JPH0780242A - Exhaust gas purifying apparatus and driving method of appararus thereof - Google Patents

Exhaust gas purifying apparatus and driving method of appararus thereof

Info

Publication number
JPH0780242A
JPH0780242A JP5227317A JP22731793A JPH0780242A JP H0780242 A JPH0780242 A JP H0780242A JP 5227317 A JP5227317 A JP 5227317A JP 22731793 A JP22731793 A JP 22731793A JP H0780242 A JPH0780242 A JP H0780242A
Authority
JP
Japan
Prior art keywords
exhaust gas
desulfurization
heat recovery
heat
reheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5227317A
Other languages
Japanese (ja)
Other versions
JP3408845B2 (en
Inventor
Toshio Katsube
利夫 勝部
Masakatsu Nishimura
正勝 西村
Atsushi Katagawa
篤 片川
Shigeru Nozawa
滋 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP22731793A priority Critical patent/JP3408845B2/en
Publication of JPH0780242A publication Critical patent/JPH0780242A/en
Application granted granted Critical
Publication of JP3408845B2 publication Critical patent/JP3408845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To continus operation of an exhaust gas purifying system even in the case where operation of a desulfurizing apparatus cannot be continued. CONSTITUTION:At the time of normal exhaust gas purifying operation of a exhaust gas purifying apparatus, a heat medium communicating pipe 17 between a heat recovering apparatus 4 and a primary air preheating apparatus 16 is set in disconnected state and a heat medium communicating pipe 11 between the heat recovering apparatus 4 and a reheating apparatus 9 is set in connected state and a bypass flue 12 is set in a closed state, so that the heat of the exhaust gas is recovered by the reheating apparatus 9 and the exhaust gas which flows in a dust collecting apparatus 5 immediate after the heat recovering apparatus 4 is cooled to low temperature and dust collecting efficiency is hightened. Meanwhile, at the time of operation stop of a desulfurizing apparatus 8, the exhaust gas is led to the bypass flue 12 and by setting the heat media communicating pipe 17 in communicating state, the heat of the exhaust gas is recovered by the primary air preheating apparatus 16 and the exhaust gas which flows in the dust collecting apparatus 5 is cooled to low temperature, so that the dust collecting effciency is not lowered and the amount of the exhaust gas is increased and consequently the resulting treated gas can be discharged to open air by a ventilating apparatus 6 placed in the upstream side of the desulfurizing apparatus 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排ガス浄化装置とその運
転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus and its operating method.

【0002】[0002]

【従来の技術】大気汚染防止のため、排ガス中の硫黄酸
化物の除去装置として脱硫装置が広く実用化されてい
る。火力発電所のボイラ排ガス浄化システムの代表的な
通風系統図を図4に示す。ボイラ1には押込通風機(F
DF)14で昇圧された空気が空気予熱器3で昇温され
た後、供給される。ボイラ1での燃料の燃焼後の排ガス
はまず脱硝装置2で排ガス中のNOxを除去された後、
空気予熱器3で熱回収され、約140℃の温度となり電
気集塵器5でばいじんを除去され、誘引通風機(ID
F)6でボイラ1から煙突10の出口までのドラフトロ
ス分が昇圧される。IDF6を出た排ガスはさらに脱硫
通風機(BUF)7で、脱硫装置8、熱回収器4および
再加熱器9のドラフトロス分を昇圧された後、熱回収器
4で排ガス中の排熱を回収し、排ガス温度は140℃か
ら約90℃まで下げられ、脱硫装置8に導入される。脱
硫装置8内での排ガスは吸収液との気液接触により、そ
の温度は約45℃に低下すると共に除じん、脱硫され、
再加熱器9に導かれる。再加熱器9では、排ガスは熱回
収器4から熱媒連絡管11を介して回収された排熱によ
り約95℃まで昇温されて、煙突10から排出される。
また、脱硫装置8や脱硫通風機7の故障により、運転が
継続できなくなったとき、再加熱器9出口側のダクトと
BUF7入口側のダクトを結ぶバイパス煙道12のバイ
パスダンパ13を全開し、ボイラ排ガスをバイパス煙道
12を経て煙突10から排出し、ボイラ1内のドラフト
の上昇を防止できるようになっている。
2. Description of the Related Art In order to prevent air pollution, a desulfurization device has been widely put into practical use as a device for removing sulfur oxides in exhaust gas. Fig. 4 shows a typical ventilation system diagram of the boiler exhaust gas purification system of a thermal power plant. The boiler 1 has a forced draft fan (F
The air whose pressure has been increased by the DF) 14 is heated by the air preheater 3 and then supplied. The exhaust gas after combustion of the fuel in the boiler 1 is first subjected to NOx removal in the exhaust gas by the denitration device 2 and then
The heat is recovered by the air preheater 3 to reach a temperature of about 140 ° C., the dust is removed by the electrostatic precipitator 5, and the induction fan (ID
In F) 6, the draft loss from the boiler 1 to the exit of the stack 10 is boosted. The exhaust gas discharged from the IDF 6 is further pressurized by a desulfurization blower (BUF) 7 in the amount of draft loss of the desulfurization device 8, the heat recovery device 4 and the reheater 9, and then the exhaust heat in the exhaust gas is removed by the heat recovery device 4. After being recovered, the exhaust gas temperature is lowered from 140 ° C. to about 90 ° C. and introduced into the desulfurization device 8. The exhaust gas in the desulfurization device 8 is gas-liquid contact with the absorbing liquid, the temperature of the exhaust gas is reduced to about 45 ° C., and the exhaust gas is removed and desulfurized.
It is led to the reheater 9. In the reheater 9, the exhaust gas is heated to about 95 ° C. by the exhaust heat recovered from the heat recovery device 4 via the heat medium communication pipe 11, and is exhausted from the chimney 10.
Further, when the operation cannot be continued due to the failure of the desulfurization device 8 or the desulfurization ventilator 7, the bypass damper 13 of the bypass flue 12 that connects the duct on the outlet side of the reheater 9 and the duct on the inlet side of the BUF 7 is fully opened. Boiler exhaust gas is discharged from the chimney 10 via the bypass flue 12 to prevent the draft in the boiler 1 from rising.

【0003】上記の通り、燃料として石炭を使用するボ
イラ1からの排ガス中に含まれる環境汚染物質として
は、硫黄酸化物(SOx)、窒素酸化物(NOx)と共
に高濃度のばいじんがあり、その浄化設備としてはNO
xは脱硝装置2、SOxは脱硫装置8、そしてばいじん
は電気集塵器5と脱硫装置8で除去される。一般的なば
いじんの除去性能としてはボイラ1から約20g/m3
Nで排出されるばいじんは電気集塵器5の出口で0.1
〜0.2g/m3Nまで低減され、さらに脱硫装置8で
0.01〜0.02g/m3Nまで除去され、煙突10
から排出される。しかしながら近年の環境規制の強化に
より、排ガス浄化システムの出口でのばいじん濃度も
0.005g/m3N程度まで低減することが要求され
つつある。これに対応する技術としては脱硫装置8の出
口にさらに電気集塵器を設ける必要があるが、この方法
では集塵器が二基必要となり、設備費、運転費の増大を
もたらすことになる。
As described above, environmental pollutants contained in the exhaust gas from the boiler 1 that uses coal as a fuel include sulfur oxide (SOx), nitrogen oxide (NOx), and high-concentration soot and dust. NO as purification equipment
X is removed by the denitration device 2, SOx is removed by the desulfurization device 8, and dust is removed by the electrostatic precipitator 5 and the desulfurization device 8. The general dust removal performance is about 20 g / m 3 from the boiler 1.
Dust emitted in N is 0.1 at the outlet of the electrostatic precipitator 5.
Is reduced to ~0.2g / m 3 N, it is further removed by the desulfurizer 8 to 0.01~0.02g / m 3 N, chimney 10
Emitted from. However, due to the recent strengthening of environmental regulations, it is required to reduce the dust concentration at the outlet of the exhaust gas purification system to about 0.005 g / m 3 N. As a technique corresponding to this, it is necessary to further provide an electric dust collector at the outlet of the desulfurization device 8. However, this method requires two dust collectors, resulting in an increase in equipment cost and operating cost.

