JPH0780061B2 - Method for producing titanium clad steel sheet with excellent bondability - Google Patents

Method for producing titanium clad steel sheet with excellent bondability

Info

Publication number
JPH0780061B2
JPH0780061B2 JP63140088A JP14008888A JPH0780061B2 JP H0780061 B2 JPH0780061 B2 JP H0780061B2 JP 63140088 A JP63140088 A JP 63140088A JP 14008888 A JP14008888 A JP 14008888A JP H0780061 B2 JPH0780061 B2 JP H0780061B2
Authority
JP
Japan
Prior art keywords
titanium
insert
steel sheet
base material
clad steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63140088A
Other languages
Japanese (ja)
Other versions
JPH01309791A (en
Inventor
謙三郎 瀧沢
晴男 梶
正二 登根
俊明 菅
淳 宮脇
年男 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63140088A priority Critical patent/JPH0780061B2/en
Publication of JPH01309791A publication Critical patent/JPH01309791A/en
Publication of JPH0780061B2 publication Critical patent/JPH0780061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧延接合法によるチタンクラッド鋼板の製造方
法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a titanium clad steel sheet by a rolling joining method.

(従来技術) 従来より、チタンクラッド鋼板の製造法としては、爆着
法、圧延接合法及び爆着圧延法が広く知られている。
(Prior Art) Conventionally, as a method for producing a titanium clad steel sheet, an explosion-bonding method, a roll-bonding method, and an explosion-bonding rolling method are widely known.

しかし、爆着法は、合せ材を爆薬の爆発エネルギーによ
り母材と接合させるため、合せ材と母材の接合界面に炭
化物や金属間化合物などが生成せず、比較的良好な接合
強度が得られるが、種々の要因から薄物や長尺、広幅材
は製造が不可能であり、また大量生産が難しく、コスト
アップにつながるといった問題があった。
However, in the explosive deposition method, the joining material is joined to the base material by the explosive energy of the explosive, so carbides and intermetallic compounds are not generated at the joining interface between the joining material and the base material, and relatively good joining strength is obtained. However, due to various factors, it is impossible to manufacture thin materials, long materials, and wide materials, and mass production is difficult, which causes a problem of cost increase.

また、圧延接合法では、熱間圧延時及びその後の冷却
中、合せ材と母材の接合界面に、Ti、Fe、C等の相互拡
散によって金属間化合物、炭化物、Tiのω変態組織が生
成し、接合性を劣化させるという問題がある。そこで、
このような脆化層を抑制する目的で、合せ材と母材の接
合予定面に種々のインサート材を介在させる方法が試み
られているが、脆化層の生成を防止し得る適切なインサ
ート材が見い出されているとは云い難い。
In the rolling joining method, intermetallic compounds, carbides, and ω transformation structure of Ti are generated at the joining interface between the laminated material and the base material by mutual diffusion during hot rolling and during cooling thereafter. However, there is a problem that the bondability is deteriorated. Therefore,
For the purpose of suppressing such an embrittlement layer, a method of interposing various insert materials on the joining scheduled surfaces of the mating material and the base material has been attempted, but an appropriate insert material capable of preventing the formation of the embrittlement layer It is hard to say that has been found.

更に、爆着圧延法は、爆着と圧延の両工程を要するため
に製造コストが高くなるという問題のほか、加熱中、Ti
中へのFe、C等の拡散に起因して接合力が低下すること
が大きい問題として残されている。
Furthermore, the bombing and rolling method has the problem that the manufacturing cost is high because both the bombing and rolling steps are required,
It remains a big problem that the bonding force is reduced due to diffusion of Fe, C, etc. into the inside.

(発明が解決しようとする課題) 上記各種接合法のうち、圧延接合法における問題点を更
に詳細に説明すると、以下のとおりである。
(Problems to be Solved by the Invention) Of the various joining methods described above, the problems in the rolling joining method will be described in more detail below.

