JP3209081B2 - Manufacturing method of rolled titanium clad steel sheet - Google Patents

Manufacturing method of rolled titanium clad steel sheet

Info

Publication number
JP3209081B2
JP3209081B2 JP7423696A JP7423696A JP3209081B2 JP 3209081 B2 JP3209081 B2 JP 3209081B2 JP 7423696 A JP7423696 A JP 7423696A JP 7423696 A JP7423696 A JP 7423696A JP 3209081 B2 JP3209081 B2 JP 3209081B2
Authority
JP
Japan
Prior art keywords
content
titanium
steel sheet
weight
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7423696A
Other languages
Japanese (ja)
Other versions
JPH09262686A (en
Inventor
英明 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP7423696A priority Critical patent/JP3209081B2/en
Publication of JPH09262686A publication Critical patent/JPH09262686A/en
Application granted granted Critical
Publication of JP3209081B2 publication Critical patent/JP3209081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた接合特性を
有する広幅または厚肉の圧延型チタンクラッド鋼板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a wide or thick rolled titanium clad steel sheet having excellent joining characteristics.

【0002】[0002]

【従来の技術】従来、圧延型チタンクラッド鋼板では、
その製造過程において、母材である炭素鋼と合せ材との
間に、Cu,Cu合金、Ni,Ni合金、極低炭素鋼、
あるいはこれらを組み合わせたものを中間材として用い
ている。
2. Description of the Related Art Conventionally, in rolled titanium clad steel sheets,
In the manufacturing process, Cu, Cu alloy, Ni, Ni alloy, ultra-low carbon steel,
Alternatively, a combination of these is used as an intermediate material.

【0003】これらの中間材は、母材および合せ材中に
含有される元素が拡散し、相手材との界面で脆化相ある
いは低融点相を形成することを抑制している。例えば、
チタンクラッド鋼板における極低炭素鋼の中間材は、母
材中に含有される炭素のチタン材への拡散を阻害し、T
iC等の化合物形成を抑制して接合界面での脆化を防
ぎ、優れた接合性を達成する効果を有している。
In these intermediate materials, the elements contained in the base material and the composite material are prevented from diffusing and forming an embrittlement phase or a low melting point phase at the interface with the counterpart material. For example,
The intermediate material of the ultra-low carbon steel in the titanium clad steel sheet inhibits diffusion of carbon contained in the base material into the titanium material, and
It has the effect of suppressing the formation of a compound such as iC to prevent embrittlement at the bonding interface and achieving excellent bonding properties.

【0004】例えば、特公昭57−55514号、特開
昭62−89588号、特開昭62−158584号、
特開昭62−197285号、特開昭62−22758
6号、特開昭63−56370号、特公平6−7596
4号等の公報に、その製造過程において母材である炭素
鋼と合せ材との間に、Cu、Cu合金、Ni、Ni合
金、極低炭素鋼、あるいはこれらを組み合わせたものを
中間材として適用し、スラブ組み立て、加熱、圧延を行
う方法が開示されている。
For example, JP-B-57-55514, JP-A-62-89588, JP-A-62-158584,
JP-A-62-197285, JP-A-62-22758
No. 6, JP-A-63-56370, JP-B-6-7596
No. 4, etc., in the manufacturing process, between the carbon steel as the base material and the composite material, Cu, Cu alloy, Ni, Ni alloy, ultra-low carbon steel, or a combination thereof as an intermediate material A method of applying, performing slab assembly, heating, and rolling is disclosed.

【0005】さらに、特開平1−309791号公報に
は、母材側にフェライト系ステンレス鋼、マルテンサイ
ト系ステンレス鋼、Nb、Ta、Fe、Mo、Cr、V
およびNiのうち1種または2種以上を介在させ、合せ
材側にα型チタン合金またはα+β型チタン合金を介在
させることにより、接合性の優れたクラッド鋼板を製造
する方法が開示されている。これは、チタンのα安定化
元素を中間材に含有させることにより、母材側の中間材
に含有されるCr、Nb、Ta、Mo、V等のβ安定化
元素が合せ材に拡散して、合せ材界面近傍でβ相を増加
させ、圧延後の冷却過程でβ相が脆弱なω相に変態して
接合性の劣化を招くことを抑制することを意図するもの
であり、これにより接合性の低下を防止しようとするも
のである。
Further, Japanese Patent Application Laid-Open No. 1-309791 discloses that a ferrite stainless steel, a martensitic stainless steel, Nb, Ta, Fe, Mo, Cr, V
A method for producing a clad steel sheet having excellent bonding properties by interposing one or two or more of Ni and Ni and interposing an α-type titanium alloy or an α + β-type titanium alloy on the joining material side is disclosed. This is because the β-stabilizing element such as Cr, Nb, Ta, Mo, and V contained in the intermediate material on the base material side diffuses into the composite material by including the α-stabilizing element of titanium in the intermediate material. The purpose is to increase the β phase near the interface of the composite material and to suppress the β phase from being transformed into a fragile ω phase in the cooling process after rolling and causing the deterioration of the bondability, whereby the bonding It is intended to prevent the deterioration of the property.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
中間材を用いることで化合物形成を抑制して優れた接合
強度を得る技術においても、その圧延時のスラブ加熱温
度に制限があって、比較的低温の圧延加熱温度とならざ
るを得ない。このため、チタンクラッド鋼板において
は、通常製造している3600mm幅材や50mm厚材
ですらスラブ加熱温度が低いために圧延機に対する負荷
が大きくなるという不都合が生じており、このため40
00mm幅を越えるような幅広材や70mmを越えるよ
うな厚肉のチタンクラッド鋼板の製造においては、圧延
機の能力およびスラブ素材の変形抵抗等の観点から現用
設備での製造は困難である。
However, even in the technique of using these intermediate materials to suppress compound formation and obtain excellent bonding strength, the slab heating temperature at the time of rolling is limited and relatively low temperature is required. Rolling heating temperature. For this reason, in the case of a titanium clad steel sheet, even a 3600 mm wide material or a 50 mm thick material that is usually manufactured has a disadvantage that the load on the rolling mill is increased due to the low slab heating temperature, and as a result, 40
In the production of a wide material having a width exceeding 00 mm or a thick titanium clad steel sheet having a thickness exceeding 70 mm, it is difficult to produce with a current facility from the viewpoints of rolling mill capacity and deformation resistance of a slab material.

【0007】つまり、現状の圧延設備を採用してチタン
クラッド鋼板を製造するに際して、Cuを中間材として
採用した場合には、圧延加熱温度が890℃以上である
とTiとCuとにより液相が形成され、圧延時に溶融が
前面および側面から飛散するという不都合が発生する。
また、Niを中間材として使用した場合には、TiとN
iとから構成される脆い金属間化合物が形成され、接合
強度を低下させる不都合がある。さらに、極低炭素鋼を
中間材として採用した場合には、当該中間材にも極微量
ではあるが炭素が含まれているので、圧延加熱温度をチ
タン材のβ変態点以上にすると、チタン材はより炭素の
拡散の速いBCC構造となり、TiCが形成されて接合
強度の低下につながることとなるため、β変態点温度未
満の圧延加熱温度にしなければならない。
That is, when Cu is used as an intermediate material in the production of a titanium clad steel sheet using the current rolling equipment, if the rolling heating temperature is 890 ° C. or higher, the liquid phase is formed by Ti and Cu. This causes the disadvantage that the melt is scattered from the front and side surfaces during rolling.
When Ni is used as an intermediate material, Ti and N
There is a disadvantage that a brittle intermetallic compound composed of i is formed and the bonding strength is reduced. Furthermore, when ultra-low carbon steel is used as the intermediate material, the intermediate material also contains a trace amount of carbon, so if the rolling heating temperature is higher than the β transformation point of the titanium material, Has a BCC structure in which carbon diffusion is faster, and TiC is formed, leading to a decrease in bonding strength. Therefore, the rolling heating temperature must be lower than the β transformation point temperature.

【0008】また、合せ材側にα型チタン合金またはα
+β型チタン合金を介在させる方法においては、α型チ
タン合金の場合には不純物として含有されるFeのため
に圧延加熱温度を高温化した際にはβ相が多量に形成さ
れそのβ相の部分で、α+β型チタン合金の場合にはβ
相を含んでいるのでβ相の部分でC等の拡散により脆化
相が形成され接合特性の低下を招くという不都合が生じ
る。
Further, an α-type titanium alloy or α
In the method of interposing a + β-type titanium alloy, in the case of an α-type titanium alloy, a large amount of β-phase is formed when the rolling heating temperature is increased due to Fe contained as an impurity, and the β-phase portion In the case of α + β type titanium alloy, β
Since it contains a phase, there is an inconvenience that an embrittlement phase is formed due to diffusion of C and the like in the β phase portion, resulting in deterioration of bonding characteristics.

【0009】つまり、このような2重に中間材を挿入す
る方法においても、圧延加熱温度上昇によるβ相の体積
分率増加によって、脆化相をより多く形成するので、圧
延加熱温度に制限がある。
That is, even in such a method of inserting the intermediate material in a double manner, since the embrittlement phase is formed more by the increase in the volume fraction of the β phase due to the increase in the rolling heating temperature, the rolling heating temperature is limited. is there.

【0010】一方で、広幅あるいは厚肉のクラッド鋼板
を製造することは、溶接の省略や歩留まりの向上などの
メリットがある。しかしながら、上述したように現在の
スラブ加熱温度では、広幅化および厚肉化による圧延時
の変形抵抗の上昇による圧延荷重の増大により、現用の
圧延設備では製造不可能となる。また、たとえ圧延がで
きたとしても、各パスにおいて十分な圧下を加えること
ができず、圧延応力が低く合せ材が十分に塑性変形せ
ず、満足な接合強度が得られない不都合も生じる。
On the other hand, manufacturing a wide or thick clad steel sheet has advantages such as omission of welding and improvement in yield. However, as described above, at the current slab heating temperature, the rolling load increases due to an increase in deformation resistance during rolling due to the increase in width and thickness, and therefore, it is impossible to manufacture with current rolling equipment. Further, even if rolling can be performed, sufficient reduction cannot be applied in each pass, the rolling stress is low, the laminated material is not sufficiently plastically deformed, and there is a disadvantage that a satisfactory joining strength cannot be obtained.

【0011】本発明はかかる事情に鑑みてなされたもの
であって、過大な設備負担なく現有設備にて優れた接合
強度を有する広幅または厚肉の圧延チタンクラッド鋼板
が得られる圧延型チタンクラッド鋼板の製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and a rolled titanium clad steel sheet capable of obtaining a wide or thick rolled titanium clad steel sheet having excellent joining strength in existing facilities without excessive load on facilities. It is an object of the present invention to provide a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明者らは、優れた接
合強度を有する広幅または厚肉のチタンクラッド鋼板の
製造において、圧延機を改造することなく現用の圧延能
力でこれらを製造することが可能な方法について詳細な
検討を重ねた結果、中間材として母材である炭素鋼側に
C含有量を制御した極低炭素鋼板を、合わ材であるチタ
ン側にFe、O,CおよびNの含有量を制御して合せ材
より高い変態点を有する工業用純チタン板を母材と合わ
材との間に挿入してスラブを組み立てることにより、圧
延加熱温度を従来より高くしても脆化相等の接合強度に
悪影響を及ぼすような相が厚く形成されることを抑制す
ることができ、かつ圧延加熱温度が高温化されることに
より変形抵抗を低下させて圧延することが可能なことを
見出した。
SUMMARY OF THE INVENTION The present inventors have found that, in the production of wide or thick titanium clad steel sheets having excellent joining strength, the present invention is to produce these with the current rolling capacity without modifying a rolling mill. As a result of detailed studies on the possible methods, an ultra-low carbon steel sheet with a controlled C content on the carbon steel side as the base material was used as the intermediate material, and Fe, O, C and N were added on the titanium side as the composite material. The slab is assembled by inserting an industrial pure titanium plate having a higher transformation point than the composite material between the base material and the composite material by controlling the content of It is possible to suppress the formation of a thick phase that adversely affects the bonding strength of the chemical phase and the like, and that it is possible to reduce the deformation resistance by increasing the rolling heating temperature to enable rolling. I found it.

【0013】本発明はこのような知見に基づいてなされ
たものであり、炭素鋼からなる母材とチタンまたはチタ
ン合金からなる合せ材との間に、中間材として、母材側
にC含有量が0.001〜0.01重量%の極低炭素鋼
板を、合せ材側にFe含有量が0.25重量%以下でか
つO、NおよびCの含有量が[O]+1.1[C]+
2.0[N](ただし、[O]、[C]、[N]はそれ
ぞれO含有量、C含有量、N含有量を示す)で0.15
重量%以上である純チタン板を挿入してスラブを組み立
て、圧延することを特徴とするチタンクラッドクラッド
鋼板の製造方法を提供するものである。
The present invention has been made based on such knowledge, and has a C content on the base material side as an intermediate material between a base material made of carbon steel and a composite material made of titanium or a titanium alloy. Is an ultra-low carbon steel sheet having a content of 0.001 to 0.01% by weight, and an Fe content of 0.25% by weight or less and O, N and C contents of [O] +1.1 [C ] +
2.0 [N] (where [O], [C] and [N] indicate O content, C content and N content, respectively) and 0.15
It is an object of the present invention to provide a method for producing a titanium clad clad steel sheet, wherein a slab is assembled and rolled by inserting a pure titanium sheet having a weight percentage of not less than.

【0014】また、本発明は、上記方法において、スラ
ブ加熱温度T℃を、890≦T≦885+150[O]
+160[C]+300[N]−20[Fe](ただ
し、[Fe]はFe含有量を示す。)の温度域として圧
延することを特徴とするチタンクラッド鋼板の製造方法
を提供するものである。
Further, according to the present invention, in the above method, the slab heating temperature T ° C. may be set at 890 ≦ T ≦ 885 + 150 [O].
The present invention provides a method for producing a titanium-clad steel sheet, characterized by rolling in a temperature range of +160 [C] +300 [N] -20 [Fe] (where [Fe] indicates the Fe content). .

【0015】さらに、上記方法において、中間材とし
て、母材側にC含有量が0.001〜0.01重量%の
極低炭素鋼板を、合せ材側にFe含有量が0.10重量
%未満でかつO、NおよびCの含有量が[O]+1.1
[C]+2.0[N](ただし、[O]、[C]、
[N]はそれぞれO含有量、C含有量、N含有量を示
す)で0.15重量%以上である純チタン板を用いるこ
とを特徴とするチタンクラッド鋼板の製造方法を提供す
るものである。
Further, in the above method, as an intermediate material, an ultra-low carbon steel sheet having a C content of 0.001 to 0.01% by weight on the base material side and an Fe content of 0.10% by weight on the composite material side. And the content of O, N and C is [O] +1.1
[C] +2.0 [N] (however, [O], [C],
[N] indicates an O content, a C content, and an N content, respectively.) A pure titanium plate having a content of 0.15% by weight or more is used. .

【0016】[0016]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明の圧延型チタンクラッド鋼板は、炭素鋼
からなる母材とチタンまたはチタン合金からなる合せ材
との間に、中間材として、母材側にC含有量が0.00
1〜0.01重量%の極低炭素鋼板を、合せ材側にFe
含有量が0.25重量%以下でかつO、NおよびCの含
有量が[O]+1.1[C]+2.0[N](ただし、
[O]、[C]、[N]はそれぞれO含有量、C含有
量、N含有量を示す)で0.15重量%以上である純チ
タン板を挿入してスラブを組み立て、圧延することによ
り得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The rolled titanium clad steel sheet of the present invention has a C content of 0.00 on the base material side as an intermediate material between a base material made of carbon steel and a composite material made of titanium or a titanium alloy.
1 to 0.01% by weight of ultra low carbon steel sheet
The content is 0.25% by weight or less and the content of O, N and C is [O] +1.1 [C] +2.0 [N] (provided that
[O], [C], and [N] represent O content, C content, and N content, respectively). Assembling and rolling a slab by inserting a pure titanium plate having 0.15% by weight or more. Is obtained by

【0017】中間材として母材である炭素鋼側にC含有
量が0.001〜0.01重量%の極低炭素鋼板を用い
ることは、もう一つの中間材および合せ材に対する、厚
く脆化相を形成する多量のCの拡散を抑制し、かつ特性
劣化を招かない程度の極薄のTiCの形成によって、同
じく接合特性を低下させる脆化相であるTiFeの形成
を抑制する効果を有する。
The use of an ultra-low carbon steel sheet having a C content of 0.001 to 0.01% by weight on the carbon steel side as a base material as the intermediate material requires a thick embrittlement with respect to another intermediate material and a composite material. By suppressing the diffusion of a large amount of C forming a phase and forming ultra-thin TiC to such an extent as not to cause deterioration of the characteristics, it has the effect of suppressing the formation of TiFe, which is also an embrittlement phase that deteriorates the bonding characteristics.

【0018】もう一つの中間材として合せ材側にFe含
有量0.25重量%以下でかつO、NおよびCの含有量
が[O]+1.1[C]+2.0[N]で0.15重量
%以上の純チタンを用いることは、この材料が合せ材よ
り高い変態点を有しているので、圧延加熱温度を高温化
した際に合せ材が変態点を越えてCの拡散の速い結晶構
造(この場合にはBCC構造)に変態した場合にも、該
中間材はその変態点を越えずに接合強度に悪影響を及ぼ
す元素の拡散速度の遅い細密重点の結晶構造(この場合
にはHCP構造)のままであり、接合特性の低下につな
がるCが合せ材および合せ材側の中間材へ拡散すること
を防止し、圧延加熱温度の高温化の場合にも接合界面で
の脆化相形成を抑制し、優れた接合特性を達成する効果
を有する。
As another intermediate material, the content of Fe is 0.25% by weight or less and the contents of O, N and C are [O] +1.1 [C] +2.0 [N] and 0 The use of pure titanium of not less than .15% by weight means that this material has a higher transformation point than the composite material, so that when the rolling heating temperature is increased, the composite material exceeds the transformation point and the diffusion of C Even when the intermediate material is transformed into a fast crystal structure (in this case, a BCC structure), the intermediate material does not exceed its transformation point and has a low-density crystal structure with a low diffusion rate of an element that adversely affects the bonding strength (in this case, Is an HCP structure), prevents C, which leads to a decrease in bonding characteristics, from diffusing into the composite material and the intermediate material on the composite material side, and embrittles at the bonding interface even when the rolling heating temperature is increased. It has the effect of suppressing phase formation and achieving excellent bonding characteristics.

【0019】この場合、極低炭素鋼の中間材のC含有量
が0.01重量%より大であるともう一つの中間材との
界面に脆弱なTiC相を厚く形成し、0.001重量%
未満であるとTiCによるTiFe形成抑制効果が発揮
されず、TiFeの形成によって接合特性の低下を招
く。
In this case, when the C content of the intermediate material of the ultra low carbon steel is more than 0.01% by weight, a brittle TiC phase is formed thickly at the interface with another intermediate material, and 0.001% by weight. %
If it is less than the above, the effect of suppressing the formation of TiFe by TiC is not exhibited, and the formation of TiFe causes a decrease in bonding characteristics.

【0020】また、もう一つの中間材を構成する純チタ
ンのFe含有量が0.25重量%より大であると、β相
を生成し始める温度を低下させ、圧延加熱温度を高温化
した際に多量のβ相が生成される。このため、Cの拡散
が促進されてTiCが厚く形成され、接合特性の低下を
招く。また、O、NおよびCの含有量が[O]+1.1
[C]+2.0[N]で0.15重量%未満であると、
合せ材側に挿入する中間材の変態点を充分に高温化する
ことができず、広幅材あるいは厚肉材を製造するために
加熱温度を高温化した際に、その中間材がCの拡散の速
いBCC構造になるため、TiCが厚く形成されて接合
特性の低下を招く。
Further, if the Fe content of pure titanium constituting another intermediate material is more than 0.25% by weight, the temperature at which the β phase starts to be formed is lowered, and the rolling heating temperature is increased. Generates a large amount of β phase. For this reason, the diffusion of C is promoted and TiC is formed thickly, which causes a decrease in bonding characteristics. Further, the content of O, N and C is [O] +1.1
When [C] +2.0 [N] is less than 0.15% by weight,
The transformation point of the intermediate material inserted into the laminated material side cannot be sufficiently raised, and when the heating temperature is increased to produce a wide material or a thick material, the intermediate material cannot diffuse C. Due to the fast BCC structure, TiC is formed thickly, which causes a decrease in bonding characteristics.

【0021】このため、極低炭素鋼の中間材のC含有量
を0.001〜0.01重量%、工業用純チタンの中間
材のFe含有量を0.25重量%以下、O、NおよびC
の含有量を[O]+1.1[C]+2.0[N]で0.
15重量%以上とする。また、純チタンの中間材のFe
含有量が0.10重量%未満であると一層接合特性が改
善される。なお、工業用純チタンの中間材のO、Nおよ
びC含有量はそれぞれ0.4重量%程度以下が好まし
い。
For this reason, the C content of the intermediate material of the ultra-low carbon steel is 0.001 to 0.01% by weight, the Fe content of the intermediate material of the industrial pure titanium is 0.25% by weight or less, O, N And C
Of [O] +1.1 [C] +2.0 [N].
15% by weight or more. Also, the intermediate material of pure titanium, Fe
When the content is less than 0.10% by weight, the joining characteristics are further improved. The O, N, and C contents of the intermediate material of the industrial pure titanium are each preferably about 0.4% by weight or less.

【0022】また、スラブ加熱温度T℃を、890≦T
≦885+150[O]+160[C]+300[N]
−20[Fe](ただし、[Fe]はFe含有量を示
す。)に設定することにより、従来よりも高温に制御す
ることとなり、脆化相の生成を抑制しつつ、圧延時の変
形抵抗を低下させて圧延時における圧延機の負荷を軽減
することを可能にするとともに、さらに1パスで素材に
大圧下を加えることを可能とし、これによって、より接
合特性を改善する効果がある。
Further, the slab heating temperature T.degree.
≤ 885 + 150 [O] + 160 [C] + 300 [N]
By setting to -20 [Fe] (where [Fe] indicates the Fe content), the temperature is controlled to be higher than before, and the deformation resistance during rolling is suppressed while the generation of the embrittlement phase is suppressed. And it is possible to reduce the load on the rolling mill during rolling, and it is also possible to apply a large reduction to the material in one pass, which has the effect of further improving the joining characteristics.

【0023】スラブ加熱温度が890℃未満では圧延時
の変形抵抗を十分荷軽減することができず、また(88
5+150[O]+160[C]+300[N]−20
[Fe])℃より高温であると、合せ材側に挿入する工
業用純チタンも変態点を超えて、Cの拡散の速いBCC
構造となるため、TiCが界面に厚く形成されて、接合
性の低下を招く。このため、スラブ加熱温度T℃は、8
90≦T≦885+150[O]+160[C]+30
0[N]−20[Fe]の範囲であることが好ましい。
If the slab heating temperature is lower than 890 ° C., the deformation resistance during rolling cannot be sufficiently reduced, and
5 + 150 [O] +160 [C] +300 [N] -20
If the temperature is higher than [Fe]) ° C., the pure titanium for industrial use inserted into the composite material also exceeds the transformation point, and the BCC with a rapid diffusion of C is obtained.
Due to the structure, TiC is formed thickly at the interface, which causes a decrease in bondability. For this reason, the slab heating temperature T ° C is 8
90 ≦ T ≦ 885 + 150 [O] +160 [C] +30
It is preferable to be in the range of 0 [N] -20 [Fe].

【0024】[0024]

【実施例】以下、本発明の具体的な実施例について説明
する。 (実施例1)表1に示す符号Aの化学組成を有し、厚さ
350mmの炭素鋼を母材とし、表2に示す符号Dの化
学組成を有し、厚さ50mmのチタン材を合せ材として
用いた。また母材側の中間材として表1に示す符号B1
〜B5の組成のうちB3の組成を有する厚さ1mmのも
のを用い、合せ材側の中間材として表2に示す符号C1
〜C7の組成のうちC3の組成を有する厚さ1mmのも
のを用いた。これら母材、合せ材および中間材を用い
て、1800mm幅×1800mm長、4500幅×1
800mm長、および1800mm幅×3600mm長
のスラブを組立て、これらスラブから(35+5)mm
厚×4200mm幅×7000mm長および17800
mm長、ならびに(70+10)mm厚×4200幅×
7000mm長のクラッド鋼板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. (Example 1) A carbon material having a chemical composition of A shown in Table 1 and a thickness of 350 mm was used as a base material, and a titanium material having a chemical composition of D shown in Table 2 and a thickness of 50 mm was combined. Used as material. Further, as an intermediate material on the base material side, reference symbol B1 shown in Table 1
1 to 3 having a thickness of 1 mm having the composition of B3 among the compositions of B5 to B5.
Among the compositions C7 to C7, a composition having a composition of C3 and a thickness of 1 mm was used. Using these base material, composite material and intermediate material, 1800 mm width × 1800 mm length, 4500 width × 1
Assemble slabs 800 mm long and 1800 mm wide x 3600 mm long and (35 + 5) mm from these slabs
Thickness x 4200mm width x 7000mm length and 17800
mm length and (70 + 10) mm thickness x 4200 width x
A 7,000 mm long clad steel plate was manufactured.

【0025】また、合せ材側の高変態点を有する中間材
の有効性を確認するために、中間材を極低炭素鋼のみと
して、1800mm幅×1800mm長および1800
mm幅×3600mm長のスラブから、それぞれ(35
+5)mm厚×4200mm幅×7000mm長および
(70+10)mm厚×4200幅×7000mm長の
クラッド鋼板を製造した。
Further, in order to confirm the effectiveness of the intermediate material having a high transformation point on the side of the composite material, the intermediate material is made of only ultra-low carbon steel and has a width of 1800 mm × 1800 mm and a length of 1800 mm.
From a slab of mm width x 3600 mm length, (35
A clad steel plate of (+5) mm thickness × 4200 mm width × 7000 mm length and (70 + 10) mm thickness × 4200 width × 7000 mm length were manufactured.

【0026】さらに、圧延時の荷重の比較のために、従
来からの方法にて1800mm幅×1800mm長のス
ラブから(35+5)mm厚×3200mm幅×850
0mm長のクラッド鋼板を製造した。
Further, for comparison of the load at the time of rolling, a slab having a width of 1800 mm × 1800 mm and a thickness of (35 + 5) mm × 3200 mm × 850 were obtained by a conventional method.
A 0 mm long clad steel plate was manufactured.

【0027】スラブの組立方法、スラブ寸法、スラブ加
熱温度およびクラッド鋼板の寸法を表3に示す。このと
きの予定したパススケジュールでの圧延の可否、接合特
性を劣化させるTiC相の圧延まま状態での厚さ、圧延
まま状態での剪断強度、およびR/t=1に側曲げなら
びに裏曲げをした際の接合界面でのクラックの発生の有
無を表4に示す。
Table 3 shows the slab assembling method, slab dimensions, slab heating temperature, and dimensions of the clad steel sheet. At this time, whether or not rolling can be performed in a predetermined pass schedule, the thickness of the as-rolled TiC phase that deteriorates the joining characteristics, the shear strength in the as-rolled state, and the side bending and the reverse bending to R / t = 1. Table 4 shows whether or not cracks occurred at the bonding interface when the bonding was performed.

【0028】これらの表に示すように、本発明内の成分
組成を有する中間材を用い、本発明に従って製造され、
かつ好ましいスラブ加熱温度に設定した場合には、圧延
により4000mm幅超えおよび70mm厚超えのチタ
ンクラッド鋼板が製造可能であった。また、TiC層厚
は薄く、剪断強度は20kgf/mm2 以上と高く、曲
げ試験においても割れの発生はなく、4000mm幅超
えおよび70mm厚超えのチタンクラッド鋼板の接合特
性は、どの評価方法においても良好なものであった。
As shown in these tables, using an intermediate material having a component composition within the present invention, the intermediate material was produced according to the present invention,
And when the preferable slab heating temperature was set, a titanium clad steel sheet exceeding 4000 mm in width and exceeding 70 mm in thickness could be produced by rolling. In addition, the TiC layer thickness is small, the shear strength is as high as 20 kgf / mm 2 or more, no crack occurs even in the bending test, and the joining characteristics of the titanium clad steel sheet exceeding 4000 mm width and 70 mm thickness can be evaluated by any of the evaluation methods. It was good.

【0029】(実施例2)表1に示す符号Aの化学組成
を有し、厚さ350mmの炭素鋼を母材とし、表2に示
す符号Dの化学組成を有し、厚さ50mmのチタン材を
合せ材として用いた。また、母材側の中間材として表1
に示す符号B1〜B5の組成を有する厚さ1mmのもの
を用い、合せ材側の中間材として表2に示す符号C1〜
C7の組成を有する厚さ1mmのものを用いた。表5に
示す条件でスラブを組立て、スラブ加熱温度を900℃
として、1800mm幅×1800mm長のスラブから
(35+5)mm厚×4200mm幅×7200mm長
のクラッド鋼板を製造した。この際に、圧延加熱温度を
高温化したため、どの条件においても変形抵抗が低く、
圧延可能であった。
(Example 2) Titanium having a chemical composition represented by the symbol A shown in Table 1 and having a chemical composition represented by the symbol D shown in Table 2 and having a chemical composition represented by the symbol D shown in Table 2 and having a thickness of 50 mm was used. The material was used as a composite. Table 1 shows the intermediate material on the base material side.
1 having a composition of reference numerals B1 to B5 shown in FIG.
The one having a composition of C7 and a thickness of 1 mm was used. Assemble the slab under the conditions shown in Table 5, and set the slab heating temperature to 900 ° C.
As a result, a clad steel plate (35 + 5) mm thick × 4200 mm wide × 7200 mm long was manufactured from a slab having a width of 1800 mm × 1800 mm. At this time, since the rolling heating temperature was increased, the deformation resistance was low under any conditions,
Rolling was possible.

【0030】この際における、接合特性を劣化させるT
iC相の圧延まま状態での厚さ、圧延まま状態での剪断
強度、R/t=1における側曲げおよび裏曲げをした際
の接合界面でのクラックの発生の有無を表5にあわせて
示す。
In this case, T, which degrades the bonding characteristics,
Table 5 also shows the thickness of the iC phase in the as-rolled state, the shear strength in the as-rolled state, and the presence / absence of cracks at the joint interface when side bending and back bending at R / t = 1. .

【0031】表5に示すように、本発明内の成分組成を
有する中間材を用い、本発明に従って製造した場合に
は、TiC層厚は薄く、剪断強度は20kgf/mm2
以上と高く、曲げ試験においても割れの発生はなく、4
000mm幅超えおよび70mm厚超えのチタンクラッ
ド鋼板の接合特性は、どの評価方法においても良好なも
のであった。また、合せ材側の中間材のFe濃度が0.
10重量%未満であると、剪断強度は25kgf/mm
2 以上となり、一層接合特性が改善されることが確認さ
れた。以上の結果から明らかなように、本発明の条件内
であれば、現用の設備にて接合特性がに優れた広幅およ
び厚肉のクラッド鋼板の製造が可能となる。
As shown in Table 5, when the intermediate material having the composition within the present invention was used and produced according to the present invention, the TiC layer was thin and the shear strength was 20 kgf / mm 2.
Above high, no cracks were found in the bending test.
The joining characteristics of the titanium clad steel sheets exceeding 000 mm width and 70 mm thickness were good in any of the evaluation methods. In addition, the Fe concentration of the intermediate material on the side of the composite material is set to 0.1.
If it is less than 10% by weight, the shear strength is 25 kgf / mm.
It was 2 or more, and it was confirmed that the bonding characteristics were further improved. As is evident from the above results, within the conditions of the present invention, it is possible to manufacture a wide and thick clad steel sheet having excellent joining characteristics with the current equipment.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】なお、上述の890≦T≦885+150
[O]+160[C]+300[N]−20[Fe]式
は、成分組成と変態点との関係を詳細に検討した結果か
ら得られた経験的な式である。また、[O]+1.1
[C]+2.0[N]で0.15重量%以上という条件
についても同様にして得られたものである。さらに上記
実施例では合せ材として純チタンを用いたが、これに限
るものではなく、Grade7やTi−6Al−4Vの
ようなTi合金を用いることができる。
The above-mentioned 890 ≦ T ≦ 885 + 150
The formula [O] +160 [C] +300 [N] -20 [Fe] is an empirical formula obtained from the result of a detailed study of the relationship between the component composition and the transformation point. [O] +1.1
The condition of [C] +2.0 [N] and 0.15% by weight or more was obtained in the same manner. Further, in the above embodiment, pure titanium was used as the bonding material. However, the present invention is not limited to this, and a Ti alloy such as Grade 7 or Ti-6Al-4V can be used.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
過大な設備負担なく現有設備にて優れた接合強度を有す
る広幅または厚肉の圧延チタンクラッド鋼板を製造する
ことができる。
As described above, according to the present invention,
A wide or thick rolled titanium clad steel sheet having excellent bonding strength can be manufactured with existing equipment without excessive equipment burden.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素鋼からなる母材とチタンまたはチタ
ン合金からなる合せ材との間に、中間材として、母材側
にC含有量が0.001〜0.01重量%の極低炭素鋼
板を、合せ材側にFe含有量が0.25重量%以下でか
つO、NおよびCの含有量が[O]+1.1[C]+
2.0[N](ただし、[O]、[C]、[N]はそれ
ぞれO含有量、C含有量、N含有量を示す)で0.15
重量%以上である純チタン板を挿入してスラブを組み立
て、圧延することを特徴とするチタンクラッドクラッド
鋼板の製造方法。
1. An ultra-low carbon material having a C content of 0.001 to 0.01% by weight on a base material side as an intermediate material between a base material made of carbon steel and a composite material made of titanium or a titanium alloy. The steel sheet was prepared such that the Fe content was 0.25% by weight or less and the contents of O, N and C were [O] +1.1 [C] +
2.0 [N] (where [O], [C] and [N] indicate O content, C content and N content, respectively) and 0.15
A method for producing a titanium-clad clad steel sheet, comprising inserting a pure titanium plate having a weight percentage of at least equal to and assembling and rolling a slab.
【請求項2】 スラブ加熱温度T℃を、890≦T≦8
85+150[O]+160[C]+300[N]−2
0[Fe](ただし、[Fe]はFe含有量を示す。)
の温度域として圧延することを特徴とする請求項1に記
載のチタンクラッド鋼板の製造方法。
2. A slab heating temperature T.degree.
85 + 150 [O] +160 [C] +300 [N] -2
0 [Fe] (where [Fe] indicates the Fe content)
The method for producing a titanium clad steel sheet according to claim 1, wherein the rolling is performed in a temperature range of:
【請求項3】 中間材として、母材側にC含有量が0.
001〜0.01重量%の極低炭素鋼板を、合せ材側に
Fe含有量が0.10重量%未満でかつO、NおよびC
の含有量が[O]+1.1[C]+2.0[N](ただ
し、[O]、[C]、[N]はそれぞれO含有量、C含
有量、N含有量を示す)で0.15重量%以上である純
チタン板を用いることを特徴とする請求項1または請求
項2に記載のチタンクラッド鋼板の製造方法。
3. An intermediate material having a C content of 0.1 at the base material side.
001 to 0.01% by weight of an ultra-low carbon steel sheet, and having a Fe content of less than 0.10% by weight and O, N and C
Is [O] +1.1 [C] +2.0 [N] (where [O], [C] and [N] indicate O content, C content and N content, respectively). The method for producing a titanium clad steel sheet according to claim 1 or 2, wherein a pure titanium sheet having a content of 0.15% by weight or more is used.
JP7423696A 1996-03-28 1996-03-28 Manufacturing method of rolled titanium clad steel sheet Expired - Fee Related JP3209081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7423696A JP3209081B2 (en) 1996-03-28 1996-03-28 Manufacturing method of rolled titanium clad steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7423696A JP3209081B2 (en) 1996-03-28 1996-03-28 Manufacturing method of rolled titanium clad steel sheet

Publications (2)

Publication Number Publication Date
JPH09262686A JPH09262686A (en) 1997-10-07
JP3209081B2 true JP3209081B2 (en) 2001-09-17

Family

ID=13541335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7423696A Expired - Fee Related JP3209081B2 (en) 1996-03-28 1996-03-28 Manufacturing method of rolled titanium clad steel sheet

Country Status (1)

Country Link
JP (1) JP3209081B2 (en)

Also Published As

Publication number Publication date
JPH09262686A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JPH08134574A (en) Aluminum alloy brazing sheet, production of the brazing sheet, heat exchanger using the brazing sheet, and production of the heat exchanger
EP3851550B1 (en) Ferritic stainless steel sheet, method for producing same and al plated stainless steel sheet
WO1997046347A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JP3297027B2 (en) High strength and high ductility α + β type titanium alloy
JP2541995B2 (en) High strength Al alloy composite brazing sheet for Al heat exchanger structural member
KR20000023754A (en) Alloy foil for liquid-phase diffusion bonding bondable in oxidizing atmosphere
JP4905024B2 (en) Ferritic stainless steel sheet with high strength of spot welded joint and method for producing the same
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JP3209081B2 (en) Manufacturing method of rolled titanium clad steel sheet
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP5070866B2 (en) Hot-rolled steel sheet and spot welded member
JPH09262687A (en) Manufacture of rolled titanium clad steel plate
JP4202626B2 (en) Titanium alloy for eyeglass frames with excellent cold workability and fatigue strength after brazing
JPH09206961A (en) Manufacture of rolling titanium clad steel plate
JPH0780061B2 (en) Method for producing titanium clad steel sheet with excellent bondability
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JP2691456B2 (en) Manufacturing method of composite type damping steel sheet
JP3355199B2 (en) Arc spraying wire
KR102226046B1 (en) Brazing filler metal and the manufacturing method thereof
JP6848991B2 (en) Titanium material for hot rolling
JPH09103890A (en) Manufacture of rolled non-ferrous metal clad steel plate
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JPH03229824A (en) Production of soft-magnetic fe-al alloy sheet excellent in magnetic property
JP2002038221A (en) Production method for high purity chromium-containing thin steel plate excellent in press formability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees