 ml), added to a nitromethane solution (80 ml) containing 1.3 g of adenine monobenzoate, and further added with 2 g of mercuric cyanide and heated under reflux for 1 hour. . 30% after distilling off nitromethane
It was washed with an aqueous potassium iodide solution and water and concentrated. It was roughly separated by short column chromatography and used for the next reaction.

トリベンゾイル体1.29gをメタノール(38ml)に溶解
し、ここにlMナトリウムメトキシドーメタノール溶液を
加え、1時間加熱還流した。メタノールを留去後水(40
ml)を加え、2N酢酸水溶液で中和した。水層をクロロホ
ルムで抽出し、有機物を除去した後、濃縮した。99.5%
エタノールから再結晶し、最終生成物である標記のフル
オロアデノシン0.60gを得た。19 F−NMR(DMSO−d6):(CCl3F基準)−197.8(dt,=5
4.4,27.1Hz)。1 H−NMR(DMSO−d6):δ 3.6−3.7(m,2H),4.29(dt,
J=27.6,3.7Hz,1H),4.8−5.0(m,1H),5.09(dd,J=5
4.4,4.2Hz,1H),5.69(dd,J=7.3,4.9Hz,1H),5.89(d,
J=6.3Hz,1H),5.93(d,J=8.1Hz,1H),7.39(s,2H),
8.13(s,1H),8.36(s,1H)。13 C−NMR(DMSO−d6):δ 61.1(d,J=12.2Hz,C−
5′),72.0(d,J=15.9Hz,C−2′),83.9(d,J=22.0
Hz,C−4′),86.9(C−1′),93.1(d,J=181.8Hz,C
−3′),119.4(C−5),140.1(C−8),149.1(C
−4),152.4(C−2),156.2(C−6)。
1.29 g of tribenzoyl compound was dissolved in methanol (38 ml), IM sodium methoxide solution in methanol was added thereto, and the mixture was heated under reflux for 1 hour. After distilling off methanol, water (40
ml) was added and the mixture was neutralized with 2N acetic acid aqueous solution. The aqueous layer was extracted with chloroform to remove organic substances and then concentrated. 99.5%
Recrystallization from ethanol gave the final product, the title fluoroadenosine (0.60 g). 19 F-NMR (DMSO-d 6 ): (CCl 3 F standard) -197.8 (dt, = 5
4.4, 27.1Hz). 1 H-NMR (DMSO-d 6 ): δ 3.6-3.7 (m, 2H), 4.29 (dt,
J = 27.6, 3.7Hz, 1H), 4.8-5.0 (m, 1H), 5.09 (dd, J = 5
4.4,4.2Hz, 1H), 5.69 (dd, J = 7.3,4.9Hz, 1H), 5.89 (d,
J = 6.3Hz, 1H), 5.93 (d, J = 8.1Hz, 1H), 7.39 (s, 2H),
8.13 (s, 1H), 8.36 (s, 1H). 13 C-NMR (DMSO-d 6 ): δ 61.1 (d, J = 12.2 Hz, C-
5 '), 72.0 (d, J = 15.9 Hz, C-2'), 83.9 (d, J = 22.0
Hz, C-4 '), 86.9 (C-1'), 93.1 (d, J = 181.8Hz, C
-3 '), 119.4 (C-5), 140.1 (C-8), 149.1 (C
-4), 152.4 (C-2), 156.2 (C-6).

IR(KBr 錠剤)3300,1650cm-1IR (KBr tablets) 3300,1650 cm -1 .

融点205.6℃ 参考例2 1−(3−デオキシ−3−フルオロ−β−D−リボフラ
ノシル)ウラシル[式[I]において、Rがβに結合し
たウラシル残基であり、R1とR2が水素原子である化合
物]の合成。
Melting point 205.6 ° C. Reference example 2 1- (3-deoxy-3-fluoro-β-D-ribofuranosyl) uracil [In the formula [I], R is a uracil residue bonded to β, and R 1 and R 2 are hydrogen. A compound that is an atom].

参考例1と同様にジベンゾイル体を合成し、この0.40g
(1.1mmol)を酢酸(1.8ml)−無水酢酸(0.08ml)に溶
解した。ここに30%臭化水素−酢酸溶液(5.8ml)を加
え室温で3時間攪拌した。酢酸、無水酢酸などを完全に
留去後、ニトロメタン(5ml)に溶解し、ウラシル(0.1
1g)とシアン化第2水銀(0.27g)を加え、5時間加熱
還流した。次いでショートカラムクロマトグラフ精製し
ウラシル化体0.1gを得た。19 F−NMR(CDCl3):(CCl3F基準)−210.37(ddd,J=5
4.20,25.39,16.00Hz)。
A dibenzoyl compound was synthesized in the same manner as in Reference Example 1, and 0.40 g of this was synthesized.
(1.1 mmol) was dissolved in acetic acid (1.8 ml) -acetic anhydride (0.08 ml). A 30% hydrogen bromide-acetic acid solution (5.8 ml) was added thereto, and the mixture was stirred at room temperature for 3 hours. After distilling off acetic acid, acetic anhydride, etc., dissolve in nitromethane (5 ml) and add uracil (0.1 ml).
1 g) and mercuric cyanide (0.27 g) were added, and the mixture was heated under reflux for 5 hours. Then, short column chromatography purification was performed to obtain 0.1 g of a uracil derivative. 19 F-NMR (CDCl 3 ): (CCl 3 F standard) −210.37 (ddd, J = 5)
4.20,25.39,16.00Hz).

上で得られた生成物をメタノール(3ml)に溶解し、lM
ナトリウムメトキシド−メタノール溶液(0.49ml)を加
え、1時間加熱還流した。実施例2と同様に後処理し最
終生成物である標記の化合物(非常に吸湿性)を得た
(0.04g)。19 F−NMR(アセトン−d6):(CCl3F基準)−220.2(dd
d,J=54.68,27.34,27.17Hz)。1 H−NMR(アセトン−d6):δ 3.6−3.8(m,2H,H−
5′),4.25(dt,J=2.8,27.3Hz,1H,H−4′),4.2−4.
8(m,3H),5.02(dd,J=4.0,54.7Hz,1H,H−3′),5.64
(d,J=8.1Hz,1H),6.02(d,J=7.9Hz,1H),7.85(s,1
H),7.94s,1H)。
Dissolve the product obtained above in methanol (3 ml) and
A sodium methoxide-methanol solution (0.49 ml) was added, and the mixture was heated under reflux for 1 hr. Post-treatment was carried out in the same manner as in Example 2 to obtain the title compound (very hygroscopic) as the final product (0.04 g). 19 F-NMR (acetone-d 6 ): (CCl 3 F standard) -220.2 (dd
d, J = 54.68,27.34,27.17Hz). 1 H-NMR (acetone-d 6 ): δ 3.6-3.8 (m, 2H, H-
5 '), 4.25 (dt, J = 2.8, 27.3Hz, 1H, H-4'), 4.2-4.
8 (m, 3H), 5.02 (dd, J = 4.0, 54.7Hz, 1H, H-3 '), 5.64
(D, J = 8.1Hz, 1H), 6.02 (d, J = 7.9Hz, 1H), 7.85 (s, 1
H), 7.94s, 1H).

IR(KBr錠剤)3400,1700,1650cm-1IR (KBr tablets) 3400,1700,1650cm -1 .

融点205.6℃。Melting point 205.6 ° C.

参考例3 1−(3−デオキシ−3−フルオロ−β−D−リボフラ
ノシル)−5−フルオロウラシル[式[I]において、
Rがβ位に結合した5−フルオロウラシル残基であり、
R1とR2が水素原子である化合物]の合成。
Reference Example 3 1- (3-deoxy-3-fluoro-β-D-ribofuranosyl) -5-fluorouracil [in the formula [I],
R is a 5-fluorouracil residue bonded to the β-position,
Compounds in which R 1 and R 2 are hydrogen atoms].

参考例1と同様にジベンゾイル体を合成し、この0.60g
(1.6mmol)を酢酸(2.8ml)−無水酢酸(0.128ml)に
溶解した。ここに30%臭化水素−酢酸溶液(8.6ml)を
加え室温で3時間攪拌した。酢酸、無水酢酸などを完全
に留去後、トルエン(20ml)に溶解し、5−フルオロウ
ラシル水銀(0.62g)のトルエン懸濁液に加えて1時間
加熱還流した。次いでショートカラムクロマトグラフ精
製しウラシル化体0.1gを得た。19 F−NMR(CDCl3):(CCl3F基準)−161.3(s),−2
10.4(ddd,j=59.57,43.94,18.07Hz)。
A dibenzoyl compound was synthesized in the same manner as in Reference Example 1, and 0.60 g of this was synthesized.
(1.6 mmol) was dissolved in acetic acid (2.8 ml) -acetic anhydride (0.128 ml). A 30% hydrogen bromide-acetic acid solution (8.6 ml) was added thereto, and the mixture was stirred at room temperature for 3 hours. After completely removing acetic acid, acetic anhydride, etc., the residue was dissolved in toluene (20 ml), added to a toluene suspension of 5-fluorouracil mercury (0.62 g), and heated under reflux for 1 hour. Then, short column chromatography purification was performed to obtain 0.1 g of a uracil derivative. 19 F-NMR (CDCl 3 ): (CCl 3 F standard) -161.3 (s), −2
10.4 (ddd, j = 59.57,43.94,18.07Hz).

上で得られた生成物をメタノール(4ml)に溶解し、lM
ナトリウムメトキシド−メタノール溶液(0.34ml)を加
え、1時間加熱還流した。実施例2と同様に後処理し最
終生成物である標記の化合物(非常に吸湿性)を得た
(0.02g)。19 F−NMR(アセトン−d6):(CCl3F基準)−173.05
(s),−209.77(ddd,J=54.40,21.48,12.08Hz)。1 H−NMR(アセトン−d6):δ 3.58(d,J=5.4Hz,2H),
3.5−5.1(m,5H),4.9(dt,J=54.7,4.7Hz,1H),7.62
(s,1H),7.70(s,1H)。
The product obtained above was dissolved in methanol (4 ml) and
A sodium methoxide-methanol solution (0.34 ml) was added, and the mixture was heated under reflux for 1 hr. Post-treatment was conducted in the same manner as in Example 2 to obtain the title compound (very hygroscopic) as the final product (0.02 g). 19 F-NMR (acetone-d 6 ): (CCl 3 F standard) −173.05
(S), −209.77 (ddd, J = 54.40, 21.48, 12.08 Hz). 1 H-NMR (acetone-d 6 ): δ 3.58 (d, J = 5.4 Hz, 2H),
3.5-5.1 (m, 5H), 4.9 (dt, J = 54.7, 4.7Hz, 1H), 7.62
(S, 1H), 7.70 (s, 1H).

IR(KBr錠剤)3400,1700,1650cm-1IR (KBr tablets) 3400,1700,1650cm -1 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記式[II]で表わされるフラノシド誘導
体をフッ素化して3位にフッ素原子を導入することを特
徴とする下記式[I′]で表わされる3−デオキシ−3
フルオロ−D−リボフラノシド誘導体の製造法。 ただし、式[I′]、式[II]において R1,R2:水素原子、あるいは水酸基の保護基。 R3:アルコキシ基。 R4,R5:水酸基の保護基。 Y:脱離基。
1. A 3-deoxy-3 represented by the following formula [I '], characterized by fluorinating a furanoside derivative represented by the following formula [II] to introduce a fluorine atom at the 3-position.
A method for producing a fluoro-D-ribofuranoside derivative. However, in the formula [I ′] and the formula [II], R 1 and R 2 are a hydrogen atom or a hydroxyl-protecting group. R 3 : an alkoxy group. R 4 , R 5 : Protecting group for hydroxyl group. Y: Leaving group.
JP60220186A 1985-10-04 1985-10-04 Method for producing ribofuranoside derivative Expired - Lifetime JPH0780897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220186A JPH0780897B2 (en) 1985-10-04 1985-10-04 Method for producing ribofuranoside derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220186A JPH0780897B2 (en) 1985-10-04 1985-10-04 Method for producing ribofuranoside derivative

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6184519A Division JP2570194B2 (en) 1994-08-05 1994-08-05 Ribofuranoside derivatives

Publications (2)

Publication Number Publication Date
JPS6281397A JPS6281397A (en) 1987-04-14
JPH0780897B2 true JPH0780897B2 (en) 1995-08-30

Family

ID=16747227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220186A Expired - Lifetime JPH0780897B2 (en) 1985-10-04 1985-10-04 Method for producing ribofuranoside derivative

Country Status (1)

Country Link
JP (1) JPH0780897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002051425A1 (en) * 2000-12-26 2004-04-22 三菱ウェルファーマ株式会社 Hepatitis C treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CARBOHYDRATE NUCLEOSIDES & NUCLEOTIDES=1975 *

Also Published As

Publication number Publication date
JPS6281397A (en) 1987-04-14

Similar Documents

Publication Publication Date Title
CA2079796A1 (en) Nucleoside derivatives
HU214030B (en) Process for preparing alpha-anomer enriched 1-halogen-2-deoxy-2,2-difluoro-d-ribofuranosyl derivatives
KR100910791B1 (en) Process for the preparation of 2'-halo-?-L-arabinofuranosyl nucleosides
US5466793A (en) Process for preparing 2', 3'- dideoxyinosine
AU2002303187A1 (en) Process for the preparation of 2'-HALO-Beta-L-arabinofuranosyl nucleosides
US5817799A (en) 2'-Fluorofuranosyl derivatives and methods for preparing 2'-fluoropyrimidine and 2'-fluoropurine nucleosides
EP0389110B1 (en) Process for the preparation of 2'-deoxy-5-trifluoromethyl-beta-uridine
WO1993018051A1 (en) Process for producing nucleoside derivative
KR100319127B1 (en) Manufacturing method of azeti and its derivatives
JPH0780897B2 (en) Method for producing ribofuranoside derivative
JP2570194B2 (en) Ribofuranoside derivatives
US5290927A (en) Process for preparing 2',3'-dideoxyadenosine
JPS62240622A (en) Antitumor substance
JPS62242693A (en) Fluorine-containing ribofuranoside derivative and production thereof
JP2008195648A (en) 4'-selenonucleoside and 4'-selenonucleotide
JPH01104092A (en) Nucleoside derivative
JPH07157496A (en) Production of deoxynucleotide
JPH0296590A (en) Novel nucleic acids
WO2000039144A1 (en) Process for the preparation of fluorinated derivatives of nucleosides or sugars
JPH03227997A (en) Production of nucleoside derivative
JPH0925289A (en) Production of 4'-thioarabinopyrimidine nucleoside
JPS62242624A (en) Antitumor agent
JPH01113399A (en) Fluoropentofuranosides
JP2747849B2 (en) Method for selective acylation of 2'-deoxynucleosides
JPH01224390A (en) Production of nucleoside derivative