圧延接合法では、前述の如く合せ材(チタン)と母材
(炭素鋼)の接合界面に生成する脆化層を防止する方法
として、フェライト系ステンレス鋼、マルテンサイト系
ステンレス鋼、Nb、Ta、Mo、V等の薄板又は箔をインサ
ート材として介在させる方法が提案されている。この方
法によれば、合せ材と母材の間の相互拡散によるTiC等
の炭化物や金属間化合物の生成を抑えることは可能であ
るが、Tiのω変態組織の生成を防止するには十分でな
い。
In the rolling joining method, as described above, as a method for preventing the embrittlement layer generated at the joining interface between the laminated material (titanium) and the base material (carbon steel), ferritic stainless steel, martensitic stainless steel, Nb, Ta, A method of interposing a thin plate or foil such as Mo or V as an insert material has been proposed. According to this method, it is possible to suppress the formation of carbides such as TiC and intermetallic compounds due to the mutual diffusion between the laminated material and the base material, but it is not sufficient to prevent the formation of the ω transformation structure of Ti. .

すなわち、これらインサート材に含有されるCr、Nb、T
a、Mo、V等のβ安定化元素が合せ材中へ拡散移行する
と、チタンのα−β変態温度を下降させてβ相領域を拡
げ、合せ材の接合界面近傍の組織がα相に富むことにな
る。その結果、圧延後の連続冷却過程において、β相が
α相に変態する際に中間遷移相であるω相が生成した
り、室温まで持ち来たされた残留βが施工時の加熱によ
り分解する過程でω相が生成し、接合界面は非常に硬く
且つ脆くなり、接合性は極めて悪くなるという問題があ
る。
That is, Cr, Nb, T contained in these insert materials
When β-stabilizing elements such as a, Mo, and V diffuse and migrate into the composite, the α-β transformation temperature of titanium is lowered to expand the β-phase region, and the structure near the bonding interface of the composite is rich in α-phase. It will be. As a result, in the continuous cooling process after rolling, the ω phase, which is an intermediate transition phase, is generated when the β phase is transformed into the α phase, and the residual β brought to room temperature is decomposed by heating during construction. There is a problem that the ω phase is generated in the process, the bonding interface becomes very hard and brittle, and the bondability becomes extremely poor.

本発明の目的は、従来の圧延接合法によるチタンクラッ
ド鋼板の製造おける上記欠点を解消し、優れた接合性を
有するチタンクラッド鋼板の製造方法を提供することに
ある。
An object of the present invention is to provide a method for manufacturing a titanium clad steel sheet having excellent bondability by solving the above-mentioned drawbacks in the conventional manufacturing of a titanium clad steel sheet by a rolling bonding method.

(課題を解決するための手段) 上記目的を達成するため、本発明者らは、従来の圧延接
合法の欠点を解消でき、接合性を向上し得る新たな方策
を見い出すべく鋭意研究を重ねた結果、インサート材の
態様が接合性に大きく影響を及ぼす要因であることに鑑
みて、少なくとも2種類のインサート材を使用する態様
で、しかもそれぞれが異なる特定の材質のインサート材
とすることにより、可能であることを見い出し、ここに
本発明をなしたものである。
(Means for Solving the Problem) In order to achieve the above object, the present inventors have conducted earnest research to find a new method capable of solving the drawbacks of the conventional roll bonding method and improving the bondability. As a result, in view of the fact that the form of the insert material greatly affects the bondability, it is possible to use at least two types of insert materials, and by using insert materials of different specific materials. That is, the present invention is made here.

すなわち、本発明に係る接合性の優れたチタンクラッド
鋼板の製造方法は、要するに、チタン又はチタン合金を
合せ材とし、炭素鋼を母材としたチタンクラッド鋼板を
圧延接合法によって製造するに当り、合せ材と母材の接
合予定面に、母材側に第1インサート材としてフェライ
ト系ステンレス鋼、マルテンサイト系ステンレス鋼、極
低炭素鋼、Nb、Ta、Fe、Mo、Cr、V及びNiのうちの1種
又は2種以上を介在させ、更に合せ材側に第2インサー
ト材としてα型チタン合金又はα+β型チタン合金を介
在させることを特徴とするものである。
That is, the method for producing a titanium clad steel sheet having excellent bondability according to the present invention is, in short, a titanium or titanium alloy as a composite material, in producing a titanium clad steel sheet having a carbon steel as a base material by a rolling joining method, Ferrite stainless steel, martensitic stainless steel, ultra-low carbon steel, Nb, Ta, Fe, Mo, Cr, V and Ni are used as the first insert material on the base material side of the joining surface of the laminated material and the base material. One or two or more of them are interposed, and an α-type titanium alloy or an α + β-type titanium alloy is further interposed as a second insert material on the mating material side.

(作用) 以下に本発明を更に詳細に説明する。なお、便宜上「チ
タン又はチタン合金」を総称して「チタン」と称する。
(Operation) The present invention will be described in more detail below. For convenience, "titanium or titanium alloy" is generically referred to as "titanium".

本発明は、圧延接合に際し、第1図に示す如く母材1側
に第1インサート材31を、合せ材2側に第2インサート
材32をそれぞれ介在させることが特徴の1つである。
One of the features of the present invention is that the first insert material 3 1 is interposed on the base material 1 side and the second insert material 3 2 is interposed on the mating material 2 side during roll bonding as shown in FIG. .

この第1インサート材は、母材(炭素鋼)中のFe、Cが
合せ材側へ拡散移行するのを防止し、TiC等の炭化物、T
i-Fe系金属間化合物が生成するのを抑制する効果を有す
るものである。
This first insert material prevents Fe and C in the base material (carbon steel) from diffusing and transferring to the side of the composite material, and carbides such as TiC and T
It has the effect of suppressing the formation of i-Fe-based intermetallic compounds.

このため、第1インサート材としては、フェライト系ス
テンレス鋼、マルテンサイト系ステンレス鋼、極低炭素
鋼、Nb、Ta、Fe、Mo、Cr、V及びNiのうちの1種又は2
種以上を薄板状、箔状当で使用する。
Therefore, as the first insert material, one or two of ferritic stainless steel, martensitic stainless steel, ultra low carbon steel, Nb, Ta, Fe, Mo, Cr, V and Ni is used.
The seeds or more are used in the form of thin plate or foil.

例えば、1種類だけ使用する場合は、フェライト系ステ
ンレス鋼、マルテンサイト系ステンレス鋼、Nb、Ta、M
o、Cr又はVのいずれかを母材側に挿入することによ
り、金属間化合物が生成せず、またCの拡散も阻止する
ことができる。更にCの拡散阻止の効果を増大させるた
めには、Cの拡散阻止効果のより大きいNi、Fe又は極低
炭素鋼を用いればよいが、これらの薄板又は箔を単独で
使用すると、チタンとの接合界面に金属間化合物が生成
し易いため、フェライト系ステンレス鋼、マルテンサイ
ト系ステンレス鋼、Mo、Cr及びVの1種又は2種以上を
更にその上に重ね合わせて使用することにより、脆化層
の生成防止の効果を増大させることができる。
For example, when only one type is used, ferritic stainless steel, martensitic stainless steel, Nb, Ta, M
By inserting any one of o, Cr, and V on the base metal side, an intermetallic compound is not generated and C diffusion can be prevented. In order to further increase the diffusion inhibition effect of C, Ni, Fe or ultra-low carbon steel having a larger diffusion inhibition effect of C may be used. However, when these thin plates or foils are used alone, they are Since an intermetallic compound is easily generated at the joint interface, embrittlement occurs by using one or more of ferritic stainless steel, martensitic stainless steel, Mo, Cr and V on top of it. The effect of preventing the formation of layers can be increased.

次に、第2インサート材は、合せ材(チタン又はチタン
合金)側に、すなわち、前述の第1インサート材と合せ
材の間に介在させるものである。
Next, the second insert material is interposed on the side of the composite material (titanium or titanium alloy), that is, between the first insert material and the composite material.