【0004】このため、ボイラ1の出口の電気集塵器5
の性能を向上させるシステムとして図5に示すように熱
回収器4を電気集塵器5の前流に設置するシステムが提
案されている。このシステムは電気集塵器5の排ガスの
温度を低下させることにより、ばいじんの電気抵抗を下
げると共にガス容量を小さくし、集塵効率を上げるもの
である。すなわち、図4に示すシステムにおいて140
℃の排ガスを処理する場合に、その出口では0.1g/
3Nの除じん性能を有する電気集塵器5を、図5に示
すシステムに用いると、約90℃の排ガスを処理するこ
とになり、電気集塵器5の出口のばいじん濃度は0.0
3g/m3Nとなる。この電気集塵器5による除じんの
後に、さらに脱硫装置8での除じん性能も加味すると、
煙突10の入口でばいじん濃度は0.005mg/m3
N以下にできる。さらに、この場合にはガス温度が下が
ることにより、熱回収器4出口のIDF6、BUF7お
よびダクトの容量を小さくできる。しかしながら、脱硫
装置8やBUF7の故障により脱硫装置8などの運転が
できなくなってボイラ排ガスをバイパス煙道12から煙
突10に排出する場合には、熱回収器4で回収した熱を
再加熱器9で消費できないため熱回収器4も熱回収機能
がなくなり、電気集塵器5、IDF6、BUF7での処
理ガス温度は図4に示すシステムと同様約140℃まで
上昇する。したがって、図5に示すシステムにおいて、
電気集塵機5、IDF6の容量を小さく設計するとボイ
ラの運転継続もできなくなる。
Therefore, the electrostatic precipitator 5 at the outlet of the boiler 1
As a system for improving the performance of, the system in which the heat recovery device 4 is installed in the upstream of the electrostatic precipitator 5 as shown in FIG. 5 has been proposed. This system lowers the temperature of the exhaust gas of the electrostatic precipitator 5, thereby lowering the electric resistance of dust and gas, and reducing the gas capacity to increase the dust collection efficiency. That is, in the system shown in FIG.
When treating exhaust gas at ℃, 0.1g /
When the electrostatic precipitator 5 having a dust removal performance of m 3 N is used in the system shown in FIG. 5, exhaust gas at about 90 ° C. is treated, and the dust concentration at the outlet of the electrostatic precipitator 5 is 0. 0
It becomes 3 g / m 3 N. After the dust removal by the electrostatic precipitator 5, if the dust removal performance of the desulfurization device 8 is also added,
The dust concentration at the entrance of the chimney 10 is 0.005 mg / m 3
It can be N or less. Further, in this case, since the gas temperature is lowered, the capacities of the IDF 6, BUF 7 and the duct at the outlet of the heat recovery device 4 can be reduced. However, when the desulfurization device 8 or the like cannot be operated due to a failure of the desulfurization device 8 or the BUF 7 and the boiler exhaust gas is discharged from the bypass flue 12 to the chimney 10, the heat recovered by the heat recovery device 4 is reheated by the reheater 9 Since the heat recovery device 4 does not consume heat, the heat recovery function of the heat recovery device 4 is lost, and the temperature of the processing gas in the electrostatic precipitator 5, the IDF 6, and the BUF 7 rises to about 140 ° C. as in the system shown in FIG. Therefore, in the system shown in FIG.
If the capacities of the electrostatic precipitator 5 and the IDF 6 are designed to be small, the boiler cannot continue operating.

【0005】また、上記図4または図5に示す排ガス浄
化システムにおいて、ボイラ排ガスの通風設備としては
電気集塵器5後流側のIDF6と脱硫通風機(BUF)
7を用いるが、IDF6は脱硫装置8をバイパスした場
合に煙突10出口まで送風できる容量で、BUF7は脱
硫装置8入口から煙突10出口まで送風できる容量とな
っている。しかし、現在では脱硫装置8の吸収塔(図示
せず)の簡素化などの改善により通風系の圧力損失が従
来より下がっており、BUF7を用いないで、IDF6
による単一の通風機で運用する可能性が出てきた。ID
F6単独とする場合にはIDF6に脱硫装置8入口から
煙突10出口まで送風できる容量を付加することになる
が、その場合にはバイパスダンパ13の脱硫装置8入口
側に脱硫装置8入口から煙突10出口までの圧力損失分
を付加したIDF6の吐出圧力が加わるため、IDF6
に加わる圧力は、従来のBUF7を用いる場合において
BUF7吸込側であるために比較的圧力が低かった時に
比べて、バイパスダンパ13の脱硫装置8入口側の圧力
は高くなり、バイパスダンパ13で脱硫装置8入口側の
排ガスがその出口側へリークして、該出口側の硫黄酸化
物濃度が高くなることが問題となる。
In the exhaust gas purifying system shown in FIG. 4 or 5, the boiler exhaust gas ventilation system includes an IDF 6 on the downstream side of the electrostatic precipitator 5 and a desulfurization fan (BUF).
7 is used, the IDF 6 has a capacity to blow air to the chimney 10 outlet when the desulfurization device 8 is bypassed, and the BUF 7 has a capacity to blow air from the desulfurization device 8 inlet to the chimney 10 outlet. However, at present, the pressure loss of the ventilation system is lower than before due to improvements such as simplification of the absorption tower (not shown) of the desulfurization device 8, and the IDF6 is not used without the BUF7.
Has the possibility of operating with a single fan. ID
When only F6 is used, the IDF 6 has a capacity to blow air from the inlet of the desulfurization device 8 to the outlet of the chimney 10. In that case, however, in that case, the bypass damper 13 is connected to the inlet of the desulfurization device 8 from the inlet of the desulfurization device 8 to the chimney 10. Since the discharge pressure of the IDF6 with a pressure loss up to the outlet is added, the IDF6
When a conventional BUF7 is used, the pressure applied to the desulfurization device 8 at the inlet side of the desulfurization device 8 of the bypass damper 13 is higher than that when the pressure is relatively low because it is on the suction side of the BUF7, and the desulfurization device is used by the bypass damper 13. 8 Exhaust gas on the inlet side leaks to the outlet side and the concentration of sulfur oxides on the outlet side increases.

【0006】そこで、脱硫装置出口側への排ガスのリー
クを防ぐ必要があるが、ダクト内の流体の流れを阻止す
るダンパのシール方法としては、複数の仕切板の間にシ
ールエアーを供給する方法が実開昭63−148044
号公報に公開されている。その方法はダクトの全開・全
閉を行うためのダンパ(ギロチンダンパ)についてのも
のであるが、前記脱硫装置8のバイパスライン12のダ
ンパ13として使用する場合、通常運転時はダンパ13
は全閉であるが、脱硫装置8にトラブルがあった場合に
急速に、これを開く必要があり、また運転条件によって
は半開きの状態とすることがあるためマルチルーバダン
パが採用されている。したがって実開昭63−1480
44号の発明によるダンパのシール方法は前記排ガス浄
化システムには適用できず、またダンパのシール方法を
採用した場合でも必要最小限のシールエア供給量を把握
できないため、シールエア供給用のブロワを過剰運転す
る必要があった。
Therefore, it is necessary to prevent the exhaust gas from leaking to the outlet side of the desulfurizer, but as a damper sealing method for blocking the flow of fluid in the duct, a method of supplying sealing air between a plurality of partition plates is actually used. Kaisho 63-148044
It is published in the official gazette. The method is for a damper (guillotine damper) for fully opening and closing the duct. When used as the damper 13 of the bypass line 12 of the desulfurization device 8, the damper 13 is used during normal operation.
Is fully closed, but if there is a problem with the desulfurization device 8, it must be opened rapidly, and depending on the operating conditions it may be in a half-opened state, so a multi-louver damper is adopted. Therefore, the actual exploitation sho 63-1480
The damper sealing method according to the invention of No. 44 cannot be applied to the exhaust gas purification system, and even if the damper sealing method is adopted, it is not possible to grasp the minimum required seal air supply amount, and therefore the blower for supplying seal air is operated excessively. Had to do.

【0007】上記従来技術の図4、図5等に示すバイパ
スダンパ13は脱硫装置8のトラブル時にボイラ火炉へ
の影響を極力少なくするために急速に開くことが必要で
あるのでマルチルーバダンパが採用されているが、この
マルチルーバダンパは完全に排ガスを遮断することがで
きないので、脱硫装置8入口側よりも脱硫装置8出口側
の圧力を若干高くして、脱硫装置8入口側から出口側へ
排ガスがリークすることを防止していた。しかし、通風
機をIDF6単独とした場合、バイパスダンパ13の脱
硫装置8入口側の圧力が高くなるため従来の方法では脱
硫装置8入口側から出口側へのリークを防止することが
不可能となる。また、バイパスダンパ13としてマルチ
ルーバダンパの代わりにギロチンダンパを採用し、仕切
板を複数設けてその間にシール空気を供給した場合、排
ガスを完全に遮断するためのシール空気供給量が不明確
なため、過剰量の空気を供給しなければならないため、
電力消費量が大きく不経済である。
The bypass damper 13 shown in FIGS. 4 and 5 of the above-mentioned prior art is required to be opened rapidly in order to minimize the influence on the boiler furnace when the desulfurization device 8 has a trouble, so that the multi-louver damper is adopted. However, since this multi-louver damper cannot completely block the exhaust gas, the pressure at the desulfurization device 8 outlet side is made slightly higher than that at the desulfurization device 8 inlet side, so that the desulfurization device 8 inlet side becomes the outlet side. The exhaust gas was prevented from leaking. However, when the IDF 6 is used alone as the ventilator, the pressure on the inlet side of the desulfurization device 8 of the bypass damper 13 becomes high, so it is impossible to prevent the leakage from the inlet side of the desulfurization device 8 to the outlet side by the conventional method. . Further, when a guillotine damper is adopted as the bypass damper 13 instead of the multi-louver damper, and a plurality of partition plates are provided to supply the seal air between them, the supply amount of the seal air for completely blocking the exhaust gas is unclear. , Because an excessive amount of air must be supplied,
Power consumption is large and uneconomical.

【0008】[0008]

【発明が解決しようとする課題】上記従来技術の第一の
問題点は、脱硫装置8やBUF7の故障により脱硫装置
8などの運転ができなくなってボイラ排ガスをバイパス
煙道12から煙突10に排出する場合に、熱回収器4で
回収した熱を再加熱器9で消費できないため熱回収器4
も熱回収機能がなくなり、電気集塵器5、IDF6、B
UF7での処理ガス温度が上昇し、電気集塵機5、ID
F6の容量を小さく設計するとボイラの運転継続もでき
なくなることである。さらに上記従来技術において、通
風機をIDF6単独とした場合のバイパスダンパ13の
排ガスリークについての配慮がなされておらず、脱硫装
置8入口側から出口側へのリークを防止することが不可
能となるか(マルチルーバダンパを用いた場合)、シー
ル空気供給量が不明確なため、過剰に空気を供給しなけ
ればならないため、電力消費量が大きく不経済であった
(ギロチンダンパを用いた場合)。
The first problem of the above-mentioned prior art is that the desulfurization device 8 or the like cannot be operated due to a failure of the desulfurization device 8 or the BUF 7, and the boiler exhaust gas is discharged from the bypass flue 12 to the chimney 10. In this case, since the heat recovered by the heat recovery device 4 cannot be consumed by the reheater 9, the heat recovery device 4
Also has no heat recovery function, and the electrostatic precipitator 5, IDF6, B
The temperature of the processing gas in UF7 rises, and the electrostatic precipitator 5, ID
If the capacity of F6 is designed to be small, it is impossible to continue operating the boiler. Further, in the above-mentioned conventional technique, no consideration is given to the exhaust gas leak of the bypass damper 13 when the IDF 6 is used alone as the ventilator, and it becomes impossible to prevent the leak from the inlet side to the outlet side of the desulfurization device 8. Or (when using a multi-louver damper), because the seal air supply amount is unclear, it was uneconomical to consume a large amount of electricity because it was necessary to supply excessive air (when using a guillotine damper). .

【0009】本発明の目的は、脱硫装置の運転継続が不
可能になった場合にも、排ガス浄化システムの運転が継
続できるようにすることである。また、本発明の目的は
脱硫装置の運転が停止した場合にも熱回収器の出口ガス
温度の上昇を抑えてボイラの運転を継続できるようにす
ることである。また、本発明の目的は、BUFをやめて
IDF単独とした場合に脱硫装置の運転継続が不可能に
なった場合にも経済的にバイパスダンパの排ガスリーク
を防止することにある。
An object of the present invention is to make it possible to continue the operation of the exhaust gas purification system even when the desulfurization apparatus cannot be continuously operated. It is also an object of the present invention to prevent the temperature of the outlet gas of the heat recovery device from rising even when the operation of the desulfurizer is stopped so that the boiler operation can be continued. Further, an object of the present invention is to economically prevent exhaust gas leakage of the bypass damper even when the desulfurization apparatus cannot continue to operate when the BUF is stopped and only the IDF is used.

【0010】[0010]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、ボイラ等の燃焼装
置から排出する排ガス中の有害物質を除去するために、
排ガス中のばいじんを集塵器で除いた後に、脱硫装置で
脱硫処理し、再加熱器で昇温後、大気中に排出する排ガ
ス浄化装置において、排ガスダクトの集塵器の直前部に
配置される熱回収器と、燃焼装置に供給される空気を予
熱する一次空気予熱器と、脱硫装置の運転停止時に排ガ
スを脱硫装置と再加熱器とを迂回させて大気中に排出す
るために、集塵器出口と再加熱器出口の排ガスダクトを
連結し、ガス流れを遮断できる1台以上のバイパスダン
パを備えたバイパスラインと、前記熱回収器と前記一次
空気予熱器および前記熱回収器と前記再加熱器との間に
それぞれ流量調節弁を設けられる熱媒連絡管とを備えた
排ガス浄化装置である。
The above objects of the present invention can be achieved by the following constitutions. That is, in order to remove harmful substances in exhaust gas discharged from a combustion device such as a boiler,
After removing the dust in the exhaust gas with a dust collector, it is desulfurized with a desulfurizer, heated with a reheater, and then discharged into the atmosphere. Heat recovery device, a primary air preheater that preheats the air supplied to the combustion device, and the exhaust gas that bypasses the desulfurization device and the reheater and is discharged to the atmosphere when the desulfurization device is stopped. A bypass line that connects the exhaust gas ducts of the duster outlet and the reheater outlet and includes one or more bypass dampers that can block the gas flow; the heat recovery device, the primary air preheater, and the heat recovery device; The exhaust gas purifying apparatus includes a heat medium communication pipe that is provided with a flow rate control valve between the reheater and the heat medium communication pipe.

【0011】また、本発明の上記目的は前記排ガス浄化
装置に、熱回収器と脱硫装置の間の排ガスダクトに、大
気中に脱硫処理後のガスを排出するのに必要なガスの昇
圧用の通風機を配置した排ガス浄化装置、または、前記
排ガス浄化装置に、大気中に脱硫処理後のガスを排出す
るのに必要なガスの排煙通風機を再加熱器の後流部の排
ガスダクトに配置した排ガス浄化装置によって達成され
る。また、上記いずれの排ガス浄化装置においても、バ
イパスラインのバイパスダンパを二重とし、該二重バイ
パスダンパ間の排ガスダクトに空気を吹き込むことで該
バイパスダンパをシールする構成とすることができる。
この場合には、脱硫装置入口側の排ガスダクトと二重バ
イパスダンパ間の排ガスダクトとの差圧を計測する差圧
計と、該差圧計による計測値に基づき、二重のバイパス
ダンパ間の内圧が脱硫装置入口側の排ガスの圧力よりも
高くなるように、二重のバイパスダンパ間に吹き込む空
気量を制御する制御装置を備えた構成としても良い。
Further, the above-mentioned object of the present invention is for the exhaust gas purifying device, for the exhaust gas duct between the heat recovery device and the desulfurization device, for increasing the pressure of the gas required for discharging the gas after desulfurization treatment to the atmosphere. An exhaust gas purifying device with a ventilator installed, or, in the exhaust gas purifying device, a flue gas ventilator for the gas necessary for exhausting the gas after desulfurization processing into the atmosphere is provided in the exhaust gas duct in the downstream part of the reheater. This is achieved by the installed exhaust gas purification device. Further, in any of the above exhaust gas purifying devices, the bypass damper of the bypass line may be doubled, and the bypass damper may be sealed by blowing air into the exhaust gas duct between the double bypass dampers.
In this case, a differential pressure gauge that measures the differential pressure between the exhaust gas duct on the inlet side of the desulfurization device and the exhaust gas duct between the double bypass dampers, and the internal pressure between the double bypass dampers is based on the measurement value by the differential pressure gauge. A configuration may be provided that includes a control device that controls the amount of air blown between the double bypass dampers so that the pressure becomes higher than the exhaust gas pressure at the desulfurization device inlet side.

【0012】本発明の上記目的は次の構成によっても達
成される。すなわち、前記排ガス浄化装置を通常の排ガ
ス浄化処理運転時には熱回収器と再加熱器との間に設け
られる熱媒連絡管を連通状態とし、熱回収器と一次空気
予熱器との間に設けられる熱媒連絡管は非連通状態と
し、脱硫装置の運転停止時には熱回収器と再加熱器の間
に設けられる熱媒連絡管は非連通状態とし、熱回収器と
一次空気予熱器の間に設けられる熱媒連絡管を連通状態
とする排ガス浄化装置の運転方法である。
The above object of the present invention can also be achieved by the following configuration. That is, when the exhaust gas purifying apparatus is in a normal exhaust gas purifying operation, the heat medium communication pipe provided between the heat recovery device and the reheater is in a communication state, and is provided between the heat recovery device and the primary air preheater. The heat medium communication pipe is not in communication, and the heat medium communication pipe that is provided between the heat recovery device and the reheater when the desulfurization equipment is not operating is not in communication and is provided between the heat recovery device and the primary air preheater. This is an operating method of an exhaust gas purifying apparatus in which a heat medium connecting pipe is placed in a connected state.

【0013】[0013]

【作用】本発明によれば、排ガス浄化装置を通常の排ガ
ス浄化運転時には熱回収器と一次空気予熱器との間に設
けられる熱媒連絡管は非連通状態とし、熱回収器と再加
熱器との間に設けられる熱媒連絡管は連通状態とし、ま
たバイパスラインは閉塞状態とする。そのため、排ガス
の熱は熱回収器を経由して再加熱器に回収され、熱回収
器の直後の排ガスダクトにある集塵器に流入する排ガス
は低温化できるので、集塵器の集塵効率が高まり、ボイ
ラ排ガス量も増加しない。また、そのため脱硫装置の前
流側の排ガスダクトにガス昇圧用の通風機が配置される
場合でも、処理ガスの大気への排出が可能となる。
According to the present invention, the heat medium communication pipe provided between the heat recovery device and the primary air preheater is in a non-communication state during the normal exhaust gas cleaning operation of the exhaust gas purification device, and the heat recovery device and the reheater are connected. The heat medium communication pipe provided between the bypass line and the heat medium communication line is in a communication state, and the bypass line is in a closed state. Therefore, the heat of the exhaust gas is recovered by the reheater via the heat recovery device, and the temperature of the exhaust gas flowing into the dust collector in the exhaust gas duct immediately after the heat recovery device can be lowered, so the dust collection efficiency of the dust collector And the amount of boiler exhaust gas does not increase. Therefore, even when a ventilator for gas pressurization is arranged in the exhaust gas duct on the upstream side of the desulfurizer, the treated gas can be discharged to the atmosphere.

【0014】一方、脱硫装置の運転停止時には排ガスを
脱硫装置と再加熱器とを迂回させるバイパスラインに流
した後、大気中に排出する。このとき、排ガスダクトの
集塵器の直前部に配置される熱回収器と燃焼装置に供給
される空気を予熱する一次空気予熱器の間の熱媒連絡管
を連通状態とすることにより、排ガスの熱は熱回収器を
経由して一次空気予熱器に回収される。そのため、この
場合も集塵器に流入する排ガスは低温化できるので、集
塵器の集塵効率が低下せず、ボイラ排ガス量も増加しな
い。そのため、脱硫装置の前流側の排ガスダクトにガス
昇圧用の通風機が配置される場合でも、処理ガスの大気
への排出が可能となる。さらに一次空気予熱器を経由す
るボイラ供給空気の温度を高くできることによりボイラ
効率も高くできる。
On the other hand, when the desulfurization apparatus is not in operation, the exhaust gas is passed through a bypass line that bypasses the desulfurization apparatus and the reheater, and then discharged into the atmosphere. At this time, by making the heat medium communication pipe between the heat recovery device arranged immediately in front of the dust collector of the exhaust gas duct and the primary air preheater for preheating the air supplied to the combustion device into communication, Is recovered by the primary air preheater via the heat recovery device. Therefore, in this case as well, the temperature of the exhaust gas flowing into the dust collector can be lowered, so that the dust collection efficiency of the dust collector does not decrease and the amount of boiler exhaust gas does not increase. Therefore, even when the ventilator for gas pressurization is arranged in the exhaust gas duct on the upstream side of the desulfurizer, the treated gas can be discharged to the atmosphere. Furthermore, the boiler efficiency can be increased by increasing the temperature of the boiler supply air that passes through the primary air preheater.

【0015】また、ガス昇圧用の通風機を再加熱器の後
流部の排ガスダクトに配置する場合にも脱硫装置が停止
した場合は電気集塵器へ導入される排ガスは低温化の温
度に維持できるので、電気集塵器の集塵効率が低下しな
いし、ボイラ排ガス量も増加しないため排煙通風機で処
理ガスを大気中に排出することができる。ガス昇圧用の
通風機を再加熱器の後流部の排ガスダクトにのみ配置す
る場合には再加熱器で昇温された処理済みの排ガスのた
め腐食性がないので、通風機は耐食性を考慮した高級材
料を使用する必要がない。また、バイパスラインのバイ
パスダンパを二重とし、該二重バイパスダンパ間に空気
を吹き込み、このダンパ間の排ガスダクト内圧を脱硫装
置入口側のそれよりも圧力を高くすることにより、バイ
パスダンパ間に吹き込んだ空気は脱硫装置入口側へリー
クするが、脱硫装置入口排ガスが出口排ガス側へリーク
することがない。こうして、排ガス浄化装置の通常の排
ガス浄化運転時にはバイパスダンパをシールすることが
できる。
Also, when the gas pressurizing ventilator is arranged in the exhaust gas duct downstream of the reheater, the exhaust gas introduced into the electrostatic precipitator has a low temperature when the desulfurizer is stopped. Since it can be maintained, the dust collection efficiency of the electrostatic precipitator does not decrease, and the amount of boiler exhaust gas does not increase, so that the treated gas can be discharged into the atmosphere by the smoke exhaust fan. If a gas booster is installed only in the exhaust gas duct in the downstream of the reheater, it is not corrosive because it is treated exhaust gas that has been heated by the reheater, so consider the corrosion resistance of the fan. There is no need to use high-grade materials. Further, the bypass damper of the bypass line is doubled, air is blown between the double bypass dampers, and the internal pressure of the exhaust gas duct between the dampers is made higher than that on the inlet side of the desulfurization device, so that between the bypass dampers. The blown air leaks to the desulfurizer inlet side, but the desulfurizer inlet exhaust gas does not leak to the outlet exhaust gas side. Thus, the bypass damper can be sealed during the normal exhaust gas purification operation of the exhaust gas purification device.

【0016】[0016]

【実施例】本発明の一実施例を図面と共に説明する。 実施例1 本発明の第一の実施例からなる排ガス浄化システムの通
風系統図を図1に示す。ボイラ1から脱硝装置2、空気
予熱器3、熱回収器4、電気集塵器5を経由した排ガス
はIDF6とBUF7を経て脱硫装置8に導入され脱硫
される。脱硫装置8出口ガスは再加熱器9で昇温された
後、煙突10から排出される。再加熱器9には熱回収器
4から熱媒連絡管11を介してボイラ排ガスの熱が供給
され、ガスの昇温ができる。また、脱硫装置8やBUF
7の故障により、運転が継続できなくなったとき、再加
熱器9出口側のダクトとBUF7入口側のダクトを結ぶ
バイパス煙道12のバイパスダンパ13を全開し、ボイ
ラ排ガスをバイパス煙道12を経て煙突10から排出
し、ボイラ1内のドラフトの上昇を防止できるようにな
っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. Example 1 FIG. 1 shows a ventilation system diagram of an exhaust gas purification system according to a first example of the present invention. Exhaust gas from the boiler 1 that has passed through the denitration device 2, the air preheater 3, the heat recovery device 4, and the electrostatic precipitator 5 is introduced into the desulfurization device 8 via the IDF 6 and the BUF 7, and is desulfurized. The gas discharged from the desulfurizer 8 is heated by the reheater 9 and then discharged from the chimney 10. The heat of the boiler exhaust gas is supplied to the reheater 9 from the heat recovery device 4 via the heat medium communication pipe 11, and the temperature of the gas can be raised. In addition, the desulfurization device 8 and BUF
When the operation cannot be continued due to the failure of No. 7, the bypass damper 13 of the bypass flue 12 connecting the duct on the outlet side of the reheater 9 and the duct on the inlet side of the BUF 7 is fully opened, and the boiler exhaust gas is passed through the bypass flue 12. The draft is discharged from the chimney 10 and can be prevented from rising in the boiler 1.

【0017】本実施例の場合には、ボイラ1に供給する
空気系統において、FDF14出口と空気予熱器3の間
に一次空気予熱器16が設けられており、一次空気予熱
器入口ダンパ18と出口ダンパ19および一次空気予熱
器16をバイパスする風道20および該風道20内にダ
ンパ21が設置されている。この一次空気予熱器16の
熱源として熱回収器4での回収熱を使用するため、一次
空気予熱器16と熱回収器4を熱媒連絡管17で接続す
る。さらに熱回収器4と再加熱器9を接続する熱媒連絡
管11に切替弁22を、熱回収器4と一次空気予熱器1
6を接続する熱媒連絡管17に切替弁23を設ける。
In the case of the present embodiment, in the air system supplied to the boiler 1, a primary air preheater 16 is provided between the outlet of the FDF 14 and the air preheater 3, and a primary air preheater inlet damper 18 and an outlet are provided. An air passage 20 that bypasses the damper 19 and the primary air preheater 16 and a damper 21 are installed in the air passage 20. Since the recovered heat in the heat recovery device 4 is used as the heat source of the primary air preheater 16, the primary air preheater 16 and the heat recovery device 4 are connected by the heat medium communication pipe 17. Further, a switching valve 22 is provided in the heat medium connecting pipe 11 connecting the heat recovery device 4 and the reheater 9, and the heat recovery device 4 and the primary air preheater 1 are connected.
A switching valve 23 is provided in the heat medium communication pipe 17 connecting the six.

【0018】上記の構成において、脱硫装置8の運転中
は切替弁22を開き、切替弁23を閉じ、また一次空気
予熱器入口ダンパ18と出口ダンパ19は閉とし、バイ
パスダンパ21は開とする。こうすることにより、熱回
収器4での回収熱は熱媒連絡管11により再加熱器9に
供給され、脱硫装置8出口ガス温度を昇温でき、ボイラ
用空気を昇温すると共に熱回収器4出口ガス温度を低下
させる。また、電気集塵器5へ導入される排ガスは約9
0℃の温度に維持できるので、電気集塵器5の集塵効率
が低下しないし、ボイラ排ガス量も増加しないため、排
ガスをIDF6とBUF7で排出できる。このときバイ
パス煙道12のバイパスダンパ13は全閉で運用され
る。
In the above construction, the switching valve 22 is opened, the switching valve 23 is closed, the primary air preheater inlet damper 18 and the outlet damper 19 are closed, and the bypass damper 21 is opened during the operation of the desulfurization device 8. . By doing so, the heat recovered in the heat recovery device 4 is supplied to the reheater 9 by the heat medium communication pipe 11, the outlet gas temperature of the desulfurization device 8 can be raised, and the temperature of the boiler air is raised and the heat recovery device is also raised. 4 Lower the outlet gas temperature. In addition, the exhaust gas introduced into the electrostatic precipitator 5 is about 9
Since the temperature can be maintained at 0 ° C., the dust collection efficiency of the electrostatic precipitator 5 does not decrease, and the amount of boiler exhaust gas does not increase, so the exhaust gas can be discharged by the IDF 6 and the BUF 7. At this time, the bypass damper 13 of the bypass flue 12 is operated fully closed.

【0019】一方、脱硫装置8、BUF7が停止した時
はバイパスダンパ13は全開となり、ボイラ排ガスはバ
イパス煙道12を経て排出される。このとき切替弁22
は閉、切替弁23は開とし、一次空気予熱器入口ダンパ
18と出口ダンパ19は開とし、バイパスダンパ21を
閉とすることにより、熱回収器4で回収された排熱は熱
媒連絡管17を経て一次空気予熱器16に供給され、ボ
イラ用空気を昇温すると共に熱回収器4出口ガス温度を
低下させる。また、電気集塵器5の集塵効率が低下しな
いし、ボイラ排ガス量も増加しないためIDF6とBU
F7で排ガスを排出できる。これにより、脱硫装置8が
停止した状態でも電気集塵器5へ導入される排ガスは約
90℃の温度に維持できるので、電気集塵器5の集塵効
率が低下しないし、ボイラ排ガス量も増加しないため、
排ガスをIDF6で排出できる。さらに一次空気予熱器
16を経由するボイラ供給空気の温度を高くできること
によりボイラ効率も高くできる効果がある。なお、図1
のシステムにおいて、脱硫前の排ガスを熱回収器4で低
温化させることにより、IDF6とBUF7等は耐食性
の高級材料を使用する必要がある。
On the other hand, when the desulfurization device 8 and the BUF 7 are stopped, the bypass damper 13 is fully opened, and the boiler exhaust gas is discharged through the bypass flue 12. At this time, the switching valve 22
Is closed, the switching valve 23 is opened, the primary air preheater inlet damper 18 and the outlet damper 19 are opened, and the bypass damper 21 is closed, so that the exhaust heat recovered by the heat recovery device 4 is a heat medium communication pipe. It is supplied to the primary air preheater 16 via 17 to raise the temperature of the boiler air and lower the temperature of the gas at the heat recovery device 4 outlet. Moreover, since the dust collection efficiency of the electrostatic precipitator 5 does not decrease and the amount of boiler exhaust gas does not increase, the IDF 6 and BU
Exhaust gas can be discharged at F7. As a result, the exhaust gas introduced into the electrostatic precipitator 5 can be maintained at a temperature of about 90 ° C. even when the desulfurization device 8 is stopped, so the dust collection efficiency of the electrostatic precipitator 5 does not decrease, and the amount of boiler exhaust gas also increases. Because it does not increase,
Exhaust gas can be discharged with IDF6. Furthermore, since the temperature of the boiler supply air passing through the primary air preheater 16 can be increased, the boiler efficiency can be increased. Note that FIG.
In this system, it is necessary to use high-grade corrosion-resistant materials for the IDF 6 and the BUF 7 by lowering the temperature of the exhaust gas before desulfurization by the heat recovery device 4.

【0020】実施例2 本発明の第二の実施例を図2に示す。本実施例におい
て、実施例1と同一機能を備えた部材は実施例1と同一
番号を付し、その説明は省略する。本実施例の場合に
は、再加熱器9の出口に排煙通風機15を設け、かつ、
実施例1の場合と異なり、電気集塵機5の後流側にID
F6とBUF7を設けない。図2では、脱硫装置8が停
止した場合はバイパスダンパ13は全開となり、ボイラ
排ガスはバイパス煙道12を経て排出される。ここで切
替弁22は閉、切替弁23は開とし、一次空気予熱器入
口ダンパ18と出口ダンパ19は開とし、バイパスダン
パ21を閉とすることにより、熱回収器4で回収された
排熱は熱媒連絡管17を経て一次空気予熱器16に供給
され、ボイラ用空気を昇温すると共に熱回収器4出口ガ
ス温度を低下させる。したがって、電気集塵器5へ導入
される排ガスは約90℃の温度に維持できるので、電気
集塵器5の集塵効率が低下しないし、ボイラ排ガス量も
増加しないため排煙通風機15で処理ガスの排出は可能
となる。さらに一次空気予熱器16を経由するボイラ供
給空気の温度を高くできることによりボイラ効率も高く
できる効果がある。また、熱回収器4出口ではガス温度
が90℃であり、SOx濃度も高いため腐食性のガスで
あるのに対し、再加熱器9出口は脱硫装置8で脱硫さ
れ、再加熱器9で昇温された排ガスのため腐食性がなく
排煙通風機15は耐食性を考慮した高級材料を使用する
必要がなく、運転の信頼性も高い。
Embodiment 2 A second embodiment of the present invention is shown in FIG. In the present embodiment, members having the same functions as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted. In the case of this embodiment, a flue gas blower 15 is provided at the outlet of the reheater 9, and
Unlike the case of the first embodiment, the ID is provided on the downstream side of the electrostatic precipitator 5.
F6 and BUF7 are not provided. In FIG. 2, when the desulfurization device 8 is stopped, the bypass damper 13 is fully opened and the boiler exhaust gas is discharged through the bypass flue 12. Here, the switching valve 22 is closed, the switching valve 23 is opened, the primary air preheater inlet damper 18 and the outlet damper 19 are opened, and the bypass damper 21 is closed, whereby the exhaust heat recovered by the heat recovery device 4 is recovered. Is supplied to the primary air preheater 16 via the heat medium communication pipe 17, raises the temperature of the boiler air, and lowers the gas temperature at the outlet of the heat recovery device 4. Therefore, since the exhaust gas introduced into the electrostatic precipitator 5 can be maintained at a temperature of about 90 ° C., the dust collection efficiency of the electrostatic precipitator 5 does not decrease, and the amount of boiler exhaust gas does not increase. The processing gas can be discharged. Furthermore, since the temperature of the boiler supply air passing through the primary air preheater 16 can be increased, the boiler efficiency can be increased. Further, the gas temperature at the outlet of the heat recovery device 4 is 90 ° C., and the SOx concentration is also high, so it is a corrosive gas, whereas the outlet of the reheater 9 is desulfurized by the desulfurization device 8 and rises at the reheater 9. Since the exhaust gas is heated, it is not corrosive and the flue gas ventilator 15 does not need to use a high-grade material in consideration of corrosion resistance, and its operation reliability is high.

【0021】実施例3 本発明の第三の実施例を図3に示す。本実施例の場合に
は、実施例1との相違点はBUF7を省略していること
である。その他の構成については実施例1に記載したも
のと同一機能を有するものは同一番号を付し、その説明
は省略する。図3に示すように、脱硫装置8のバイパス
煙道12にはバイパスダンパ13を二重に設置してお
り、脱硫装置8の運転時には二重のバイパスダンパ13
間の圧力が脱硫装置8入口側よりも高くなるように、昇
圧ファン25で昇圧された大気を空気吹き込み調整ダン
パ26および差圧計27で調整し、空気吹き込みライン
28より二重のバイパスダンパ13間に吹き込む。二重
のバイパスダンパ13間に空気を吹き込み、脱硫装置8
入口側よりも二重のバイパスダンパ13間の圧力が高く
なるように設定することにより、脱硫装置8入口側へ空
気はリークするが、脱硫装置8入口側の排ガスがバイパ
スダンパ13をリークすることを防いでいる。なお、脱
硫装置8の運転停止時はバイパスダンパ13は全開とな
り、ボイラ排ガスはバイパス煙道12を経て排出され
る。ここで切替弁22は閉、切替弁23は開とし、一次
空気予熱器入口ダンパ18と出口ダンパ19は開とし、
バイパスダンパ21を閉とすることにより、熱回収器4
で回収された排熱は熱媒連絡管17を経て一次空気予熱
器16に供給され、ボイラ用空気を昇温すると共に熱回
収器4出口ガス温度を低下させる。
Embodiment 3 FIG. 3 shows a third embodiment of the present invention. In the case of this embodiment, the difference from the first embodiment is that the BUF 7 is omitted. With respect to other configurations, those having the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. As shown in FIG. 3, double bypass dampers 13 are installed in the bypass flue 12 of the desulfurization device 8, and when the desulfurization device 8 is operating, the double bypass damper 13 is installed.
The atmospheric pressure boosted by the pressure boosting fan 25 is adjusted by the air blowing adjustment damper 26 and the differential pressure gauge 27 so that the pressure between them becomes higher than that at the inlet side of the desulfurization device 8. Blow into. Air is blown between the double bypass dampers 13 and the desulfurization device 8
By setting the pressure between the double bypass dampers 13 to be higher than that on the inlet side, air leaks to the inlet side of the desulfurization device 8 but exhaust gas on the inlet side of the desulfurization device 8 leaks to the bypass damper 13. Is preventing. When the desulfurizer 8 is stopped, the bypass damper 13 is fully opened and the boiler exhaust gas is discharged through the bypass flue 12. Here, the switching valve 22 is closed, the switching valve 23 is opened, the primary air preheater inlet damper 18 and the outlet damper 19 are opened,
By closing the bypass damper 21, the heat recovery device 4
The exhaust heat recovered in (1) is supplied to the primary air preheater 16 via the heat medium communication pipe 17, raises the temperature of the boiler air, and lowers the heat recovery device 4 outlet gas temperature.

【0022】本実施例の試験 本実施例の効果を明確にするため7000mN/hの
フローモデル試験装置を用いて試験を行った。本試験装
置はボイラ排ガスの替わりに空気にSO2ガスを混入し
たものを用いておりIDF6入口から煙突10の出口ま
でのダクトフローを模擬したものである。試験条件は下
記の通りである。 ガス量 7000m3N/h SO2濃度 700ppm IDF出口風圧 350mmH2O 脱硫装置脱硫率 90% 本試験ではバイパスダンパ13の脱硫装置8入口側圧力
とSO2濃度、二重のバイパスダンパ13間のダクト圧
力とSO2濃度、そして脱硫装置8出口側の圧力とSO2
濃度を測定している。試験結果を表1に示す。
Test of this Example In order to clarify the effect of this example, a test was conducted using a flow model test device of 7000 m 3 N / h. This test apparatus uses air mixed with SO 2 gas instead of boiler exhaust gas, and simulates the duct flow from the IDF 6 inlet to the chimney 10 outlet. The test conditions are as follows. Gas amount 7000 m 3 N / h SO 2 concentration 700 ppm IDF outlet wind pressure 350 mm H 2 O desulfurization device desulfurization rate 90% In this test, the desulfurization device 8 inlet side pressure of the bypass damper 13 and SO 2 concentration, the duct between the double bypass dampers 13 Pressure and SO 2 concentration, and pressure on the outlet side of the desulfurizer 8 and SO 2
The concentration is being measured. The test results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】条件1は二重のバイパスダンパ13間のダ
クトに空気を吹き込まない場合であり、この条件では脱
硫装置8入口排ガスの一部が出口側へリークしており二
重ダンパ13間のダクトおよび脱硫装置8出口のダクト
のSO2濃度は高くなった。しかし、二重ダンパ13間
のダクトに空気を吹き込み、脱硫装置8入口側ダクトの
圧力よりも二重ダンパ13間のダクトの圧力が高くなる
ように設定した条件2、3では二重ダンパ13間のダク
トのSO2濃度は0ppmであり脱硫装置8出口のSO2
濃度も低くなっており、二重ダンパ13の排ガスのリー
クが無いことを確認できた。
The condition 1 is a case where air is not blown into the duct between the double bypass dampers 13, and under this condition, a part of the exhaust gas at the inlet of the desulfurization device 8 leaks to the outlet side and the duct between the double dampers 13 is And the SO 2 concentration in the duct at the outlet of the desulfurizer 8 became high. However, under the conditions 2 and 3 in which air is blown into the duct between the double dampers 13 and the pressure of the duct between the double dampers 13 is set higher than the pressure of the inlet side duct of the desulfurization device 8, the space between the double dampers 13 is increased. 's SO 2 concentration in the duct is 0ppm desulfurizer 8 outlet of SO 2
The concentration was also low, and it was confirmed that the exhaust gas of the double damper 13 did not leak.

【0025】[0025]

【発明の効果】本発明によれば、脱硫装置停止時にも集
塵器の前流に配置される熱回収器で回収される排ガスの
熱を一次空気予熱器で回収することができ、集塵器へ導
入される排ガス温度の上昇を抑えることができるので、
集塵器、IDFのファン容量を大きくすることなくボイ
ラの運転も継続できる。また、脱硫装置停止時用の脱硫
装置バイパスラインのバイパスダンパ部で通常運転時に
脱硫装置入口排ガスが出口側のダクトへリークすること
がないので、脱硫装置の効率を高めることができる効果
がある。
According to the present invention, even when the desulfurizer is stopped, the heat of the exhaust gas recovered by the heat recovery device arranged in the upstream of the dust collector can be recovered by the primary air preheater, and the dust collector can be used. Since it is possible to suppress the rise in the temperature of the exhaust gas introduced into the reactor,
The boiler operation can be continued without increasing the fan capacity of the dust collector and IDF. Further, the desulfurization device bypass line for stopping the desulfurization device does not leak the desulfurization device inlet exhaust gas to the outlet side duct at the time of normal operation in the bypass damper part, so that the efficiency of the desulfurization device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1からなる排ガス浄化システ
ムの系統図である。
FIG. 1 is a system diagram of an exhaust gas purification system according to a first embodiment of the present invention.

【図2】 本発明の実施例2からなる排ガス浄化システ
ムの系統図である。
FIG. 2 is a system diagram of an exhaust gas purification system according to a second embodiment of the present invention.

【図3】 本発明の実施例3からなる排ガス浄化システ
ムの系統図である。
FIG. 3 is a system diagram of an exhaust gas purifying system according to a third embodiment of the present invention.

【図4】 従来技術からなる排ガス浄化システムの系統
図である。
FIG. 4 is a system diagram of an exhaust gas purification system according to a conventional technique.

【図5】 従来技術からなる排ガス浄化システムの系統
図である。
FIG. 5 is a system diagram of an exhaust gas purification system according to a conventional technique.

【符号の説明】[Explanation of symbols]

1…ボイラ、2…脱硝装置、3…空気予熱器、4…熱回
収器、5…電気集塵器、6…誘引通風機(IDF)、7
…脱硫通風機(BUF)、8…脱硫装置、9…再加熱
器、11、17…熱媒連絡管、12…バイパス煙道、1
3…バイパスダンパ、15…排煙通風機、16…一次空
気予熱器、27…差圧計、28…空気吹き込みライン
1 ... Boiler, 2 ... Denitration device, 3 ... Air preheater, 4 ... Heat recovery device, 5 ... Electrostatic precipitator, 6 ... Induction draft fan (IDF), 7
Desulfurization fan (BUF), 8 ... Desulfurization device, 9 ... Reheater, 11, 17 ... Heat medium connecting pipe, 12 ... Bypass flue, 1
3 ... Bypass damper, 15 ... Smoke exhaust fan, 16 ... Primary air preheater, 27 ... Differential pressure gauge, 28 ... Air blowing line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野澤 滋 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Nozawa 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ等の燃焼装置から排出する排ガス
中の有害物質を除去するために、排ガス中のばいじんを
集塵器で除いた後に、脱硫装置で脱硫処理し、再加熱器
で昇温後、大気中に排出する排ガス浄化装置において、 排ガスダクトの集塵器の直前部に配置される熱回収器
と、 浄化処理前の排ガスと燃焼装置用の空気との熱交換用の
空気予熱器の前流側の空気ダクトに設けられる一次空気
予熱器と、 脱硫装置の運転停止時に排ガスを脱硫装置と再加熱器と
を迂回させて大気中に排出するために、集塵器出口と再
加熱器出口の排ガスダクトを連結し、ガス流れを遮断で
きる1台以上のバイパスダンパを備えたバイパスライン
と、 前記熱回収器と前記一次空気予熱器、および前記熱回収
器と前記再加熱器との間にそれぞれ流量調節弁を設けら
れる熱媒連絡管と、を備えたことを特徴とする排ガス浄
化装置。
1. In order to remove harmful substances in exhaust gas discharged from a combustion device such as a boiler, after removing dust in the exhaust gas with a dust collector, desulfurization is performed with a desulfurization device and temperature is raised with a reheater. Afterwards, in the exhaust gas purification device that discharges to the atmosphere, a heat recovery device that is placed immediately before the dust collector of the exhaust gas duct, and an air preheater for heat exchange between the exhaust gas before purification treatment and the air for the combustion device. In order to discharge the exhaust gas into the atmosphere by bypassing the desulfurization device and the reheater when the operation of the primary air preheater and the desulfurization device in the air duct on the upstream side of the A bypass line that connects exhaust gas ducts at the outlet of the unit and that includes one or more bypass dampers that can block the gas flow; and the heat recovery unit and the primary air preheater, and the heat recovery unit and the reheater. Flow rate control valves installed between Exhaust gas purifying apparatus comprising: the heating medium connecting tube, a being.
【請求項2】 バイパスラインのバイパスダンパを二重
とし、該二重バイパスダンパ間に空気を吹き込むことで
該バイパスダンパをシールすることを特徴とする請求項
1記載の排ガス浄化装置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the bypass damper of the bypass line is doubled, and the bypass damper is sealed by blowing air between the double bypass dampers.
【請求項3】 脱硫装置入口側の排ガスダクトと二重バ
イパスダンパ間の排ガスダクトとの差圧を計測する差圧
計と、該差圧計による計測値に基づき、二重のバイパス
ダンパ間の排ガスダクトの内圧が脱硫装置入口側の排ガ
スダクトの圧力よりも高くなるように、二重のバイパス
ダンパ間の排ガスダクトに吹き込む空気量を制御する制
御装置を備えたことを特徴とする請求項2記載の排ガス
浄化装置。
3. A differential pressure gauge for measuring the differential pressure between the exhaust gas duct on the inlet side of the desulfurizer and the exhaust gas duct between the double bypass dampers, and the exhaust gas duct between the double bypass dampers based on the measurement value by the differential pressure gauge. The control device for controlling the amount of air blown into the exhaust gas duct between the double bypass dampers is provided so that the internal pressure of the exhaust gas becomes higher than the pressure of the exhaust gas duct on the inlet side of the desulfurization device. Exhaust gas purification device.
【請求項4】 請求項1記載の排ガス浄化装置に、熱回
収器と脱硫装置の間の排ガスダクトに、大気中に脱硫処
理後のガスを排出するのに必要なガスの昇圧用の通風機
を配置したことを特徴とする排ガス浄化装置。
4. The exhaust gas purifying apparatus according to claim 1, wherein an exhaust gas duct between the heat recovery device and the desulfurization apparatus is provided with a ventilator for pressurizing the gas required for discharging the gas after desulfurization treatment into the atmosphere. The exhaust gas purifying device is characterized in that.
【請求項5】 請求項1記載の排ガス浄化装置に、大気
中に脱硫処理後のガスを排出するのに必要なガスの排煙
通風機を再加熱器の後流部の排ガスダクトに配置したこ
とを特徴とする排ガス浄化装置。
5. The exhaust gas purifying apparatus according to claim 1, wherein a flue gas ventilator for gas required for discharging the gas after desulfurization treatment to the atmosphere is arranged in an exhaust gas duct at a downstream portion of the reheater. An exhaust gas purification device characterized in that
【請求項6】 請求項1記載の排ガス浄化装置を通常の
排ガス浄化処理運転時には熱回収器と再加熱器との間に
設けられる熱媒連絡管を連通状態とし、熱回収器と一次
空気予熱器との間に設けられる熱媒連絡管は非連通状態
とし、脱硫装置の運転停止時には熱回収器と再加熱器の
間に設けられる熱媒連絡管は非連通状態とし、熱回収器
と一次空気予熱器の間に設けられる熱媒連絡管を連通状
態とすることを特徴とする排ガス浄化装置の運転方法。
6. The exhaust gas purifying apparatus according to claim 1, during a normal exhaust gas purification treatment operation, a heat medium communication pipe provided between the heat recovery device and the reheater is in a communication state, and the heat recovery device and the primary air preheating are performed. The heat medium communication pipe provided between the heat recovery unit and the reheater is not in communication with the heat medium communication pipe provided between the heat recovery unit and the reheater when the desulfurization equipment is not operating. An operating method of an exhaust gas purifying device, characterized in that a heat medium communication pipe provided between air preheaters is in a communication state.
JP22731793A 1993-09-13 1993-09-13 Exhaust gas purifier and its operation method Expired - Fee Related JP3408845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22731793A JP3408845B2 (en) 1993-09-13 1993-09-13 Exhaust gas purifier and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22731793A JP3408845B2 (en) 1993-09-13 1993-09-13 Exhaust gas purifier and its operation method

Publications (2)

Publication Number Publication Date
JPH0780242A true JPH0780242A (en) 1995-03-28
JP3408845B2 JP3408845B2 (en) 2003-05-19

Family

ID=16858912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22731793A Expired - Fee Related JP3408845B2 (en) 1993-09-13 1993-09-13 Exhaust gas purifier and its operation method

Country Status (1)

Country Link
JP (1) JP3408845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138019A (en) * 2017-07-12 2017-09-08 云汇环保科技南通有限公司 A kind of volatile organic compounds purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH0147684B2 (en) * 1982-01-13 1989-10-16 Mitsubishi Heavy Ind Ltd
JPH01273910A (en) * 1988-04-26 1989-11-01 Mitsubishi Heavy Ind Ltd Operation method for exhaust gas heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0147684B2 (en) * 1982-01-13 1989-10-16 Mitsubishi Heavy Ind Ltd
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH01273910A (en) * 1988-04-26 1989-11-01 Mitsubishi Heavy Ind Ltd Operation method for exhaust gas heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138019A (en) * 2017-07-12 2017-09-08 云汇环保科技南通有限公司 A kind of volatile organic compounds purifier

Also Published As

Publication number Publication date
JP3408845B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
CN110036238B (en) Method and system for improving boiler effectiveness
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
KR20050057282A (en) Exhaust smoke-processing system
CN102671538A (en) Deep energy-saving system based on optimization of flue gas desulfurization and denitration technology
CN218209606U (en) RTO waste gas recovery clean system
CN106090971A (en) A kind of combined steam flue gas MGGH system and method
CN106123002A (en) A kind of flue gas MGGH system and method using condensation water heat exchange
US5282429A (en) Method and system for handling exhaust gas in a boiler
EP0498020B1 (en) Method and system for handling exhaust gas in a boiler
CN210088912U (en) Tubular air preheater capable of preventing ammonium bisulfate from being blocked
JPH0828855A (en) Exhaust gas desulfurizing apparatus
JP3408845B2 (en) Exhaust gas purifier and its operation method
JP2002370012A (en) Exhaust gas treatment apparatus
KR19980032281A (en) Exhaust gas treatment system by rotary regenerative heat exchanger
CN208504432U (en) A kind of desulfurizing tower chimney neck seal device
JP3544432B2 (en) Exhaust gas treatment equipment and its operation method
WO2018048096A1 (en) Boiler equipment and operation method therefor
CN209173734U (en) A kind of cooling protection system being applicable in activated coke dry method
CN207351232U (en) A kind of coking flue gas purification system
CN105889895A (en) Economizer increasing fume temperature at SCR inlet by changing areas and flowing modes
JPH05293335A (en) Treating equipment for exhaust gas of waste incinerator and treatment of exhaust gas
CN210772276U (en) Zero leakage system of flue butterfly valve
CN109157974A (en) A kind of cooling protection system and method being applicable in activated coke dry method
JPS6223423A (en) Method for controlling wet type waste gas desulfurization apparatus
JPS5843320A (en) Denitrifying apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees