JPH0774146B2 - Method for producing liposome - Google Patents

Method for producing liposome

Info

Publication number
JPH0774146B2
JPH0774146B2 JP23927389A JP23927389A JPH0774146B2 JP H0774146 B2 JPH0774146 B2 JP H0774146B2 JP 23927389 A JP23927389 A JP 23927389A JP 23927389 A JP23927389 A JP 23927389A JP H0774146 B2 JPH0774146 B2 JP H0774146B2
Authority
JP
Japan
Prior art keywords
temperature
minutes
liposomes
liposome
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23927389A
Other languages
Japanese (ja)
Other versions
JPH03101614A (en
Inventor
良一 根守
治朗 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP23927389A priority Critical patent/JPH0774146B2/en
Publication of JPH03101614A publication Critical patent/JPH03101614A/en
Publication of JPH0774146B2 publication Critical patent/JPH0774146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はリポソームの製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing liposomes.

リポソームはリン脂質等の両親媒性物質を主成分とする
二分子膜から成る閉鎖小胞であり、生体膜モデルあるい
はドラッグデリバリー用薬物運搬体として基礎および応
用研究に用いられている。
Liposomes are closed vesicles composed of a bilayer membrane whose main component is an amphipathic substance such as phospholipids, and are used in basic and applied studies as a biomembrane model or drug delivery vehicle for drug delivery.

(発明の背景) リポソームの調製法は既に数多く知られており、例えば
“Methods of Biochemical Analysis"vol.33(1988)、
p.337などのレビューに記載されている。これらのリポ
ソーム調製法としてはその多くがクロロホルム、エーテ
ル、エタノール等の有機溶媒を膜成分物質の溶剤として
用いたり、あるいはTriton X−100やデオキシコール酸
などの界面活性剤を可溶化剤として用いている。そのた
めそれらの薬品の残留の問題や、工業的生産に於る工程
の安全性、技術的困難さの問題がある。
(Background of the Invention) Many methods for preparing liposomes are already known, for example, "Methods of Biochemical Analysis" vol.33 (1988),
It is described in reviews such as p.337. Many of these liposome preparation methods use an organic solvent such as chloroform, ether, or ethanol as a solvent for the membrane component substance, or a surfactant such as Triton X-100 or deoxycholic acid as a solubilizing agent. There is. Therefore, there are problems of residual chemicals, safety of process in industrial production, and technical difficulty.

有機溶媒や界面活性剤を用いずにリポソームを調製する
方法としては特開昭57−82310号及び同57−82311号に示
される凍結乾燥法、特開昭60−7933号に示される加温
法、同60−7934号に示される機械的練合法などが開発さ
れている。
As a method for preparing liposomes without using an organic solvent or a surfactant, freeze-drying method shown in JP-A-57-82310 and 57-82311, heating method shown in JP-A-60-7933 No. 60-7934, the mechanical kneading method and the like have been developed.

どの方法も膜成分物質(主としてリン脂質)と水性溶液
をTm以上で混合して水和させる方法に関するものであ
り、その水和速度を速めるために、加温法では温度を膜
成分物質粉末の相転移温度(Tα)以上に上げて分散
し、又、機械的練合法では乳鉢等により脂質粒子を壊す
ことで水和を促進する工夫を行なっている。しかしなが
らこれらの方法は工業的製造として必ずしも満足しうる
ものではない。即ち、加温法においてはリポソーム及び
それに内包される化合物をTα以上に加温(例えばジパ
ルミトイルホスファチジルコリン(DPPC)の場合には75
℃程度に迄加温)するため、内包化合物の種類によって
は熱により変化する場合がある。又、加温法、機械的練
合法ともにTc以上(或いはTα以上)の高温での機械的
操作を伴うため装置が複雑となる。
Each method relates to a method of hydrating a membrane component substance (mainly phospholipid) and an aqueous solution by mixing at a Tm or higher, and in order to accelerate the hydration rate, the heating method changes the temperature of the membrane component substance powder. The phase transition temperature (Tα) is raised to or above the dispersion, and the mechanical kneading method is devised to promote hydration by breaking the lipid particles with a mortar or the like. However, these methods are not always satisfactory for industrial production. That is, in the heating method, the liposome and the compound contained therein are heated to Tα or higher (for example, in the case of dipalmitoylphosphatidylcholine (DPPC), 75
Since it is heated to about 0 ° C), it may change due to heat depending on the type of the encapsulated compound. Further, both the heating method and the mechanical kneading method involve mechanical operations at a high temperature of Tc or higher (or Tα or higher), which complicates the apparatus.

Tcの低い膜成分物質を用いる場合はこれらの問題は回避
できるが、内包化合物の漏れ等、別の問題からTcの高い
膜成分物質を用いたい場合も多い。
These problems can be avoided when a membrane component substance having a low Tc is used, but it is often desired to use a membrane component substance having a high Tc due to another problem such as leakage of the encapsulated compound.

(発明が解決しようとする課題) 本発明の目的は従って、有機溶媒や界面活性剤を用いず
にリポソームを調製する方法、即ち、膜成分物質を水性
溶液中に分散する方法をさらに改良し、できるだけ低温
で迅速、かつ操作の簡便な方法を開発することにある。
(Problems to be Solved by the Invention) Accordingly, the object of the present invention is to further improve a method for preparing liposomes without using an organic solvent or a surfactant, that is, a method for dispersing a membrane component substance in an aqueous solution, It is to develop a method that is as quick and easy as possible at the lowest temperature.

(課題を達成するための手段) 本発明者らは、前記目的にそって鋭意検討した結果、膜
成分物質粉末を水性溶液分散物とし、まずTp以上でかつ
Tm未満の温度に数分間以上保つことにより、分散した粉
末が水を吸って膨潤しその後Tm以上に加温するとすみや
かにミエリン様構造を経てリポソームを形成することを
見出し、本発明を完成するに到った。主転移温度(Tm)
は、充分に水和した脂質のゲル・液晶相転移に帰属し、
前転移温度(Tp)は、コアゲル−ゲルの相転移に帰属す
る 脂質の粉末は通常1水和物程度の乾燥状態で市販されて
いるためその相転移温度(Tα)は高く、例えばL−α
−ジパルミトイルホスファジルコリン(DPPC)の場合は
示差走査熱分析(DSC)で測定すると60〜70℃付近であ
る。しかしDPPCが1分子当たり10分子以上の水(重量で
約20%以上の水)で水和された状態では主転移温度(T
m)が41℃まで低下する。そのため脂質粉末にあらかじ
め20wt%以上の水を吸収させておくことができれば、41
℃を少し越える程度の温度でリポソームが迅速に調製で
きる。本発明者らは脂質粉末に水を吸収させる方法につ
いて検討した結果、高湿度の空気中に放置して吸湿させ
る方法や、水中(<Tp)に脂質粉末を分散しておく方法
では極めてゆっくりとしか吸水は起こらず、脂質の水分
散物をTp以上でかつTm未満の温度に加温して始めて速い
吸水が起こるとともに粉末が膨潤し、数分程度で実用上
十分な吸水が完了することを見出した。かかる知見に基
づいてなされたのが本発明である。この十分吸水した分
散物をTm以上に加温するとすみやかにリポソームを形成
できた。更に調製したリポソーム分散液に超音波を照射
することにより粒子サイズは小さくなるとともに均一化
した。脂質の水分散物をTp以上でかつTm未満の温度に加
温して膨潤させるのに必要な時間は次の様にして求める
事ができる。
(Means for Achieving the Object) As a result of intensive studies conducted by the present inventors along the above-mentioned object, the film component substance powder was made into an aqueous solution dispersion, and at least Tp and above.
By maintaining the temperature below Tm for several minutes or more, the dispersed powder absorbs water and swells, and when it is heated to Tm or higher, it is immediately found that liposomes are formed via a myelin-like structure, and the present invention is completed. Arrived Main transition temperature (Tm)
Belongs to the gel-liquid crystal phase transition of a sufficiently hydrated lipid,
Pre-transition temperature (Tp) belongs to phase transition of core gel-gel Since lipid powders are usually marketed in a dried state of about monohydrate, their phase transition temperature (Tα) is high, for example, L-α.
-In the case of dipalmitoylphosphadylcholine (DPPC), it is around 60-70 ° C as measured by differential scanning calorimetry (DSC). However, when DPPC is hydrated with 10 or more molecules of water per molecule (about 20% or more by weight of water), the main transition temperature (T
m) drops to 41 ° C. Therefore, if it is possible to absorb more than 20 wt% of water in the lipid powder beforehand, 41
Liposomes can be rapidly prepared at a temperature slightly above 0 ° C. As a result of studying a method of absorbing water in a lipid powder, the present inventors have found that a method of allowing the lipid powder to stand in high humidity air to absorb water or a method of dispersing the lipid powder in water (<Tp) is extremely slow. However, water absorption does not occur, fast water absorption occurs only when the aqueous dispersion of lipids is heated to a temperature of Tp or higher and lower than Tm, and the powder swells, and practically sufficient water absorption is completed in about a few minutes. I found it. The present invention has been made based on such findings. When this sufficiently water-absorbed dispersion was heated above Tm, liposomes could be formed immediately. By irradiating the prepared liposome dispersion with ultrasonic waves, the particle size was reduced and the particle size was made uniform. The time required to swell the aqueous dispersion of lipid by heating it to a temperature not lower than Tp and lower than Tm can be determined as follows.

すなわち、脂質の水分散物を光学顕微鏡下Tp以下の温度
にて粒子の大きさを測定する。次にTp以上でかつTm未満
の温度に加温して経時による大きさの変化を観察し、徐
々に膨潤後大きさが一定になる迄の時間を求める事がで
きる。
That is, the particle size of an aqueous dispersion of lipid is measured under an optical microscope at a temperature of Tp or lower. Next, by heating to a temperature above Tp and below Tm and observing the change in size over time, the time until the size becomes gradually constant after swelling can be obtained.

本発明において使用される膜成分物質としてはホスファ
チジルコリン、ホスファチジルエタノールアミン、ホス
ファチジルセリン、ホスファチジルイノシトール、ホス
ファチジン酸などの天然及び合成のリン脂質類およびこ
れらの混合物が代表的であり、水添レシチン等の加工し
た天然リン脂質も好ましく用いることができる。又、こ
れらに膜構造の安定化剤としてコレステロールやその誘
導体、ガングリオシド、アルキルアミン、脂肪酸、ジセ
チルホスフェートなどを加えても良い。
Typical membrane components used in the present invention are natural and synthetic phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid, and mixtures thereof. Natural phospholipids described above can also be preferably used. Cholesterol or its derivative, ganglioside, alkylamine, fatty acid, dicetyl phosphate, etc. may be added to these as a stabilizer of the membrane structure.

膜成分を分散させる水性溶液としては、水、生理食塩
水、緩衝液、糖類の水溶液およびこれらの混合物が好ま
しく用いられる。
As the aqueous solution in which the membrane component is dispersed, water, physiological saline, a buffer solution, an aqueous saccharide solution, and a mixture thereof are preferably used.

膜成分物質と水性溶液との比率は、膜成分物質1重量部
に対して水性溶液3〜100重量部程度が適当である。
The ratio of the membrane component substance to the aqueous solution is appropriately about 3 to 100 parts by weight of the aqueous solution to 1 part by weight of the membrane component substance.

本発明のリポソームに内包させる化合物としては特に制
限は無いが、グルコース、デキストラン等の糖類、アミ
ノ酸、ペプチド、蛋白質類、DNA、RNAなどの核酸類、ビ
タミン類などの他、薬物としてペニシリンGに代表され
る抗生物質、メトトレキセートに代表される制癌剤など
を用いることができ、一般にはこれらを水性溶液として
用いる。
The compound to be encapsulated in the liposome of the present invention is not particularly limited. Glucose, saccharides such as dextran, amino acids, peptides, proteins, nucleic acids such as DNA and RNA, vitamins, etc., and penicillin G as a drug are typical. Antibiotics, anticancer agents represented by methotrexate, etc. can be used, and these are generally used as an aqueous solution.

次に本発明に従ってリポソームを調製する手順について
詳しく述べる。
Next, the procedure for preparing liposomes according to the present invention will be described in detail.

膜成分物質の水和状態におけるTpおよびTmが文献等で既
知の場合はその値を用いることができるが、未知の場合
は実験により求めることができる。一般的には示差走査
熱分析(DSC)法が便利である。DSC測定用資料の作製法
としては、膜成分物質粉末を水に分散し、そのまま溶液
用セルを用いて測定するのが良い。
If Tp and Tm in the hydrated state of the membrane component substance are known in the literature or the like, the values can be used, but if they are unknown, they can be determined by experiments. Generally, the differential scanning calorimetry (DSC) method is convenient. As a method of preparing the DSC measurement material, it is preferable to disperse the powder of the film component substance in water and use the solution cell as it is for measurement.

水添レシチンなど膜成分物質の種類によってはTpが明瞭
に観測されない場合もあるがその場合はTm−5℃をTpと
して扱う。又、膜成分物質が何種類かの混合物である場
合は主成分の相転移温度に合わせることが望ましい。
Tp may not be clearly observed depending on the type of membrane component substance such as hydrogenated lecithin. In that case, Tm-5 ° C is treated as Tp. Further, when the film component substance is a mixture of several kinds, it is desirable to match the phase transition temperature of the main component.

次に、リポソームに内包しようとする化合物を含有する
水性溶媒中に膜成分物質の粉末を加え、ホモジナイザ
ー、ホモミキサー、プロペラミキサー等の撹拌機を用い
て分散する。この時の溶液温度は通常室温が便利で良い
が、例えばジパルミトイルホスファチジルコリン(DMP
C)の様にTmが低い(23℃)脂質を用いる場合、その温
度を越えない様に注意して行なう。
Next, the powder of the membrane component substance is added to an aqueous solvent containing the compound to be encapsulated in the liposome, and dispersed using a stirrer such as a homogenizer, a homomixer, a propeller mixer. At this time, the solution temperature is usually convenient, but for example, dipalmitoylphosphatidylcholine (DMP
When using lipids with a low Tm (23 ° C) as in C), be careful not to exceed that temperature.

続いて、分散液をTp以上Tm以下に加温し、その温度で保
持する。保持時間は1分以上60分以下でよいが通常5分
から20分が好ましく用いられる。この際DMPCの様にTp、
Tmが低く、分散時の温度がTp以上である場合でも同様に
処理する。
Then, the dispersion liquid is heated to Tp or more and Tm or less and kept at that temperature. The holding time may be 1 minute or more and 60 minutes or less, but normally 5 minutes to 20 minutes is preferably used. At this time, Tp, like DMPC
Even when Tm is low and the dispersion temperature is Tp or higher, the same treatment is performed.

次に、この分散液をTm以上に加温するとリポソームが得
られるが、通常はTmより5〜20℃高い温度で3分間から
60分間、より好ましくは10分間から30分間加温する。こ
の際更に超音波照射を併用すると粒子サイズの均一化な
どの効果があり、又、融点の高い膜成分物質を併用する
場合にリポソーム膜への取り込みを促進するメリットも
あるため好ましく用いる事ができる。
Next, the dispersion is heated to a temperature above Tm to obtain liposomes, which are usually 5 to 20 ° C higher than Tm for 3 minutes.
Warm for 60 minutes, more preferably 10 to 30 minutes. In this case, the combined use of ultrasonic irradiation has the effect of making the particle size uniform and the like, and the combined use of a membrane component substance having a high melting point also has the advantage of promoting incorporation into the liposome membrane, and therefore it can be preferably used. .

以上述べた操作によってリポソームを得ることができる
が、粒子サイズを更に均一にするためにはミクロフィル
ター、例えばNuclepore による加圧ロ過を用いること
も可能である。
Liposomes can be obtained by the above-mentioned operation
However, in order to make the particle size more uniform, microfill
For example Nuclepore Using pressure filtration by
Is also possible.

このようにして得たリポソームはこのまま使用しても良
いが、遠心分離、ゲルロ過、透析等の手段によりリポソ
ームに内包されなかった化合物を分離・除去して使用し
ても良い。
The liposomes thus obtained may be used as they are, but the compounds not encapsulated in the liposomes may be separated and removed by a means such as centrifugation, gel filtration or dialysis before use.

(発明の効果) 既知のリポソーム調製法に比べ、本発明の方法が優れて
いるところは次の通りである。
(Effects of the Invention) The advantages of the method of the present invention over the known methods for preparing liposomes are as follows.

1)有機溶媒、界面活性剤を使用しないため、その残留
による性能上の悪影響が無く、又、工程の安全上も問題
がない。
1) Since no organic solvent or surfactant is used, there is no adverse effect on performance due to the residue, and there is no problem in terms of process safety.

2)最高操作温度がTmの少し上程度と低く、また高温で
の撹拌が不要であるため安全作業上問題が少ない。
2) The maximum operating temperature is a little lower than Tm, and since there is no need for stirring at high temperature, there are few problems in safety work.

又、特殊な設備も必要とせず操作も簡便であるためスケ
ールアップにも容易に対応できる。
In addition, since special equipment is not required and the operation is simple, scale-up can be easily handled.

3)操作温度を既知の加温法ほど高くする必要がないた
め内包させる化合物の熱による変化の危険が少ない。
3) Since the operating temperature does not have to be as high as that of the known heating method, there is less risk of the compound to be encapsulated being changed by heat.

(実施例) 次に実施例をあげて本発明を更に詳細に説明するが、本
発明はこれらに限定されるものではない。
(Examples) Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 市販のL−α−ジパルミトイルホスファチジルコリン
(DPPC)を用いモデル化合物としてカルボキシルフルオ
レセイン(CF)を内包するリポソームを作製した。DPPC
はTpが35℃、Tmが41℃であることが既に知られている。
Example 1 A commercially available L-α-dipalmitoylphosphatidylcholine (DPPC) was used to prepare a liposome encapsulating carboxylfluorescein (CF) as a model compound. DPPC
Is already known to have a Tp of 35 ° C and a Tm of 41 ° C.

100mMのCFと50mMのNaClを含む6mM Trisバッファー(pH
7.0)30mlにL−α−DPPC粉末0.9gを加え室温下でホモ
ジナイザーにより3分間撹拌し、粉末を細かく分散し
た。次に恒温水槽を用いてDPPCのTp以上に相当する38℃
に10分間加温し、その後DPPCのTm以上である50℃に10分
間加温、最後に50℃で浴型超音波照射装置(本田電子製
W−220R型)により約5分間超音波照射して室温に戻し
た。
6 mM Tris buffer containing 100 mM CF and 50 mM NaCl (pH
7.0) 0.9 g of L-α-DPPC powder was added to 30 ml, and the mixture was stirred at room temperature with a homogenizer for 3 minutes to finely disperse the powder. Next, using a constant temperature water bath, 38 ° C, which is equal to or higher than the Tp of DPPC
For 10 minutes, and then for 10 minutes at 50 ° C, which is above the Tm of DPPC, and finally at 50 ° C for about 5 minutes with a bath-type ultrasonic irradiation device (W-220R made by Honda Electronics). To room temperature.

得られたリポソーム分散液のリポソーム外液を、遠心分
離により150mM NaClを含む6mMTrisバッファーに交換
し、リポソームに内包されなかったCFを分離・除去し
た。
The external solution of the obtained liposome dispersion liquid was exchanged with 6 mM Tris buffer containing 150 mM NaCl by centrifugation to separate and remove CF not encapsulated in the liposome.

内包されたCF量は、リポソーム分散液に界面活性剤(デ
オキシコール酸)を加えリポソームを破壊して均一溶液
とした後、蛍光光度計(492nm励起、517nm測定)を用い
て定量した所、内包効率7.5%であった。また光散乱
(光子相関分光法)により求めた粒径は約1μmであ
り、位相差光学顕微鏡観察では均一な粒状が認められ
た。
The amount of encapsulated CF was determined by using a fluorometer (excitation at 492 nm, measurement at 517 nm) after adding a surfactant (deoxycholic acid) to the liposome dispersion liquid to destroy the liposome to obtain a uniform solution. The efficiency was 7.5%. The particle size obtained by light scattering (photon correlation spectroscopy) was about 1 μm, and uniform particles were observed by observation with a phase contrast optical microscope.

比較例1 市販のDPPC粉末をそのままDSCにより測定した所、粉末
の相転移温度(Tα)は69℃であった。
Comparative Example 1 When a commercially available DPPC powder was directly measured by DSC, the phase transition temperature (Tα) of the powder was 69 ° C.

100mMのCFと50mMのNaClを含む6mM Trisバッファー(pH
7.0)30mlを75℃に加温し、そこにDPPC粉末0.9gを加え
て75℃に保ったままホモジナイザーにより3分間撹拌し
た。
6 mM Tris buffer containing 100 mM CF and 50 mM NaCl (pH
7.0) 30 ml was heated to 75 ° C., 0.9 g of DPPC powder was added thereto, and the mixture was stirred for 3 minutes with a homogenizer while maintaining at 75 ° C.

得られたリポソーム分散液を遠心分離により洗浄し、実
施例1と同様に内包されたCF量を定量した所、内包効率
は6.6%、平均粒径は2.5〜3μmで、光学顕微鏡による
と粒径分布はややブロードであった。
The obtained liposome dispersion was washed by centrifugation, and the amount of encapsulated CF was quantified in the same manner as in Example 1. The encapsulation efficiency was 6.6%, the average particle size was 2.5 to 3 μm, and the particle size according to the optical microscope was The distribution was rather broad.

比較例2 実施例1と同じ処方で行ない、DPPCを室温で内包液に分
散後、38℃の加温を行なわずにTm以上の50℃にて10分間
加温した。試料の一部をとって位相差光学顕微鏡で観察
すると数10μ程度の粗大な粒子が多数残存しリポソーム
は完全にはできていないと考えられた。さらに50℃で5
時間加温し、その後50℃で10分間の超音波照射を行なっ
た所、光学顕微鏡で5μmφ以上の粗大粒子は無くなり
ほぼリポソーム化したものと判断された。
Comparative Example 2 The same formulation as in Example 1 was carried out, DPPC was dispersed in the encapsulating liquid at room temperature, and then heated at 38 ° C for 10 minutes without heating at 50 ° C above Tm. When a part of the sample was taken and observed with a phase-contrast optical microscope, it was considered that many coarse particles of about several tens of μm remained and the liposome was not completely formed. 5 at 50 ° C
When heated for 50 minutes and then subjected to ultrasonic irradiation at 50 ° C. for 10 minutes, it was judged by an optical microscope that coarse particles of 5 μmφ or more had disappeared and that they had become liposomes.

実施例1と同様に遠心分離を行いCFの内包効率を測定し
た所3.2%であった。
When the CF inclusion efficiency was measured by centrifugation in the same manner as in Example 1, it was 3.2%.

実施例2 膜成分物質としてL−α−ジミリストイルホスファチジ
ルコリン(DMPC)とL−α−ジミリストイルホスファチ
ジルセリン(DMPS)を混合して用いた。
Example 2 As a membrane component substance, L-α-dimyristoylphosphatidylcholine (DMPC) and L-α-dimyristoylphosphatidylserine (DMPS) were mixed and used.

0.28Mグルコースを含む5mMリン酸バッファーpH7.4、30m
lにDMPC粉末0.8gとDMPS粉末0.2gを加え室温(20℃)に
てホモジナイザーで3分間分散した。主成分であるDMPC
のTpは14℃であるので、この分散液を更に室温で10分静
置し、その後Tm(23℃)以上である30℃で10分間加温し
た。30℃で5分間超音波照射した後、試料の一部をとっ
てセファロース4Bカラム(3cmφ×22cm)を用いてリポ
ソームに内包されなたったグルコースを除去し、150mM
NaClを含む5mMリン酸バッファーpH7.4に交換した。
5mM Phosphate Buffer pH7.4, 30m with 0.28M Glucose
0.8 g of DMPC powder and 0.2 g of DMPS powder were added to 1 l and dispersed at room temperature (20 ° C.) for 3 minutes with a homogenizer. DMPC which is the main component
Since its Tp is 14 ° C., this dispersion was further left to stand at room temperature for 10 minutes, and then heated at 30 ° C., which was higher than Tm (23 ° C.), for 10 minutes. After sonicating for 5 minutes at 30 ° C, a portion of the sample was removed using a Sepharose 4B column (3 cmφ × 22 cm) to remove the glucose that was not encapsulated in the liposome, and 150 mM was added.
The pH was changed to 5 mM phosphate buffer pH 7.4 containing NaCl.

得られたリポソームについて、先ず界面活性剤でリポソ
ームを破壊後、グルコースを比色定量した所、内包効率
は7.1%であった。
Regarding the obtained liposomes, the liposomes were first destroyed with a surfactant and then glucose was colorimetrically determined, and the encapsulation efficiency was 7.1%.

位相差光学顕微鏡観察により均一な粒状のリポソームが
認められ光散乱法による平均粒径は0.8μであった。
Observation with a phase-contrast optical microscope revealed uniform granular liposomes, and the average particle size by light scattering was 0.8μ.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リポソーム膜成分物質を水性溶液に分散し
た後、一旦膜成分物質の前転移温度(Tp)以上でかつ主
転移温度(Tm)未満の温度に加温、その温度で保持し、
次にTm以上に加温することを特徴とするリポソームの製
造方法。
1. After dispersing a liposome membrane component substance in an aqueous solution, it is once heated to a temperature not lower than the pre-transition temperature (Tp) of the membrane component substance and lower than the main transition temperature (Tm) and kept at that temperature.
Next, a method for producing liposomes, which comprises heating to Tm or higher.
JP23927389A 1989-09-14 1989-09-14 Method for producing liposome Expired - Fee Related JPH0774146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23927389A JPH0774146B2 (en) 1989-09-14 1989-09-14 Method for producing liposome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23927389A JPH0774146B2 (en) 1989-09-14 1989-09-14 Method for producing liposome

Publications (2)

Publication Number Publication Date
JPH03101614A JPH03101614A (en) 1991-04-26
JPH0774146B2 true JPH0774146B2 (en) 1995-08-09

Family

ID=17042305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23927389A Expired - Fee Related JPH0774146B2 (en) 1989-09-14 1989-09-14 Method for producing liposome

Country Status (1)

Country Link
JP (1) JPH0774146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2275443B1 (en) * 2005-11-30 2008-06-01 Italfarmaco, S.A. LIPOSOMAS PREPARATION PROCEDURE.
US8591942B2 (en) 2009-09-23 2013-11-26 Indu JAVERI Methods for the preparation of liposomes comprising docetaxel
US10143652B2 (en) 2009-09-23 2018-12-04 Curirx Inc. Methods for the preparation of liposomes

Also Published As

Publication number Publication date
JPH03101614A (en) 1991-04-26

Similar Documents

Publication Publication Date Title
JPS607934A (en) Preparation of liposome
JP2756526B2 (en) Stabilization method of liposome suspension and liposome suspension
US4515736A (en) Method for encapsulating materials into liposomes
JP2843566B2 (en) Multivesicular liposomes encapsulating bioactive substances in the presence of hydrochloride
JP4857392B2 (en) Method for producing liposome and method for dissolving cholesterol
EP0357005B1 (en) Method for preparing lipid powder for use in preparing liposomes and method for preparing liposomes
JPS59134712A (en) Manufacture of multi-thin layer lipid cell
JP3681776B2 (en) Proliposome and method for producing liposome
WO1994008626A1 (en) Process and device for producing liquid, dispersed systems
JPH04506207A (en) Preparation of liposome and lipid complex compositions
US5173219A (en) Uniform spherical multilamellar liposomes of defined and adjustable size distribution
JPH05255070A (en) Liposome preparation and its production
JPH0436735B2 (en)
JPH0774146B2 (en) Method for producing liposome
JPS6012127A (en) Preparing method of liposome
JP3831958B2 (en) Lipid mixed lipid and liposome dispersion
JPS63277618A (en) Production of liposome
JPH0437731B2 (en)
JPH04221316A (en) Liposome preparations containing synthetic lipid for non-intestinal administration
JPH04208216A (en) Preparation of fine liposome
JP2653246B2 (en) Production method of fat emulsion
JPH0610131B2 (en) Liposomal manufacturing method
KR950002880B1 (en) Process for preparing liposomes
EP0556392A1 (en) Process for producing fat emulsion
JPH03173813A (en) Production of liposome

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370