JPH0773758A - Structure of oxide superconductor with stabilized metallic layer - Google Patents

Structure of oxide superconductor with stabilized metallic layer

Info

Publication number
JPH0773758A
JPH0773758A JP5221467A JP22146793A JPH0773758A JP H0773758 A JPH0773758 A JP H0773758A JP 5221467 A JP5221467 A JP 5221467A JP 22146793 A JP22146793 A JP 22146793A JP H0773758 A JPH0773758 A JP H0773758A
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
stabilizing
intermediate layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5221467A
Other languages
Japanese (ja)
Other versions
JP3568561B2 (en
Inventor
Kazunori Onabe
和憲 尾鍋
Yasuhiro Iijima
康裕 飯島
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22146793A priority Critical patent/JP3568561B2/en
Publication of JPH0773758A publication Critical patent/JPH0773758A/en
Application granted granted Critical
Publication of JP3568561B2 publication Critical patent/JP3568561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a structure by which the rate of reduction in a critical current density in bending of a superconductive tape can be reduced and the critical current density can be increased. CONSTITUTION:An oxide superconductive layer 3 is formed on a tape base material 1 via an intermediate layer 2. A good conductive stabilized metallic layer 4, whose thickness is equal to the total thickness of the base member 1 and the intermediate layer 2, is formed on the oxide superconductive layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、安定化金属層を備え
た酸化物超電導導体の製造方法に関するもので、この種
の酸化物超電導導体は、超電導マグネット、超電導発電
機、エネルギー貯蔵、電力輸送などへの応用開発が進め
られているものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconducting conductor having a stabilizing metal layer, which is used as a superconducting magnet, a superconducting generator, energy storage, and electric power transport. The application development is being promoted.

【0002】[0002]

【従来の技術】従来、レーザ蒸着法やCVD法などの成
膜法により、テープ状の基材上に酸化物超電導層を形成
して超電導導体を形成することがなされている。そし
て、この種の成膜法によって形成した薄膜状の酸化物超
電導層は、従来知られている酸化物超電導体の構成元素
の粉末を銅パイプに充填し、それに縮径加工を施し、更
に熱処理を施して得られる形式の超電導導体よりも高い
臨界電流密度(Jc)を示すことが知られている。ま
た、この種の超電導導体は、液体窒素温度(77K)で
冷却して超電導状態とした上で磁場を作用させた場合
に、磁場による超電導特性の劣化割合も少ないとされて
いるので、この種のテープ状の酸化物超電導導体を用い
てコイル加工を施し、小型で軽量の超電導マグネットを
製造する試みがなされている。
2. Description of the Related Art Conventionally, a superconducting conductor has been formed by forming an oxide superconducting layer on a tape-shaped substrate by a film forming method such as a laser vapor deposition method or a CVD method. Then, the thin film oxide superconducting layer formed by this kind of film forming method is filled with powder of the constituent elements of the conventionally known oxide superconductor in a copper pipe, subjected to diameter reduction processing, and further heat treated. It is known to have a higher critical current density (Jc) than that of the superconducting conductor of the type obtained by applying. In addition, this type of superconducting conductor is said to have a low rate of deterioration of superconducting properties due to a magnetic field when it is cooled at liquid nitrogen temperature (77 K) to be in a superconducting state and then subjected to a magnetic field. Attempts have been made to manufacture a compact and lightweight superconducting magnet by performing coil processing using the tape-shaped oxide superconducting conductor.

【0003】ところが、金属テープなどの長尺の基材の
上に酸化物超電導層を直接成膜すると、金属テープが多
結晶体であり、金属テープの結晶構造が、酸化物超電導
層の結晶構造と大きく異なり、しかも、結晶の配向性も
揃っていない関係から、その上に成膜される酸化物超電
導層の結晶配向性も乱れたものになり、結晶配向性が乱
れた酸化物超電導層では、良好な超電導特性が得られな
い問題がある。また、金属テープと酸化物超電導層では
熱膨張係数が大きく異なるので、酸化物超電導層を形成
する際に施す熱処理時の加熱冷却処理の際に、熱膨張係
数の違いに起因する熱歪が蓄積され、場合によっては酸
化物超電導層にクラックを生じさせてしまい、臨界電流
密度が大幅に低下する問題がある。更に、前記熱処理の
際に、金属テープと酸化物超電導層との間に元素の拡散
現象を生じると、金属テープの構成元素の一部が酸化物
超電導層側に拡散するか、酸化物超電導層の構成元素の
一部が金属テープ側に拡散することになり、いずれにし
ても酸化物超電導層の組成が崩れて超電導特性が劣化す
る問題がある。
However, when the oxide superconducting layer is directly formed on a long base material such as a metal tape, the metal tape is a polycrystal, and the crystal structure of the metal tape is the crystal structure of the oxide superconducting layer. However, since the crystal orientation is not uniform, the crystal orientation of the oxide superconducting layer formed on it is also disordered, and in the oxide superconducting layer with disordered crystal orientation, However, there is a problem that good superconducting characteristics cannot be obtained. In addition, since the thermal expansion coefficient of the metal tape and that of the oxide superconducting layer differ greatly, thermal strain due to the difference in thermal expansion coefficient accumulates during the heating / cooling process during the heat treatment performed when forming the oxide superconducting layer. As a result, cracks may occur in the oxide superconducting layer in some cases, and there is a problem that the critical current density is significantly reduced. Further, during the heat treatment, if an element diffusion phenomenon occurs between the metal tape and the oxide superconducting layer, some of the constituent elements of the metal tape diffuse to the oxide superconducting layer side or the oxide superconducting layer. Therefore, there is a problem that the composition of the oxide superconducting layer is destroyed and the superconducting characteristics are deteriorated, because a part of the constituent elements of (3) is diffused to the metal tape side.

【0004】そこで従来、金属テープの上に結晶配向性
の優れた中間層、例えば、MgOやSrTiO3、イッ
トリウム安定化ジルコニア(YSZ)などのような酸化
物超電導体と結晶構造の類似した中間層を形成し、この
中間層上に酸化物超電導層を成膜することで、金属テー
プなどの長尺の基材上に結晶配向性の優れた酸化物超電
導層を形成することがなされている。このような中間層
を金属テープと酸化物超電導層の間に形成するならば、
熱膨張係数の差異に起因する熱歪の蓄積を緩和すること
ができ、酸化物超電導層と金属テープとの間の元素拡散
も抑制できるので、特性の優れた酸化物超電導層を備え
た酸化物超電導導体を得ることができる。
Therefore, conventionally, an intermediate layer having a superior crystal orientation on a metal tape, for example, an intermediate layer having a crystal structure similar to that of an oxide superconductor such as MgO, SrTiO 3 , or yttrium-stabilized zirconia (YSZ). Is formed and an oxide superconducting layer is formed on this intermediate layer, whereby an oxide superconducting layer having excellent crystal orientation is formed on a long base material such as a metal tape. If such an intermediate layer is formed between the metal tape and the oxide superconducting layer,
Since the accumulation of thermal strain due to the difference in the coefficient of thermal expansion can be mitigated and the element diffusion between the oxide superconducting layer and the metal tape can be suppressed, the oxide having an oxide superconducting layer with excellent characteristics can be suppressed. A superconducting conductor can be obtained.

【0005】そこで本発明者らは、ハステロイからなる
金属テープの上にイットリウム安定化ジルコニア(YS
Z)の中間層を形成し、この中間層上に酸化物超電導体
の中でも安定性に優れたYBaCuO系の超電導体から
なる超電導層を形成することで超電導導体を製造し、こ
の超電導導体についてコイル加工を施してみた。まず、
幅10mm、厚さ0.1mmのハステロイからなる金属
テープを用い、この金属テープ上に厚さ0.5μmのY
SZの中間層をスパッタ装置によって形成し、この中間
層上にレーザ蒸着装置によって厚さ約1.0μmのY1
2Cu37-xなる組成の酸化物超電導層を形成して超
電導導体を得た。この超電導導体の臨界電流密度(J
c)は、特にコイル加工を施していない直線状態のまま
において、液体窒素温度(77K)、磁場0テスラの条
件において1×104A/cm2の値を示した。
Therefore, the present inventors have developed a yttrium-stabilized zirconia (YS) on a metal tape made of Hastelloy.
Z), an intermediate layer is formed, and a superconducting layer made of a YBaCuO-based superconductor having excellent stability among oxide superconductors is formed on the intermediate layer to produce a superconducting conductor. I tried to process it. First,
A metal tape made of Hastelloy having a width of 10 mm and a thickness of 0.1 mm is used, and Y having a thickness of 0.5 μm is formed on the metal tape.
An intermediate layer of SZ is formed by a sputtering device, and Y 1 B having a thickness of about 1.0 μm is formed on the intermediate layer by a laser deposition device.
An oxide superconducting layer having a composition of a 2 Cu 3 O 7-x was formed to obtain a superconducting conductor. This superconducting conductor has a critical current density (J
c) shows a value of 1 × 10 4 A / cm 2 under the conditions of liquid nitrogen temperature (77 K) and a magnetic field of 0 Tesla, especially in the linear state where no coiling is applied.

【0006】次にこの試料を複数用意し、これらについ
て種々の曲げ半径で曲げ加工を施し、得られた各コイル
について液体窒素温度(77K)、磁場0テスラの条件
で臨界電流密度を測定した結果を図8に示す。なお、こ
の曲げ加工時においては、所定の径の巻胴に対し、基材
を内側に位置するように、かつ、酸化物超電導層を外側
に位置するように巻回して曲げ加工したものは酸化物超
電導層に対して引張歪を負荷するものとし、その逆に、
基材を外側に位置するように、かつ、酸化物超電導層を
内側に位置するように巻回して曲げ加工したものは酸化
物超電導層に対して圧縮歪を負荷するものとして評価し
た。
Next, a plurality of these samples were prepared, subjected to bending with various bending radii, and the critical current density was measured for each obtained coil under the conditions of liquid nitrogen temperature (77 K) and magnetic field of 0 Tesla. Is shown in FIG. In addition, at the time of this bending process, a product obtained by winding and bending the base material on the inside and the oxide superconducting layer on the outside with respect to the winding cylinder of a predetermined diameter is oxidized. It is assumed that tensile strain is applied to the superconducting layer, and vice versa.
A product obtained by winding and bending the base material so as to be located outside and the oxide superconducting layer located inside was evaluated as being one that applies compressive strain to the oxide superconducting layer.

【0007】ところで、種々の曲げ半径(r)に伴って
酸化物超電導層に負荷される歪は、以下の計算式を採用
して算出することが一般的である。 歪(ε%)=(t/2r)×100 なお、この式において、εはテープ表面に加わる歪、t
はテープ全体の厚み、rは曲げ半径の値を示す。
By the way, the strain applied to the oxide superconducting layer with various bending radii (r) is generally calculated by using the following calculation formula. Strain (ε%) = (t / 2r) × 100 In this equation, ε is the strain applied to the tape surface, t
Indicates the thickness of the entire tape, and r indicates the value of the bending radius.

【0008】更に、図8の縦軸は、コイル加工前の状態
における超電導テープの臨界電流密度をJc(0)と
し、所定の歪を負荷した場合の臨界電流密度をJcとし
て、両者の比、Jc/Jc(0)の値を求めた結果を示
す。従って、歪が0の場合、即ち、超電導テープをコイ
ル加工していない直線状態では、データは1.00を示
している。
Further, the vertical axis of FIG. 8 shows the critical current density of the superconducting tape before coiling as Jc (0), and the critical current density when a predetermined strain is applied as Jc, the ratio of the two, The result of having calculated the value of Jc / Jc (0) is shown. Therefore, when the strain is 0, that is, when the superconducting tape is not coiled, the data shows 1.00.

【0009】図8に示す結果から明らかなように、コイ
ル加工を施した場合の臨界電流密度の変化状態を見る
と、歪が0.2%までは臨界電流密度の低下割合は小さ
いが、歪が0.2%を超えると大きく低下し始め、歪が
0.25%を超えた場合、コイル加工していない試料の
80%を割ってしまい、歪が0.3%の場合ではコイル
加工前の臨界電流密度の50%以下に低下してしまう問
題を生じた。
As is clear from the results shown in FIG. 8, the change state of the critical current density when coiling is performed shows that although the rate of decrease of the critical current density is small up to a strain of 0.2%, the strain When the strain exceeds 0.2%, it begins to decrease greatly, and when the strain exceeds 0.25%, it falls below 80% of the sample that has not been coiled. When the strain is 0.3%, it is before coiling. There was a problem that the critical current density was reduced to 50% or less.

【0010】一方、本発明者らは、ハステロイテープな
どの金属テープの上にYSZの中間層を形成し、この中
間層上に酸化物超電導体の中でも安定性に優れたYBa
CuO系の超電導体からなる超電導層を形成することで
超電導特性の優れたテープ状の超電導導体を製造する試
みを種々行なっている。
On the other hand, the present inventors formed an intermediate layer of YSZ on a metal tape such as Hastelloy tape, and on this intermediate layer, YBa which is excellent in stability among oxide superconductors was formed.
Various attempts have been made to produce a tape-shaped superconducting conductor having excellent superconducting properties by forming a superconducting layer made of a CuO-based superconductor.

【0011】このような試みの中から本発明者らは先
に、結晶配向性に優れた中間層を形成するために、ある
いは、超電導特性の優れた超電導導体を得るために、特
願平3ー126836号、特願平3ー126837号、
特願平3ー205551号、特願平4ー13443号、
特願平4ー293464号などにおいて特許出願を行な
っている。これらの特許出願に記載された技術によれ
ば、ハステロイテープなどの金属テープの基材上にスパ
ッタ装置により中間層を形成する際に、スパッタリング
と同時に基材成膜面の斜め方向からイオンビームを照射
しながら中間層を成膜することにより、結晶配向性に優
れた中間層を形成することができるものである。この方
法によれば、中間層を形成する多数の結晶粒のそれぞれ
の結晶格子のa軸あるいはb軸で形成する粒界傾角を3
0度以下に揃えることができ、結晶配向性に優れた中間
層を形成することができる。そして更に、この配向性に
優れた中間層上に酸化物超電導層を成膜するならば、酸
化物超電導層の結晶配向性も優れたものになり、これに
より、結晶配向性に優れた臨界電流密度の高い酸化物超
電導層を形成することができる。
From the above-mentioned attempts, the inventors of the present invention have previously proposed, in order to form an intermediate layer having excellent crystal orientation, or to obtain a superconducting conductor having excellent superconducting properties, Japanese Patent Application No. -126836, Japanese Patent Application No. 3-126837,
Japanese Patent Application No. 3-205551, Japanese Patent Application No. 4-13443,
A patent application has been filed in Japanese Patent Application No. 4-293464. According to the techniques described in these patent applications, when forming an intermediate layer on a base material of a metal tape such as Hastelloy tape by a sputtering device, an ion beam is applied simultaneously with sputtering from an oblique direction of the base material film-forming surface. By forming the intermediate layer while irradiating, the intermediate layer excellent in crystal orientation can be formed. According to this method, the grain boundary tilt angle formed by the a-axis or the b-axis of each crystal lattice of a large number of crystal grains forming the intermediate layer is 3
It is possible to form the intermediate layer excellent in crystal orientation, since the intermediate layer can be aligned at 0 degrees or less. Furthermore, if an oxide superconducting layer is formed on the intermediate layer having excellent orientation, the crystal orientation of the oxide superconducting layer will also be excellent, and as a result, the critical current with excellent crystal orientation will be obtained. A dense oxide superconducting layer can be formed.

【0012】次に本発明者らは、このような優れた超電
導特性を有するテープ状の超電導導体を用いて超電導コ
イルを製造するために、前記良好な結晶配向性を有する
超電導導体について曲げ加工を施す試験を行なった。ま
ず、幅10mm、厚さ0.1mmのハステロイからなる
金属テープを用い、この金属テープ上に、厚さ0.5μ
mのYSZの中間層をスパッタ装置とイオンビーム照射
装置を用いて前述の特許出願に係る方法で形成した。具
体的には、YSZのターゲットを用いて金属テープ上に
スパッタリングを行なって中間層を形成する際に、基材
上面に対して55度の角度からイオンビーム照射装置に
よりアルゴンと酸素の混合イオンを照射しながら成膜
し、次いで得られた中間層上にレーザ蒸着装置によって
厚さ約1.0μmのY1Ba2Cu37-xなる組成の酸化
物超電導層を形成して超電導導体を得た。
Next, in order to manufacture a superconducting coil using the tape-shaped superconducting conductor having such excellent superconducting properties, the present inventors bend the superconducting conductor having good crystal orientation. An applied test was conducted. First, a metal tape made of Hastelloy having a width of 10 mm and a thickness of 0.1 mm is used, and a thickness of 0.5 μ is put on the metal tape.
The YSZ intermediate layer of m was formed by the method according to the above-mentioned patent application using a sputtering apparatus and an ion beam irradiation apparatus. Specifically, when performing sputtering on a metal tape using a YSZ target to form an intermediate layer, mixed ions of argon and oxygen are emitted from an angle of 55 degrees with respect to the upper surface of the substrate by an ion beam irradiation device. A film is formed while irradiating, and then an oxide superconducting layer having a composition of Y 1 Ba 2 Cu 3 O 7-x with a thickness of about 1.0 μm is formed on the obtained intermediate layer by a laser deposition apparatus to form a superconducting conductor. Obtained.

【0013】この超電導導体の臨界電流密度(Jc)
は、特にコイル加工を施していない直線状態のままにお
いて、液体窒素温度(77K)、磁場0テスラの条件に
おいて1×105A/cm2の値を示し、特に優れた超電
導特性を有している。
Critical current density (Jc) of this superconducting conductor
Shows a value of 1 × 10 5 A / cm 2 under the condition of liquid nitrogen temperature (77 K) and magnetic field of 0 Tesla, especially in a straight state without coiling, and has particularly excellent superconducting properties. There is.

【0014】次に、前記のように結晶配向性を整えた中
間層を有する超電導導体を複数用意し、これらについて
種々の曲げ半径で曲げ加工を施し、得られた各超電導コ
イルについて液体窒素温度(77K)、磁場0テスラの
条件で臨界電流密度を測定した結果を図9に示す。な
お、曲げ加工条件や歪の算出方法は、前記の例の場合と
同等である。
Next, a plurality of superconducting conductors having an intermediate layer whose crystal orientation has been adjusted as described above are prepared, and these are bent at various bending radii, and the liquid nitrogen temperature ( FIG. 9 shows the result of measuring the critical current density under the conditions of 77 K) and a magnetic field of 0 Tesla. The bending conditions and the method of calculating strain are the same as in the case of the above example.

【0015】図9に示す結果から明らかなように、コイ
ル加工を施した場合の臨界電流密度の変化状態を見る
と、歪が大きくなる毎に少しずつ臨界電流密度が低下し
始め、歪が0.3%を超えた場合、コイル加工していな
い試料の90%を下回り、更に歪が0.45%を超えた
場合、コイル加工していない試料の80%を割って76
%程度になってしまう問題を生じた。
As is clear from the results shown in FIG. 9, when the state of change in the critical current density when the coil is processed is observed, the critical current density begins to gradually decrease as the strain increases, and the strain becomes zero. When it exceeds 0.3%, it is lower than 90% of the uncoiled sample, and when the strain exceeds 0.45%, it is divided by 80% of the uncoiled sample to obtain 76.
There was a problem that it became about%.

【0016】以上のことから、中間層の結晶を配向させ
ていない酸化物超電導導体は勿論、中間層を結晶配向さ
せた酸化物超電導導体においても、いずれにしても曲げ
加工を施す超電導特性の劣化を生じることが明かになっ
た。
From the above, in any case, not only in the oxide superconducting conductor in which the crystal of the intermediate layer is not oriented, but also in the oxide superconducting conductor in which the crystal of the intermediate layer is oriented, the superconducting characteristic is deteriorated by bending. It has become clear that

【0017】本発明は前記事情に鑑みてなされたもので
あり、超電導テープを曲げ加工した場合の臨界電流密度
の低下割合を少なくすることができ、臨界電流密度を高
くできる構造を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a structure in which the rate of decrease in critical current density when bending a superconducting tape can be reduced and the critical current density can be increased. To aim.

【0018】[0018]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、テープ状の基材上に中間層を
介して酸化物超電導層を形成し、この酸化物超電導層上
に良導電性の安定化金属層を形成するとともに、前記基
材と中間層を合わせた部分の厚さと、前記安定化金属層
の厚さを同等の厚さに形成してなるものである。
In order to solve the above-mentioned problems, the invention according to claim 1 forms an oxide superconducting layer on a tape-shaped substrate with an intermediate layer interposed therebetween, and the oxide superconducting layer is formed on the oxide superconducting layer. In addition to forming a stabilizing metal layer having good conductivity, the thickness of the portion where the base material and the intermediate layer are combined and the stabilizing metal layer have the same thickness.

【0019】請求項2記載の発明は前記課題を解決する
ために、テープ状の基材上に中間層を介して酸化物超電
導層を形成し、この酸化物超電導層上に、Ag、Ptな
どの貴金属またはその合金製の良導電性の下地安定化薄
膜と、CuまたはAlなどの良導電製の安定化層からな
る安定化金属層を形成するとともに、前記基材と中間層
を合わせた部分の厚さと、前記安定化金属層を合わせた
部分の厚さを同等にしてなるものである。
In order to solve the above-mentioned problems, the invention according to claim 2 forms an oxide superconducting layer on a tape-shaped substrate via an intermediate layer, and Ag, Pt, etc. are formed on the oxide superconducting layer. Forming a stabilizing metal layer composed of a noble metal or its alloy of good conductivity and a stabilizing layer of good conductivity such as Cu or Al, and combining the base material and the intermediate layer. And the thickness of the portion where the stabilizing metal layer is combined are made equal to each other.

【0020】[0020]

【作用】本発明においては、基材上に中間層を介して酸
化物超電導層を形成し、その上に基材と中間層を合わせ
た厚さと同等の厚さの安定化金属層を設けているので、
全体をコイル加工などのように曲げ加工する際に酸化物
超電導層に歪がかかりにくい構成であり、酸化物超電導
層に曲げ加工を施しても超電導特性の劣化を生じにく
い。
In the present invention, the oxide superconducting layer is formed on the base material via the intermediate layer, and the stabilizing metal layer having the same thickness as the total thickness of the base material and the intermediate layer is provided on the oxide superconducting layer. Because
The structure is such that the oxide superconducting layer is less likely to be strained when the whole is bent, such as by coiling, and the superconducting characteristics are less likely to deteriorate even if the oxide superconducting layer is bent.

【0021】また、下地安定化薄膜と安定化層を酸化物
超電導層上に形成した構造の酸化物超電導導体において
も、基材と中間層を合わせた部分の厚さと、下地安定化
薄膜と安定化層を合わせた安定化金属層部分の厚さを同
等にすることで前記と同等の効果を得ることができる。
更に、基材上に中間層を介して酸化物超電導層を設け、
かつ、前記の如くAgなどの貴金属やその合金の下地安
定化薄膜と良導電性金属材料製の安定化層を酸化物超電
導層上に形成した構造を採用すると、酸化物超電導層の
熱処理時において、酸化物超電導層の構成元素と基材の
構成元素が相互拡散することを中間層が抑制するととも
に、酸化通超電導層の構成元素と安定化層の構成元素が
相互拡散することを安定化薄膜が抑制するので、熱処理
によって酸化物超電導層の超電導特性が劣化することが
ない。
Further, also in the oxide superconducting conductor having a structure in which the underlayer stabilizing thin film and the stabilizing layer are formed on the oxide superconducting layer, the thickness of the portion where the base material and the intermediate layer are combined and the underlayer stabilizing thin film and the stabilizing layer are stable. By making the thickness of the stabilizing metal layer portion including the functionalized layers equal, the same effect as described above can be obtained.
Furthermore, an oxide superconducting layer is provided on the base material via an intermediate layer,
In addition, as described above, when a structure in which an underlayer stabilizing thin film of a noble metal such as Ag or an alloy thereof and a stabilizing layer made of a highly conductive metal material are formed on an oxide superconducting layer, heat treatment of the oxide superconducting layer is possible. , The intermediate layer suppresses the mutual diffusion of the constituent elements of the oxide superconducting layer and the base material, and stabilizes the mutual diffusion of the constituent elements of the oxidative superconducting layer and the stabilizing layer. Therefore, the superconducting property of the oxide superconducting layer is not deteriorated by the heat treatment.

【0022】[0022]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は本発明の第1実施例を示すものであ
って、この例の酸化物超電導導体Aは、テープ状の基材
1の上面に中間層2が形成され、この中間層2上に酸化
物超電導層3が形成され、この酸化物超電導層3上に安
定化金属層4が形成されてなる。そして、前記の構造に
おいて、基材1と中間層2から基材部5が構成され、こ
の基材部5の厚さと、安定化金属層4の厚さが同等にさ
れている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. In the oxide superconducting conductor A of this example, an intermediate layer 2 is formed on the upper surface of a tape-shaped base material 1, and the intermediate layer 2 is oxidized. The object superconducting layer 3 is formed, and the stabilizing metal layer 4 is formed on the oxide superconducting layer 3. In the above structure, the base material portion 5 is composed of the base material 1 and the intermediate layer 2, and the thickness of the base material portion 5 and the thickness of the stabilizing metal layer 4 are made equal.

【0023】前記基材1は、ステンレス鋼、銅、また
は、ハステロイ(ハステロイC-276等)などのニッ
ケル合金などに代表される各種金属材料から、あるい
は、各種のガラスまたはセラミックスなどから構成され
るもののいずれを用いても良い。前記の中間層2を形成
する材料は、後に中間層2の上に形成される酸化物超電
導層の結晶に近い結晶構造(例えば、立方晶系の結晶構
造)を有し、酸化物超電導層の熱膨張率に近い熱膨張率
を有するものが好ましい。よって、中間層2を構成する
材料は、YSZ(イットリウム安定化ジルコニア)、S
rTiO3、MgOなどのセラミックス系の材料が好ま
しい。
The base material 1 is made of various metal materials such as stainless steel, copper, nickel alloys such as Hastelloy (Hastelloy C-276), or glass or ceramics. Any of these may be used. The material forming the intermediate layer 2 has a crystal structure (for example, a cubic crystal structure) close to that of the oxide superconducting layer formed on the intermediate layer 2 later, and the material of the oxide superconducting layer is Those having a coefficient of thermal expansion close to the coefficient of thermal expansion are preferable. Therefore, the material forming the intermediate layer 2 is YSZ (yttrium-stabilized zirconia), S
Ceramic-based materials such as rTiO 3 and MgO are preferable.

【0024】前記の酸化物超電導層3は、Y1Ba2Cu3
7-x、Y2Ba4Cu8x、Y3Ba3Cu6Oxなる組成、
あるいは(Bi,Pb)2Ca2Sr2Cu3x、(Bi,
Pb)2Ca2Sr3Cu4xなる組成、あるいは、Tl2
Ba2Ca2Cu3x、Tl1Ba2Ca2Cu3x、Tl1
Ba2Ca3Cu4xなる組成などに代表される臨界温度
の高い酸化物超電導体のいずれからなるものを用いても
良い。前記安定化金属層4は、Ag、Pt、Auなどの
貴金属あるいはそれらの合金、または、CuやAlなど
の良導電性金属材料からなる。
The oxide superconducting layer 3 is made of Y 1 Ba 2 Cu 3
O 7-x, Y 2 Ba 4 Cu 8 O x, Y 3 Ba 3 Cu 6 Ox a composition,
Alternatively, (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O x , (Bi,
Pb) 2 Ca 2 Sr 3 Cu 4 O x or Tl 2
Ba 2 Ca 2 Cu 3 O x , Tl 1 Ba 2 Ca 2 Cu 3 O x , Tl 1
Any oxide superconductor having a high critical temperature represented by a composition such as Ba 2 Ca 3 Cu 4 O x may be used. The stabilizing metal layer 4 is made of a noble metal such as Ag, Pt, or Au or an alloy thereof, or a highly conductive metal material such as Cu or Al.

【0025】前記構造の酸化物超電導導体Aにあって
は、例えば基材部5の厚さが0.05〜0.1mm程度で
あり、酸化物超電導層3の厚さが1〜2μm程度であ
り、安定化金属層4の厚さが0.05〜0.1mm程度に
形成されている。このように同等の厚さの基材部5と安
定化金属層4で酸化物超電導層3が挟まれて酸化物超電
導導体Aが構成されている場合、この酸化物超電導導体
Aを多少曲げ加工しても酸化物超電導層3の臨界電流特
性の劣化を生じない。よって、臨界電流密度の高い超電
導コイルを得ることができる。この理由は、前記構造の
酸化物超電導導体Aを曲げ加工すると、基材部5の上に
設けられた酸化物超電導層3に対しては基材部5から見
ると引張歪が負荷されるが、安定化金属層4から見ると
その下側に酸化物超電導層3が設けられていて安定化金
属層4から酸化通超電導層3に対して圧縮歪が負荷され
るので、両者の負荷がバランスする結果、酸化物超電導
層3に対する実際の応力負荷が軽減されることに起因し
ているものと思われる。
In the oxide superconducting conductor A having the above structure, for example, the thickness of the base material portion 5 is about 0.05 to 0.1 mm, and the thickness of the oxide superconducting layer 3 is about 1 to 2 μm. The thickness of the stabilizing metal layer 4 is about 0.05 to 0.1 mm. Thus, when the oxide superconducting conductor A is formed by sandwiching the oxide superconducting layer 3 between the base material portion 5 and the stabilizing metal layer 4 having the same thickness, the oxide superconducting conductor A is slightly bent. Even if it does, the deterioration of the critical current characteristics of the oxide superconducting layer 3 does not occur. Therefore, a superconducting coil having a high critical current density can be obtained. The reason is that when the oxide superconducting conductor A having the above structure is bent, tensile strain is applied to the oxide superconducting layer 3 provided on the base member 5 when viewed from the base member 5. When viewed from the stabilizing metal layer 4, the oxide superconducting layer 3 is provided below the stabilizing metal layer 4, and the compressive strain is applied from the stabilizing metal layer 4 to the oxidation-conducting superconducting layer 3. Therefore, both loads are balanced. As a result, it seems that the actual stress load on the oxide superconducting layer 3 is reduced.

【0026】図2は本発明の第2実施例を示すものであ
り、この実施例の酸化物超電導導体Bにおいて先の実施
例の構成要素と同一の構成要素には同一の符号を付して
それらの部分の説明は省略する。この第2実施例におい
て先の第1実施例と異なっているのは、安定化金属層
4’が、下地安定化薄膜4aと安定化層4bとから構成
されている点である。前記下地安定化薄膜4aは、A
g、Au、Ptなどの貴金属またはそれらの合金からな
り、安定化層4bは、CuやAlなどのように貴金属よ
りも安価な良電導性金属材料から構成されている。
FIG. 2 shows a second embodiment of the present invention. In the oxide superconducting conductor B of this embodiment, the same components as those of the previous embodiment are designated by the same reference numerals. A description of those parts will be omitted. The second embodiment differs from the first embodiment in that the stabilizing metal layer 4'is composed of a base stabilizing thin film 4a and a stabilizing layer 4b. The base stabilizing thin film 4a is
The stabilizing layer 4b is made of a noble metal such as g, Au or Pt or an alloy thereof, and the stabilizing layer 4b is made of a highly conductive metal material such as Cu or Al which is cheaper than the noble metal.

【0027】次にこの第2実施例の酸化部超電導導体B
を製造する方法について説明する。この例の酸化物超電
導導体Bを製造するには、まず、図3に示すようなテー
プ状の基材1を用意する。前記基材1を用意したなら
ば、図3に示すように、この基材1上に拡散バリアとし
ての中間層2を成膜法により形成する。この中間層2を
形成する具体的方法は、スパッタ法、真空蒸着法、レー
ザ蒸着法、化学気相成長法(CVD)などのいずれの成
膜法を用いても良い。基材1として長尺のものを用いる
場合は、使用する成膜装置の真空チャンバの内部にテー
プの送出装置と巻取装置を設け、送出装置から送り出し
た基材を真空チャンバの内部で連続的に所定の速度で移
動させながら巻取装置で巻き取り、移動中の基材に連続
成膜処理を行なえば良い。なお、ここで行なう成膜処理
においては長尺の基材1を用いることを想定しているの
で、均質な膜を連続的に長時間成膜することが可能なレ
ーザ蒸着法を用いることが好ましい。
Next, the superconducting conductor B of the oxidized portion of the second embodiment
A method of manufacturing the will be described. To manufacture the oxide superconducting conductor B of this example, first, a tape-shaped substrate 1 as shown in FIG. 3 is prepared. After the base material 1 is prepared, as shown in FIG. 3, the intermediate layer 2 as a diffusion barrier is formed on the base material 1 by a film forming method. As a specific method for forming the intermediate layer 2, any film forming method such as a sputtering method, a vacuum vapor deposition method, a laser vapor deposition method, and a chemical vapor deposition method (CVD) may be used. When a long substrate 1 is used, a tape feeding device and a winding device are provided inside the vacuum chamber of the film forming apparatus used, and the substrate fed from the feeding device is continuously fed inside the vacuum chamber. The film may be taken up by a take-up device while being moved at a predetermined speed, and a continuous film formation process may be performed on the moving substrate. Since it is assumed that a long base material 1 is used in the film forming process performed here, it is preferable to use a laser vapor deposition method capable of forming a uniform film continuously for a long time. .

【0028】基材1上に中間層2を形成したならば、次
に中間層2上に酸化物超電導層3を図4に示すように形
成する。この酸化物超電導層3の成膜においても前記と
同様の種々の成膜法を用いることができるが、均質な膜
を連続的に長時間成膜することが可能なレーザ蒸着法を
用いることが好ましい。このレーザ蒸着を行なうには、
ターゲットとして例えばY1Ba2Cu37-xなる組成の
酸化物あるいは酸化物超電導体ターゲットを使用し、基
材を500〜800℃程度の所望の温度に加熱し、真空
チャンバの内部を酸素を含む減圧雰囲気とし、基材1を
1時間に数10cm程度の速度で移動させながら成膜処
理を行えば良い。この処理によって数時間〜数10時間
の処理で1〜数μm程度の厚さの酸化物超電導層3を長
さ数10cm〜数mにわたり形成することができる。
After the intermediate layer 2 is formed on the base material 1, the oxide superconducting layer 3 is then formed on the intermediate layer 2 as shown in FIG. In forming the oxide superconducting layer 3, various film forming methods similar to the above can be used, but a laser deposition method capable of forming a homogeneous film continuously for a long time is used. preferable. To perform this laser deposition,
For example, an oxide or oxide superconductor target having a composition of Y 1 Ba 2 Cu 3 O 7-x is used as a target, the substrate is heated to a desired temperature of about 500 to 800 ° C., and the inside of the vacuum chamber is oxygenated. The film forming process may be performed while the substrate 1 is moved at a speed of about several tens of cm per hour in a reduced pressure atmosphere containing. By this treatment, the oxide superconducting layer 3 having a thickness of about 1 to several μm can be formed over a length of several 10 cm to several m in a treatment of several hours to several tens hours.

【0029】次に前記の酸化物超電導層3の上に下地安
定化薄膜4aを形成して図5に示す素導体15を形成す
る。前記下地安定化薄膜4aは、銀、金、白金などの貴
金属あるいはそれらの合金からなり、厚さ数μm〜数1
0μm程度のものである。ここで用いる下地安定化薄膜
4aの構成材料として、酸素の拡散係数が高い銀あるい
は白金などを用いることが特に好ましい。この下地安定
化薄膜4aは、後述する酸素雰囲気中で行なう熱処理時
において、雰囲気中の酸素を酸化物超電導層3側に導く
必要があるので必要以上に厚く形成する必要はない。ま
た、この下地安定化薄膜4aは酸化物超電導層3を保護
し、後述する最終熱処理時に酸化物超電導層3の元素が
外部に拡散しないように保護する役割をはたすので、薄
く形成し過ぎることも好ましくない。よって数μm〜2
0μm程度の厚さにすることが好ましい。
Next, a base stabilizing thin film 4a is formed on the oxide superconducting layer 3 to form the element conductor 15 shown in FIG. The base stabilizing thin film 4a is made of a noble metal such as silver, gold, platinum, or an alloy thereof, and has a thickness of several μm to several 1
It is about 0 μm. It is particularly preferable to use silver or platinum, which has a high oxygen diffusion coefficient, as the constituent material of the underlayer stabilizing thin film 4a used here. This underlayer stabilizing thin film 4a does not need to be formed thicker than necessary because it is necessary to guide oxygen in the atmosphere to the oxide superconducting layer 3 side during heat treatment performed in an oxygen atmosphere described later. In addition, since the base stabilizing thin film 4a protects the oxide superconducting layer 3 and protects the elements of the oxide superconducting layer 3 from diffusing to the outside during the final heat treatment described later, it may be formed too thin. Not preferable. Therefore, several μm to 2
The thickness is preferably about 0 μm.

【0030】下地安定化薄膜4aを形成する方法は、前
述の各種成膜法のいずれを用いても良い。この下地安定
化薄膜4aの厚さは、前述のように数μm〜20μm程
度であるので、前述のいずれの成膜法を用いても前記の
範囲の厚さで支障なく十分な厚さの下地安定化薄膜4a
を長尺の酸化物超電導層3上に形成できる。よってこの
下地安定化薄膜4aの形成のために長い時間を要するこ
とはない。
As the method for forming the underlayer stabilizing thin film 4a, any of the various film forming methods described above may be used. Since the thickness of the underlayer stabilizing thin film 4a is about several μm to 20 μm as described above, the thickness of the above range can be used without any problem even if any of the film forming methods described above is used. Stabilizing thin film 4a
Can be formed on the elongated oxide superconducting layer 3. Therefore, it does not take a long time to form the base stabilizing thin film 4a.

【0031】素導体15を形成したならば、これを酸素
ガスを含む雰囲気中において500〜600℃の温度で
数時間加熱する熱処理を施す。この熱処理により雰囲気
中の酸素を下地安定化薄膜4aを介して酸化物超電導層
3に供給し、酸素不足を補う処理を施す。この熱処理に
より、酸化超電導層3の酸素不足を補なって結晶構造を
整え、超電導特性の向上を図ると同時に、酸化物超電導
層3とAgなどからなる下地安定化薄膜4aとの界面抵
抗値を低減する。
After the element conductor 15 is formed, it is heat-treated by heating it at a temperature of 500 to 600 ° C. for several hours in an atmosphere containing oxygen gas. By this heat treatment, oxygen in the atmosphere is supplied to the oxide superconducting layer 3 through the underlayer stabilizing thin film 4a, and a treatment for compensating for oxygen deficiency is performed. By this heat treatment, oxygen deficiency of the oxidized superconducting layer 3 is supplemented to adjust the crystal structure to improve the superconducting property, and at the same time, the interfacial resistance value between the oxide superconducting layer 3 and the underlayer stabilizing thin film 4a made of Ag or the like is increased. Reduce.

【0032】次に、前記下地安定化薄膜4aの上にメッ
キ法により良導電性の金属材料からなる厚さ数10〜数
100μm程度の安定化層4bを形成して酸化物超電導
導体Bを得る。前記のメッキ法によれば、長尺の基材1
上の下地安定化薄膜4aの上にも厚い層を容易に被覆で
きるので、超電導特性の安定化のための層として十分な
厚さを有する安定化層4bを容易に形成できる。
Next, a stabilizing layer 4b made of a metal material having good conductivity and having a thickness of several tens to several hundreds of μm is formed on the underlayer stabilizing thin film 4a by a plating method to obtain an oxide superconducting conductor B. . According to the above plating method, the long base material 1
Since a thick layer can be easily coated on the upper base stabilizing thin film 4a, the stabilizing layer 4b having a sufficient thickness as a layer for stabilizing the superconducting characteristics can be easily formed.

【0033】安定化層4bを形成したならば、全体をN
2あるいはArガスなどの不活性ガス雰囲気中において
500〜600℃の温度において数時間加熱する最終熱
処理を施す。この最終熱処理は、下地安定化薄膜4aと
安定化層4bとの界面の抵抗値を下げるために行なう。
また、不活性ガス雰囲気中で行なうのは、安定化層4b
を構成する金属元素の酸化を防止するためである。な
お、この最終熱処理を行なう場合に、安定化層4bの構
成元素が酸化物超電導層3側に拡散するおそれがある
が、それらの間に下地安定化薄膜4aを設けているの
で、酸化物超電導層3に対する不用元素の拡散を抑制で
きる。よって最終熱処理により酸化物超電導層3の特性
が劣化することはない。以上の方法を実施することで十
分な厚さを有する良導電性の安定化層4bを備えた超電
導特性に優れた酸化物超電導導体Bを得ることができ
る。
Once the stabilizing layer 4b has been formed, the whole is N
2 or a final heat treatment of heating at a temperature of 500 to 600 ° C. for several hours in an atmosphere of an inert gas such as Ar gas. This final heat treatment is performed to reduce the resistance value at the interface between the underlayer stabilizing thin film 4a and the stabilizing layer 4b.
In addition, what is performed in the inert gas atmosphere is the stabilization layer 4b.
This is for preventing the oxidation of the metal element constituting the. When this final heat treatment is performed, the constituent elements of the stabilizing layer 4b may diffuse to the oxide superconducting layer 3 side, but since the underlayer stabilizing thin film 4a is provided between them, the oxide superconducting It is possible to suppress the diffusion of the unnecessary element into the layer 3. Therefore, the final heat treatment does not deteriorate the characteristics of the oxide superconducting layer 3. By carrying out the method described above, it is possible to obtain the oxide superconducting conductor B having excellent superconducting characteristics, which is provided with the stabilizing layer 4b having good conductivity and having a sufficient thickness.

【0034】前記構造の酸化物超電導導体Bは、基材1
上に中間層2を介して酸化物超電導層3を形成し、その
上に貴金属などからなる下地安定化薄膜4aを介してメ
ッキ法により良導電性金属材料の安定化層4bを形成
し、熱処理を施して製造するものであるので、メッキ法
により厚い安定化層4bを容易に短時間で形成できる。
よって、十分な厚さの安定化層4bを具備する長尺の超
電導導体Bを容易に製造できるので、超電導特性の安定
性に優れた長尺の超電導導体Bを従来の成膜法による場
合に比べて短時間で容易に製造することができる。
The oxide superconducting conductor B having the above structure is the base material 1
An oxide superconducting layer 3 is formed on the intermediate layer 2, and a stabilizing layer 4b of a good conductive metal material is formed on the oxide superconducting layer 3 via a base stabilizing thin film 4a made of a noble metal or the like by a heat treatment. The thick stabilizing layer 4b can be easily formed in a short time by the plating method.
Therefore, the long superconducting conductor B including the stabilizing layer 4b having a sufficient thickness can be easily manufactured. Therefore, when the long superconducting conductor B excellent in stability of superconducting properties is formed by the conventional film forming method. In comparison, it can be easily manufactured in a short time.

【0035】また、酸化物超電導層3を中間層2上に形
成し、その後に貴金属またはその合金からなる下地安定
化被膜4aを形成した後に酸素雰囲気中で1次熱処理
し、酸素拡散係数が高く、薄い下地安定化被膜4aを介
して酸化物超電導層3に雰囲気中の酸素を供給するの
で、この熱処理により酸化物超電導層3に十分な酸素を
補給して酸素不足を補うことができ、超電導特性を向上
させる効果を得ることができる。更に、安定化層4bと
酸化物超電導層3との間に貴金属またはその合金からな
る下地安定化被膜4aを形成するので、熱処理時に安定
化層4bの元素と酸化物超電導層3の元素が相互拡散す
ることを下地安定化被膜4aで防止することができ、熱
処理を施しても超電導特性が劣化しない酸化物超電導導
体Bを得ることができる。
Further, the oxide superconducting layer 3 is formed on the intermediate layer 2, and then the undercoat stabilizing coating 4a made of a noble metal or its alloy is formed, and then primary heat treatment is carried out in an oxygen atmosphere to obtain a high oxygen diffusion coefficient. Since oxygen in the atmosphere is supplied to the oxide superconducting layer 3 through the thin undercoat stabilizing film 4a, sufficient oxygen can be replenished to the oxide superconducting layer 3 by this heat treatment to supplement the oxygen deficiency. The effect of improving the characteristics can be obtained. Furthermore, since the undercoat stabilizing coating 4a made of a noble metal or its alloy is formed between the stabilizing layer 4b and the oxide superconducting layer 3, the elements of the stabilizing layer 4b and the elements of the oxide superconducting layer 3 are mutually separated during heat treatment. It is possible to prevent the diffusion by the base stabilizing coating 4a, and it is possible to obtain the oxide superconducting conductor B in which the superconducting properties are not deteriorated even if the heat treatment is performed.

【0036】更にまた、酸化物超電導層3上に下地安定
化被膜4aを形成した後に1次熱処理を施し、下地安定
化被膜4a上に安定化層4bを形成した後に最終熱処理
するので、1次熱処理により酸化物超電導層3と下地安
定化被膜4aの界面の接触電気抵抗を低減できるととも
に、最終熱処理により下地安定化被膜4aと安定化層4
bの界面の接触電気抵抗を低減できるので、酸化物超電
導層3と下地安定化被膜4aと安定化層4bがそれらの
界面の低い接触電気抵抗を介して連続されることにな
る。よって酸化物超電導層3に通電中に酸化物超電導層
3の一部領域に常電導の芽の部分を生じてもこの部分に
流れる電流を下地安定化被膜4aを介して安定化層4b
に円滑に流すことができ、これにより酸化物超電導層3
の安定性を高めることができる。よって、安定化層付き
の臨界電流特性の優れた酸化物超電導導体Bを製造でき
る。
Furthermore, since the primary stabilizing coating 4a is formed on the oxide superconducting layer 3, the primary heat treatment is performed, and the stabilizing layer 4b is formed on the underlying stabilizing coating 4a, and the final thermal treatment is performed. The heat treatment can reduce the contact electric resistance at the interface between the oxide superconducting layer 3 and the undercoat stabilizing film 4a, and the final heat treatment can reduce the contact electrical resistance.
Since the contact electric resistance at the interface of b can be reduced, the oxide superconducting layer 3, the undercoat stabilizing coating 4a, and the stabilizing layer 4b are continuous through the low contact electric resistance at their interface. Therefore, even if a portion of normal-conductivity buds is generated in a partial region of the oxide superconducting layer 3 while the oxide superconducting layer 3 is energized, the current flowing in this portion is passed through the underlayer stabilizing coating 4a to the stabilizing layer 4b.
Flow smoothly into the oxide superconducting layer 3
The stability of can be increased. Therefore, the oxide superconducting conductor B having the stabilizing layer and excellent in critical current characteristics can be manufactured.

【0037】[0037]

【実施例】【Example】

(実施例1)ハステロイC-276からなる金属テープ
基材(幅5mm、厚さ0.1mm、長さ1000mm)
を用い、この金属テープ基材上に、拡散バリアとしての
厚さ0.5μmのYSZの中間層をRFスパッタ法によ
り形成した。中間層を形成するには、2×10-3Tor
rに減圧した真空チャンバの内部で金属テープ基材を
0.2m/時間の割合で移動させて室温にて30ccM
のArガスを導入し、250WのRFパワーで成膜する
方法を行なった。次に、エキシマレーザをターゲットに
照射するレーザ蒸着法を用いて中間層上にY1Ba2Cu
37-xなる組成の酸化部超電導層を形成した。この際の
ターゲット組成とレーザ蒸着条件は、以下の表1の通り
である。 (以下、余白)
(Example 1) Metal tape base material made of Hastelloy C-276 (width 5 mm, thickness 0.1 mm, length 1000 mm)
An intermediate layer of YSZ having a thickness of 0.5 μm as a diffusion barrier was formed on this metal tape substrate by RF sputtering. To form the intermediate layer, 2 × 10 −3 Tor
The metal tape base material is moved at a rate of 0.2 m / hour inside the vacuum chamber depressurized to r, and 30 ccM at room temperature.
Then, Ar gas was introduced, and a film was formed with an RF power of 250 W. Then, Y 1 Ba 2 Cu is formed on the intermediate layer by using a laser deposition method in which a target is irradiated with an excimer laser.
An oxide superconducting layer having a composition of 3 O 7-x was formed. The target composition and laser deposition conditions at this time are as shown in Table 1 below. (Hereafter, margin)

【0038】[0038]

【表1】 [Table 1]

【0039】真空チャンバの内部で中間層付きの金属テ
ープ基材を0.2m/時間の割合で移動させて表1の条
件でレーザ蒸着を行ない、厚さ1.0μmの酸化物超電
導層を形成した。次に、スパッタリングにより前記の酸
化物超電導層上に厚さ約0.1mmの銀の安定化金属層
を形成した。次いで全体を酸素雰囲気中において500
℃で2時間加熱し、安定化金属層と酸化物超電導層の界
面抵抗を低減するとともに、酸化物超電導層に安定化金
属層を介して酸素を供給するための熱処理を施した。
A metal tape substrate with an intermediate layer was moved inside the vacuum chamber at a rate of 0.2 m / hour, and laser deposition was performed under the conditions shown in Table 1 to form an oxide superconducting layer having a thickness of 1.0 μm. did. Next, a stabilized metal layer of silver having a thickness of about 0.1 mm was formed on the above oxide superconducting layer by sputtering. Then the whole is 500 in an oxygen atmosphere.
The mixture was heated at 0 ° C. for 2 hours to reduce the interfacial resistance between the stabilizing metal layer and the oxide superconducting layer, and at the same time, to perform heat treatment for supplying oxygen to the oxide superconducting layer through the stabilizing metal layer.

【0040】得られた酸化物超電導導体から長さ50c
mの部分を切り出し、これに引張歪を加えた場合の臨界
電流値の変化を測定した。この測定方法は、先に説明し
た場合と同様に、所定の径の巻胴に対し、基材を内側に
位置するように、かつ、酸化物超電導層を外側に位置す
るように巻回してコイル加工して酸化物超電導層に対し
て引張歪を負荷するものとした。また、この場合の歪の
計算方法は、先に説明したε=(t/2r)×100の
関係式に基づいて算出した。その結果を図7に示す。図
7に示す結果から、本発明構造を採用することで0.8
%まで引張歪を負荷しても臨界電流値が劣化しなかっ
た。なおまた、この結果は、負荷する歪を圧縮歪とした
場合も同等であった。
From the obtained oxide superconducting conductor, length 50c
The portion of m was cut out, and the change in the critical current value when tensile strain was applied to this was measured. This measuring method is similar to the case described above, in which the coil is wound by winding the base material inside and the oxide superconducting layer outside with respect to the winding cylinder of a predetermined diameter. It was processed to apply tensile strain to the oxide superconducting layer. The strain calculation method in this case was calculated based on the relational expression of ε = (t / 2r) × 100 described above. The result is shown in FIG. 7. From the results shown in FIG. 7, it is possible to obtain 0.8 by adopting the structure of the present invention.
The critical current value did not deteriorate even when tensile strain was applied up to%. Furthermore, this result was the same when the strain applied was compression strain.

【0041】(実施例2)ハステロイC-276からな
る金属テープ基材(幅5mm、厚さ0.1mm、長さ2
000mm)を用い、この金属テープ基材上に、拡散バ
リアとしてのYSZの中間層と酸化物超電導層を実施例
1と同等の方法で形成した。
(Example 2) Metal tape substrate made of Hastelloy C-276 (width 5 mm, thickness 0.1 mm, length 2)
000 mm), an intermediate layer of YSZ as a diffusion barrier and an oxide superconducting layer were formed on this metal tape substrate by the same method as in Example 1.

【0042】次に、スパッタリングにより酸化物超電導
層上に厚さ10μmの銀の下地安定化薄膜を2時間かけ
て形成した。この際に、スパッタ装置の真空チャンバの
内部を1×10-5Torrに減圧し、銀のターゲットを
用いた。次いで全体を500℃で2時間加熱する1次熱
処理を施し、下地安定化薄膜と酸化物超電導層の界面抵
抗を低減する1次熱処理を施した。
Next, a 10 μm thick underlayer stabilizing thin film of silver was formed on the oxide superconducting layer by sputtering for 2 hours. At this time, the inside of the vacuum chamber of the sputtering apparatus was depressurized to 1 × 10 −5 Torr and a silver target was used. Then, the whole was subjected to a primary heat treatment of heating at 500 ° C. for 2 hours, and a primary heat treatment of reducing the interface resistance between the underlayer stabilizing thin film and the oxide superconducting layer.

【0043】続いて全体をメッキ液に浸漬した後に引き
上げるメッキ処理を施して下地安定化薄膜上に厚さ10
0μmの銅の安定化層を形成した。この際に、メッキ液
としてシアン系の組成のものを用い、電流密度10A/
dm2として1時間の処理を行なった。最後に、N2ガス
雰囲気において500℃で2時間加熱する最終熱処理を
施した。
Subsequently, the whole is immersed in a plating solution and then subjected to a plating treatment of withdrawing it to a thickness of 10 on the underlayer stabilizing thin film.
A 0 μm copper stabilizing layer was formed. At this time, a plating solution having a cyan composition was used, and the current density was 10 A /
The treatment was carried out for 1 hour as dm 2 . Finally, a final heat treatment of heating at 500 ° C. for 2 hours in a N 2 gas atmosphere was performed.

【0044】得られた酸化物超電導テープを液体窒素で
冷却してその臨界電流密度(Jc)を測定したところ、
Jc=1×104A/cm2(77K、0T)の優れた特
性を得ることができた。次に、前記と同等の手段により
この酸化物超電導導体に引張歪を負荷する試験を行なっ
たところ、実施例1と同様に優れた特性を得ることがで
きた。これにより、Y1Ba2Cu37-xなる組成の酸化
物超電導層上に銀の下地安定化被膜と銅の安定化層を形
成した超電導テープは、優れた歪特性を発揮することを
確認できた。
The obtained oxide superconducting tape was cooled with liquid nitrogen and its critical current density (Jc) was measured.
Excellent characteristics of Jc = 1 × 10 4 A / cm 2 (77K, 0T) could be obtained. Next, a test was conducted by applying a tensile strain to this oxide superconducting conductor by the same means as above, and as a result, excellent characteristics could be obtained as in Example 1. As a result, a superconducting tape in which a silver undercoat stabilizing film and a copper stabilizing layer are formed on an oxide superconducting layer having a composition of Y 1 Ba 2 Cu 3 O 7-x exhibits excellent strain characteristics. It could be confirmed.

【0045】[0045]

【発明の効果】以上説明したように本発明によれば、基
材上に中間層を介して酸化物超電導層を設け、その上に
基材と中間層の合計厚さに相当する厚さの安定化金属層
を設けているので、曲げ加工した場合に酸化物超電導層
に負荷される応力の影響を小さくすることができ、臨界
電流特性の優れた酸化物超電導導体を提供できる効果が
ある。よって、臨界電流特性の優れた酸化物超電導コイ
ルを提供できる効果がある。
As described above, according to the present invention, an oxide superconducting layer is provided on a base material via an intermediate layer, and an oxide superconducting layer having a thickness corresponding to the total thickness of the base material and the intermediate layer is provided thereon. Since the stabilizing metal layer is provided, it is possible to reduce the influence of the stress applied to the oxide superconducting layer when it is bent, and it is possible to provide an oxide superconducting conductor having excellent critical current characteristics. Therefore, there is an effect that an oxide superconducting coil having excellent critical current characteristics can be provided.

【0046】また、下地安定化薄膜と安定化層を酸化物
超電導層上に形成した構造の酸化物超電導導体において
は、基材と中間層を合わせた部分の厚さと、下地安定化
薄膜と安定化層を合わせた安定化金属層部分の厚さを同
等にしているので、曲げ加工した場合に酸化物超電導層
に負荷される応力の影響を小さくすることができ、臨界
電流特性の優れた酸化物超電導導体を提供できる効果が
ある。よって、臨界電流特性の優れた酸化物超電導コイ
ルを提供できる効果がある。更に、基材上に中間層を介
して酸化物超電導層を設け、かつ、Agなどの貴金属や
その合金の下地安定化薄膜と良導電性金属材料製の安定
化層を酸化物超電導層上に形成した構造を採用すると、
酸化物超電導層の熱処理時において、酸化物超電導層の
構成元素と基材の構成元素が相互拡散することを中間層
が抑制するとともに、酸化通超電導層の構成元素と安定
化層の構成元素が相互拡散することを安定化薄膜が抑制
するので、熱処理を施したものであっても超電導特性が
劣化していない酸化物超電導導体を得ることができる。
In the oxide superconducting conductor having a structure in which the underlayer stabilizing thin film and the stabilizing layer are formed on the oxide superconducting layer, the thickness of the portion including the base material and the intermediate layer, the underlayer stabilizing thin film and the stabilizing layer are stable. Since the thickness of the stabilized metal layer part including the oxide layers is made equal, the effect of the stress applied to the oxide superconducting layer when bending is reduced and the oxidation with excellent critical current characteristics can be achieved. There is an effect that a superconducting conductor can be provided. Therefore, there is an effect that an oxide superconducting coil having excellent critical current characteristics can be provided. Furthermore, an oxide superconducting layer is provided on the base material via an intermediate layer, and a base stabilizing thin film of a noble metal such as Ag or its alloy and a stabilizing layer made of a good conductive metal material are provided on the oxide superconducting layer. Adopting the formed structure,
During the heat treatment of the oxide superconducting layer, the intermediate layer suppresses the mutual diffusion of the constituent elements of the oxide superconducting layer and the constituent elements of the base material, and the constituent elements of the oxidation conducting superconducting layer and the constituent elements of the stabilizing layer are Since the stabilizing thin film suppresses mutual diffusion, it is possible to obtain an oxide superconducting conductor whose superconducting properties are not deteriorated even when heat-treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】図2は本発明の第2実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】図3は基材上に中間層を形成した状態を示す断
面図である。
FIG. 3 is a cross-sectional view showing a state in which an intermediate layer is formed on a base material.

【図4】図4は図3に示す中間層上に酸化物超電導層を
形成した状態を示す断面図である。
4 is a cross-sectional view showing a state in which an oxide superconducting layer is formed on the intermediate layer shown in FIG.

【図5】図5は図4に示す酸化物超電導層上に下地安定
化被膜を形成した状態を示す断面図である。
5 is a cross-sectional view showing a state in which a base stabilizing coating is formed on the oxide superconducting layer shown in FIG.

【図6】図6は得られた酸化物超電導テープを示す断面
図である。
FIG. 6 is a cross-sectional view showing the obtained oxide superconducting tape.

【図7】図7は本発明に係る酸化物超電導導体の歪と臨
界電流密度の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the strain and the critical current density of the oxide superconducting conductor according to the present invention.

【図8】図8は特に結晶配向させていない中間層を用い
た場合の酸化物超電導導体の歪と臨界電流密度の関係を
示すグラフである。
FIG. 8 is a graph showing the relationship between the strain of an oxide superconducting conductor and the critical current density when an intermediate layer in which no crystal orientation is used is used.

【図9】図9は結晶配向させた中間層を用いた場合の酸
化物超電導導体の歪と臨界電流密度の関係を示すグラフ
である。
FIG. 9 is a graph showing the relationship between the strain of an oxide superconducting conductor and the critical current density when a crystal-oriented intermediate layer is used.

【符号の説明】[Explanation of symbols]

A、B…酸化物超電導導体、1…基材、
2…中間層、 3…酸化物超電導層、4、
4’…安定化金属層、 4a…下地安定化薄膜、4b
…安定化層、5…基材部、
A, B ... Oxide superconducting conductor, 1 ... Base material,
2 ... Intermediate layer, 3 ... Oxide superconducting layer, 4,
4 '... stabilizing metal layer, 4a ... base stabilizing thin film, 4b
... Stabilizing layer, 5 ... Base material part,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Saito 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. Inside Fujikura

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 テープ状の基材上に中間層を介して酸化
物超電導層が形成され、この酸化物超電導層上に良導電
性の安定化金属層が形成されるとともに、前記基材と中
間層を合わせた部分の厚さと、前記安定化金属層の厚さ
が、同等にされてなることを特徴とする安定化金属層を
備えた酸化物超電導導体の構造。
1. An oxide superconducting layer is formed on a tape-shaped substrate via an intermediate layer, and a stabilized metal layer having good conductivity is formed on the oxide superconducting layer. A structure of an oxide superconducting conductor having a stabilizing metal layer, wherein a thickness of a portion including the intermediate layers and a thickness of the stabilizing metal layer are made equal to each other.
【請求項2】 テープ状の基材上に中間層を介して酸化
物超電導層が形成され、この酸化物超電導層上に、A
g、Ptなどの貴金属またはその合金製の良導電性の下
地安定化薄膜と、CuあるいはAlなどの良導電性金属
材料製の安定化層とからなる安定化金属層が形成される
とともに、前記基材と中間層を合わせた部分の厚さと、
前記安定化金属層の厚さが、同等にされてなることを特
徴とする安定化金属層を備えた酸化物超電導導体の構
造。
2. An oxide superconducting layer is formed on a tape-shaped substrate via an intermediate layer, and A is formed on the oxide superconducting layer.
A stabilizing metal layer composed of a noble metal such as g and Pt or an alloy thereof having good conductivity and a stabilizing layer made of a good conductive metal material such as Cu or Al is formed, and The thickness of the part where the base material and the intermediate layer are combined,
The structure of an oxide superconducting conductor having a stabilizing metal layer, wherein the stabilizing metal layer has an equal thickness.
JP22146793A 1993-09-06 1993-09-06 Structure of oxide superconductor with stabilizing metal layer Expired - Lifetime JP3568561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22146793A JP3568561B2 (en) 1993-09-06 1993-09-06 Structure of oxide superconductor with stabilizing metal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22146793A JP3568561B2 (en) 1993-09-06 1993-09-06 Structure of oxide superconductor with stabilizing metal layer

Publications (2)

Publication Number Publication Date
JPH0773758A true JPH0773758A (en) 1995-03-17
JP3568561B2 JP3568561B2 (en) 2004-09-22

Family

ID=16767178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22146793A Expired - Lifetime JP3568561B2 (en) 1993-09-06 1993-09-06 Structure of oxide superconductor with stabilizing metal layer

Country Status (1)

Country Link
JP (1) JP3568561B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091612A3 (en) * 2005-02-23 2006-12-07 Superpower Inc Superconductive articles having density characteristics
KR100720057B1 (en) * 2005-07-06 2007-05-18 학교법인 한국산업기술대학 Superconduction Magnet And Manufacturing Method For Persistent Current
JP2007227771A (en) * 2006-02-24 2007-09-06 Toshiba Corp Superconductive coil device
WO2008015941A1 (en) * 2006-08-02 2008-02-07 The Furukawa Electric Co., Ltd. Composite superconducting wire rod, method for manufacturing composite superconducting wire rod, and superconducting cable
JP2008060074A (en) * 2006-08-02 2008-03-13 Furukawa Electric Co Ltd:The Composite superconducting wire material, its manufacturing method, and superconducting cable
JP2008117734A (en) * 2006-11-08 2008-05-22 Toshiba Corp High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method
JP2008244249A (en) * 2007-03-28 2008-10-09 Toshiba Corp High-temperature superconducting coil
JP2008538648A (en) * 2005-04-08 2008-10-30 スーパーパワー インコーポレイテッド Combined superconducting article
JP2011159455A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Thin-film superconducting wire rod and method for manufacturing the same
JP2013102183A (en) * 2009-06-15 2013-05-23 Toshiba Corp Superconductive magnet device
US8716188B2 (en) 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content
JP2014089954A (en) * 2012-10-05 2014-05-15 Fujikura Ltd Oxide superconducting conductor and method for manufacturing the same
US9234692B2 (en) 2009-06-15 2016-01-12 Kabushiki Kaisha Toshiba Superconducting magnetic apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226893B2 (en) * 2005-02-23 2007-06-05 Superpower, Inc. Superconductive articles having density characteristics
WO2006091612A3 (en) * 2005-02-23 2006-12-07 Superpower Inc Superconductive articles having density characteristics
JP2008538648A (en) * 2005-04-08 2008-10-30 スーパーパワー インコーポレイテッド Combined superconducting article
KR100720057B1 (en) * 2005-07-06 2007-05-18 학교법인 한국산업기술대학 Superconduction Magnet And Manufacturing Method For Persistent Current
JP2007227771A (en) * 2006-02-24 2007-09-06 Toshiba Corp Superconductive coil device
WO2008015941A1 (en) * 2006-08-02 2008-02-07 The Furukawa Electric Co., Ltd. Composite superconducting wire rod, method for manufacturing composite superconducting wire rod, and superconducting cable
JP2008060074A (en) * 2006-08-02 2008-03-13 Furukawa Electric Co Ltd:The Composite superconducting wire material, its manufacturing method, and superconducting cable
US8188010B2 (en) 2006-08-02 2012-05-29 The Furukawa Electric Co., Ltd. Composite superconductive wire-material, manufacturing method of composite superconductive wire-material, and superconductive cable
JP2008117734A (en) * 2006-11-08 2008-05-22 Toshiba Corp High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method
JP2008244249A (en) * 2007-03-28 2008-10-09 Toshiba Corp High-temperature superconducting coil
JP2013102183A (en) * 2009-06-15 2013-05-23 Toshiba Corp Superconductive magnet device
US9234692B2 (en) 2009-06-15 2016-01-12 Kabushiki Kaisha Toshiba Superconducting magnetic apparatus
JP2011159455A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Thin-film superconducting wire rod and method for manufacturing the same
US8716188B2 (en) 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content
JP2014089954A (en) * 2012-10-05 2014-05-15 Fujikura Ltd Oxide superconducting conductor and method for manufacturing the same

Also Published As

Publication number Publication date
JP3568561B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP4041672B2 (en) Bonding high temperature superconducting coated tape
US3958327A (en) Stabilized high-field superconductor
US7858558B2 (en) Superconducting thin film material and method of manufacturing the same
JP2003505848A (en) Encapsulated ceramic superconductor
JPH07335051A (en) Oxide superconductive tape with stabilizing layer and manufacture thereof
JPH113620A (en) Oxide superconducting wire and manufacture thereof
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP4602911B2 (en) Rare earth tape oxide superconductor
JP5799081B2 (en) Thick oxide film with single layer coating
JP2003529201A (en) Long superconducting structure and its manufacturing method
JPH0737444A (en) Oxide superconductor and preparation of superconductor thereof
JP2005044636A (en) Superconductive wire rod
JP3403465B2 (en) Method for producing oxide superconducting tape having stabilizing layer
JPH06314609A (en) Abacuo based superconducting coil and its manufacture
EP0449316B1 (en) Oxide superconducting wire, method of preparing the same, and method of handling the same
EP1990810A1 (en) Process for producing superconducting thin-film material, superconducting equipment and superconducting thin-film material
EP3904292A1 (en) Oxide superconducting wire and method for manufacturing same
JP3565881B2 (en) Stabilizer composite superconductor and method of manufacturing the same
JP4619475B2 (en) Oxide superconducting conductor
JP2557442B2 (en) Oxide superconducting wire
JPH0524806A (en) Oxide superconductor
US5254529A (en) Superconducting fibers made with yttrium and yttrium oxide interlayers and barium cuprate cover layers
JPH0393110A (en) Superconducting wire-rod
RU2124775C1 (en) Method for producing long high-temperature superconducting parts
JPH06283056A (en) Oxide superconductive wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250