第1インサート材中のCr、Fe、Mo、V、Niの元素はチタ
ンに対してβ安定化元素であるため、チタン中にこれら
の元素が拡散するとチタンのα−β変態温度を下降させ
てβ相領域を拡げることになる。そこで、第2インサー
ト材としてα型チタン合金又はα+β型チタン合金を併
用することにより、2つの効果が得られる。その1つ
は、これらの中に含有されるα安定化元素が、チタンの
α−β変態温度を上昇させることによりα相領域を拡大
させ、β相の生成を抑える効果である。もう1つの効果
は、α安定化元素により、仮りに室温までβ相が残留し
たとしても、再加熱時のβ→ω変態を抑制することがで
きる効果である。
Since the elements of Cr, Fe, Mo, V, and Ni in the first insert material are β-stabilizing elements with respect to titanium, if these elements diffuse into titanium, the α-β transformation temperature of titanium is lowered. The β-phase region will be expanded. Therefore, by using the α-type titanium alloy or the α + β-type titanium alloy together as the second insert material, two effects can be obtained. One of them is that the α-stabilizing element contained therein increases the α-β transformation temperature of titanium, thereby expanding the α-phase region and suppressing the production of β-phase. Another effect is that the α-stabilizing element can suppress the β → ω transformation during reheating even if the β phase remains at room temperature.

なお、母材としての炭素鋼の材質は制限されず、同様
に、合せ材としてのチタンは勿論のこと、チタン合金の
材質も制限されないことは云うまでもない。また本圧延
接合法における条件も特に制約はない。
It is needless to say that the material of the carbon steel as the base material is not limited, and similarly, the material of the titanium alloy as well as the material of the titanium alloy is not limited. Further, there are no particular restrictions on the conditions in the present rolling joining method.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 母材及び合せ材として、それぞれSS41及びTP35に相当す
る下記組成のものを用いた。なお、組成は重量%であ
る。
(Example) As the base material and the composite material, those having the following compositions corresponding to SS41 and TP35 were used. The composition is% by weight.

母材…C:0.12% Si:0.25% Mn:1.10% P:0.012% S:0.007% Fe:残部 合せ材…H:0.004% O:0.13% N:0.005% Fe:0.05% Ti:残部 まず、上記母材と合せ材の間にインサート材として第1
表に示す材質のもの{Ni箔、Fe箔、V箔、フェライト系
ステンレス鋼(SUS405)、α型チタン合金(Ti-5%Al-
2.5%Sn)、α+β型チタン合金(Ti-6%Al-4%V)}
を挿入し、第1図に示す構造体を製作した。
Base material: C: 0.12% Si: 0.25% Mn: 1.10% P: 0.012% S: 0.007% Fe: Remainder Material: H: 0.004% O: 0.13% N: 0.005% Fe: 0.05% Ti: Remainder First, First insert material between the base material and the laminated material
Materials shown in the table {Ni foil, Fe foil, V foil, ferritic stainless steel (SUS405), α type titanium alloy (Ti-5% Al-
2.5% Sn), α + β type titanium alloy (Ti-6% Al-4% V)}
Was inserted to produce the structure shown in FIG.

なお、第1図に示す構造体は、一対の母材1の間にイン
サート材3を介して合せ材2を配置し、これら合せ材2
の間に分離材4を挿入した構造であって、両端部は枠体
5を介挿して拘束溶接6が施されている(但し、一方に
は脱気孔7が設けられている)。
In the structure shown in FIG. 1, the composite material 2 is arranged between the pair of base materials 1 with the insert material 3 interposed therebetween.
The separating member 4 is inserted between the two, and both ends are inserted with the frame body 5 and restraint welding 6 is applied (however, the degassing hole 7 is provided in one side).

また、比較のため、インサート材としてマルテンサイト
系ステンレス鋼(SUS403)、Mo箔、Ni箔を挿入した構造
体を同様にして製作した。
Further, for comparison, a structure in which martensitic stainless steel (SUS403), Mo foil, and Ni foil were inserted as insert materials was manufactured in the same manner.

次いで、この構造体の内部の真空度を10-2Torrとして85
0℃、圧下比9の条件下で加熱・圧延を行い、チタンク
ラッド鋼板を製作した。
Then, the degree of vacuum inside the structure is set to 10 -2 Torr and
The titanium clad steel plate was manufactured by heating and rolling under conditions of 0 ° C. and a reduction ratio of 9.

得られたチタンクラッド鋼板について、JIS G 3603に準
拠して剪断試験及び曲げ試験を行った。なお、曲げ試験
は側曲げとし、曲げ角度は180℃、曲げ半径R=2.0t
(t:板厚)とした。
A shearing test and a bending test were performed on the obtained titanium clad steel plate in accordance with JIS G 3603. The bending test is side bending, the bending angle is 180 ° C, and the bending radius R = 2.0t.
(T: plate thickness).

その結果を第1表に併記する。The results are also shown in Table 1.

同表より明らかなように、本発明例は、従来例に比べ、
剪断強さが高く、側曲げでも接合界面が全く剥離せず、
優れた接合性能を有している。
As is clear from the table, the example of the present invention, compared with the conventional example,
High shear strength, the joint interface does not peel off even when bent sideways,
It has excellent bonding performance.

(発明の効果) 以上詳述したように、本発明によれば、母材と合せ材と
の接合界面近傍には炭化物、金属間化合物、ω相等の脆
化相が生成することがなく、優れた接合性を有するチタ
ンクラッド鋼板を安定して得ることができる。また、爆
着法では製造困難な広幅、長尺のチタンクラッド鋼板の
製造も可能である。
(Effects of the Invention) As described in detail above, according to the present invention, an embrittlement phase such as a carbide, an intermetallic compound, or an ω phase is not generated in the vicinity of a bonding interface between a base material and a composite material, which is excellent. It is possible to stably obtain a titanium clad steel plate having excellent jointability. Also, it is possible to manufacture a wide and long titanium clad steel plate, which is difficult to manufacture by the bombardment method.

【図面の簡単な説明】 第1図は本発明における圧延接合時の構造体を示す断面
説明図、 第2図は実施例においてチタンクラッド鋼板の製造のた
めに準備した構造体を示す断面説明図である。 1……母材、2……合せ材、3……インサート材、31
…第1インサート材、32……第2インサート材、4……
分離材、5……枠体、6……拘束溶接、7……脱気孔。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional explanatory view showing a structure during rolling and joining in the present invention, and FIG. 2 is a sectional explanatory view showing a structure prepared for manufacturing a titanium clad steel sheet in Examples. Is. 1 ... Base material, 2 ... Laminated material, 3 ... Insert material, 3 1 ...
… First insert, 3 2 …… Second insert, 4 ……
Separation material, 5 ... Frame, 6 ... Restraint welding, 7 ... Degassing hole.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−203376(JP,A) 特開 昭61−297315(JP,A) 特開 昭63−56371(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-203376 (JP, A) JP-A-61-297315 (JP, A) JP-A-63-56371 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタン又はチタン合金を合せ材とし、炭素
鋼を母材としたチタンクラッド鋼板を圧延接合法により
製造するに際し、合せ材と母材の接合予定面に、母材側
に第1インサート材としてフェライト系ステンレス鋼、
マルテンサイト系ステンレス鋼、極低炭素鋼、Nb、Ta、
Fe、Mo、Cr、V及びNiのうちの1種又は2種以上を介在
させ、更に合せ材側に第2インサート材としてα型チタ
ン合金又はα+β型チタン合金を介在させることを特徴
とする接合性の優れたチタンクラッド鋼板の製造方法。
1. When manufacturing a titanium-clad steel sheet using titanium or a titanium alloy as a composite material and carbon steel as a base material by a rolling bonding method, a first material is provided on the base material side on the surface where the composite material and the base material are to be bonded. Ferrite stainless steel as insert material,
Martensitic stainless steel, ultra low carbon steel, Nb, Ta,
Joining characterized by interposing one or more of Fe, Mo, Cr, V and Ni, and further interposing an α-type titanium alloy or α + β-type titanium alloy as a second insert material on the side of the mating material. Method for producing titanium clad steel sheet with excellent properties.
JP63140088A 1988-06-06 1988-06-06 Method for producing titanium clad steel sheet with excellent bondability Expired - Fee Related JPH0780061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63140088A JPH0780061B2 (en) 1988-06-06 1988-06-06 Method for producing titanium clad steel sheet with excellent bondability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63140088A JPH0780061B2 (en) 1988-06-06 1988-06-06 Method for producing titanium clad steel sheet with excellent bondability

Publications (2)

Publication Number Publication Date
JPH01309791A JPH01309791A (en) 1989-12-14
JPH0780061B2 true JPH0780061B2 (en) 1995-08-30

Family

ID=15260676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63140088A Expired - Fee Related JPH0780061B2 (en) 1988-06-06 1988-06-06 Method for producing titanium clad steel sheet with excellent bondability

Country Status (1)

Country Link
JP (1) JPH0780061B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024633A1 (en) * 1997-11-12 1999-05-20 Daido Steel Co., Ltd. Stainless steel coated with intermetallic compound and process for producing the same
KR100411273B1 (en) * 1999-09-28 2003-12-18 주식회사 포스코 A method for cladding Stainless steel and Titanium
US7575418B2 (en) * 2004-09-30 2009-08-18 General Electric Company Erosion and wear resistant protective structures for turbine components
KR101054462B1 (en) * 2008-11-20 2011-08-05 한국수력원자력 주식회사 High strength dissimilar metal joining method between a steel-based alloy using an intermediate layer and a titanium or titanium-based alloy having a joint strength exceeding the strength of the base metal
JP5354202B2 (en) * 2009-12-02 2013-11-27 武生特殊鋼材株式会社 Titanium clad steel blade and manufacturing method thereof
CN111085546A (en) * 2019-12-21 2020-05-01 江苏骏茂新材料科技有限公司 Preparation method of super-large wide alloy plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841685A (en) * 1981-09-07 1983-03-10 Asahi Chem Ind Co Ltd Titanium clad steel
JPS59206183A (en) * 1983-05-09 1984-11-21 Mitsubishi Heavy Ind Ltd Production of titanium or titanium alloy clad steel
JPS60203376A (en) * 1984-03-28 1985-10-14 Nippon Stainless Steel Co Ltd Production of titanium clad material
JPS60203377A (en) * 1984-03-29 1985-10-14 Nippon Stainless Steel Co Ltd Production of titanium clad material

Also Published As

Publication number Publication date
JPH01309791A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
EP0406688B1 (en) Method for manufacturing titanium clad steel plate
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JPH0780061B2 (en) Method for producing titanium clad steel sheet with excellent bondability
JP2877020B2 (en) Manufacturing method of titanium clad thin steel sheet
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
JP2724515B2 (en) Manufacturing method of titanium clad steel sheet with excellent bonding strength
JPS5829589A (en) Manufacture of titanium-clad steel plate
JPH0353074B2 (en)
JP2002069545A (en) METHOD FOR PRODUCING TiAl BASED INTERMETALLIC COMPOUND BY LAMINATE ROLLING
JPS6350113B2 (en)
JPS6039477B2 (en) Manufacturing method of clad steel plate
JPS60238093A (en) Production of composite aluminum-stainless steel material
JPS60203377A (en) Production of titanium clad material
JPH0661629B2 (en) Method for manufacturing titanium clad steel
JPH0471635B2 (en)
JPH0813522B2 (en) Titanium-based metal clad steel and its manufacturing method
JPH0675946B2 (en) Titanium metal clad steel and its manufacturing method
JPS6064786A (en) Production of titanium clad steel
JPH05169283A (en) Manufacture of clad steel sheet
JP3209081B2 (en) Manufacturing method of rolled titanium clad steel sheet
JPH09103890A (en) Manufacture of rolled non-ferrous metal clad steel plate
JPH01150489A (en) Manufacture of thin stainless steel clad sheet
JPH0456718B2 (en)
JPH08276283A (en) Manufacture of titanium clad steel sheet
JPH0760460A (en) Production of rolled aluminum clad foil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees