JPH0772650B2 - Element cooling device for EDS detector - Google Patents

Element cooling device for EDS detector

Info

Publication number
JPH0772650B2
JPH0772650B2 JP4280943A JP28094392A JPH0772650B2 JP H0772650 B2 JPH0772650 B2 JP H0772650B2 JP 4280943 A JP4280943 A JP 4280943A JP 28094392 A JP28094392 A JP 28094392A JP H0772650 B2 JPH0772650 B2 JP H0772650B2
Authority
JP
Japan
Prior art keywords
gas
cold heat
pulse tube
cooling
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4280943A
Other languages
Japanese (ja)
Other versions
JPH06109339A (en
Inventor
正誼 柳井
悦治 川口
富雄 西谷
正之 平
栄一 渡辺
聡 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Iwatani Corp
Original Assignee
Jeol Ltd
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Iwatani Corp filed Critical Jeol Ltd
Priority to JP4280943A priority Critical patent/JPH0772650B2/en
Publication of JPH06109339A publication Critical patent/JPH06109339A/en
Publication of JPH0772650B2 publication Critical patent/JPH0772650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子顕微鏡に設けたE
DS検出器の素子を冷却するための冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
It relates to a cooling device for cooling the elements of a DS detector.

【0002】[0002]

【従来技術】従来、電子顕微鏡に装着したEDS検出器
の素子冷却装置は、電子顕微鏡の鏡胴に対してリトラク
ト移動可能な状態で液体窒素容器を支持させ、この液体
窒素容器とEDS検出器の素子とを冷熱伝達棒を介して
熱的に接続し、液体窒素の保有冷熱でEDS検出器の素
子を冷却するようにしていた。
2. Description of the Related Art Conventionally, an element cooling device for an EDS detector mounted on an electron microscope has a liquid nitrogen container supported in a retractable state with respect to a lens barrel of the electron microscope. The element is thermally connected via a cold heat transfer rod, and the cold heat of liquid nitrogen is used to cool the element of the EDS detector.

【0003】[0003]

【発明が解決しようとする課題】従来のEDS検出器の
素子冷却装置では、検出作業時に振動を抑制した状態で
検出器の素子を冷却しなければならないことから、液体
窒素を使用しているのであるが、この場合、液体窒素の
消費を補償しなければならず液体窒素の管理が面倒であ
るという問題があった。また、液体窒素容器及び内部に
収容した液体窒素の重量を電子顕微鏡の鏡胴部分が支持
しなければならないことから、その支持構造を強固に形
成しなければならないとともに、重心が高くなるため、
電子顕微鏡の耐振性が不十分となるという問題もあっ
た。本発明はこのような点に着目してなされたもので、
液体窒素の管理をなくしてEDS検出器の素子冷却を簡
単な操作で行え、しかもそれを取り付けた電子顕微鏡の
耐振性を向上させることのできる素子冷却装置を提供す
ることを目的とする。
In the conventional element cooling device for the EDS detector, liquid nitrogen is used because the element of the detector must be cooled while vibration is suppressed during the detection work. However, in this case, there is a problem in that the consumption of liquid nitrogen must be compensated and the management of liquid nitrogen is troublesome. Further, since the lens barrel portion of the electron microscope has to support the weight of the liquid nitrogen contained in the liquid nitrogen container and the inside of the liquid nitrogen container, the supporting structure must be firmly formed and the center of gravity becomes high.
There is also a problem that the vibration resistance of the electron microscope becomes insufficient. The present invention has been made focusing on such points,
An object of the present invention is to provide an element cooling device capable of cooling the element of an EDS detector by a simple operation without management of liquid nitrogen and improving the vibration resistance of an electron microscope equipped with the element.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
めに本発明は、EDS検出器の素子とパルス管冷凍機の
冷熱発生部とを冷熱伝達棒を介して熱的に接続し、パル
ス管冷凍機の圧縮機からの高圧ガス路と圧縮機へのガス
戻り路との間に予備ガス室を配置し、予備ガス室と高圧
ガス路及びガス戻し路との間に配置した流路開閉弁を開
閉制御することにより、初期冷却時にガス量を増加させ
て加速冷却させるとともに、定常運転時にパルス管冷凍
機の冷熱発生部に送り込むガス量を減少させてガス圧力
波振動を低減させるようにしたことを特徴としている。
In order to achieve the above object, the present invention provides a pulse by connecting the element of the EDS detector and the cold heat generating portion of the pulse tube refrigerator thermally through a cold heat transfer rod. A spare gas chamber is placed between the high-pressure gas passage from the compressor of the tube refrigerator and the gas return passage to the compressor, and the flow passage is opened and closed between the spare gas chamber and the high-pressure gas passage and the gas return passage. By controlling the opening and closing of the valve, the amount of gas is increased during initial cooling for accelerated cooling, and the amount of gas sent to the cold heat generation part of the pulse tube refrigerator during steady operation is reduced to reduce gas pressure wave oscillation. It is characterized by having done.

【0005】[0005]

【作用】本発明は、EDS検出器の素子とパルス管冷凍
機の冷熱発生部とを冷熱伝達棒を介して熱的に接続し、
パルス管冷凍機の圧縮機からの高圧ガス路と圧縮機への
ガス戻り路との間に予備ガス室を配置し、予備ガス室と
高圧ガス路及びガス戻し路との間に配置した流路開閉弁
を開閉制御することにより、初期冷却時にガス量を増加
させて加速冷却させるとともに、定常運転時にパルス管
冷凍機の冷熱発生部に送り込むガス量を減少させてガス
圧力波振動を低減させるようにしているので、EDS検
出器の検出素子をパルス管冷凍機が発生させる冷熱で直
接冷却するとともに、冷却初期には急速に、また、定常
運転時には圧力波振動の影響を受けることなくEDS検
出器の素子を冷却できることになる。これにより、液体
窒素の管理を不要にすることができるようになる。
According to the present invention, the element of the EDS detector and the cold heat generating portion of the pulse tube refrigerator are thermally connected via the cold heat transfer rod,
Flow path arranged between the high pressure gas passage from the compressor of the pulse tube refrigerator and the gas return passage to the compressor and between the high pressure gas passage and the gas return passage. By controlling the on-off valve to open and close, the amount of gas is increased during initial cooling for accelerated cooling, and the amount of gas sent to the cold heat generation part of the pulse tube refrigerator during steady operation is reduced to reduce gas pressure wave oscillation. Since the detection element of the EDS detector is directly cooled by the cold heat generated by the pulse tube refrigerator, the EDS detector is rapidly cooled in the initial stage of cooling and is not affected by pressure wave vibration during steady operation. The element can be cooled. This makes it unnecessary to manage liquid nitrogen.

【0006】[0006]

【実施例】図面は本発明の実施例を示し、図1はパルス
管冷凍機の概略構成図、図2はEDS検出器の素子冷却
装置の概略構成図、図3はパルス管冷凍機の冷熱発生部
の要部拡大断面図である。図において符号(1)は本体部
分(2)を床面(3)にスプリング等の振動吸収体(4)を介
して支持させた電子顕微鏡、(5)はパルス管冷凍機(6)
の冷熱発生部であり、この冷熱発生部(5)は電子顕微鏡
(1)の本体部分(2)に固定したリトラクトレール(7)に
走行台(8)を介して支持固定することにより、冷熱発生
部(5)を電子顕微鏡(1)の本体部分(2)に対して、リト
ラクト移動可能に構成してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings show an embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a pulse tube refrigerator, FIG. 2 is a schematic configuration diagram of an element cooling device of an EDS detector, and FIG. It is a principal part expanded sectional view of a generation part. In the figure, reference numeral (1) is an electron microscope in which the main body portion (2) is supported on the floor surface (3) via a vibration absorber (4) such as a spring, and (5) is a pulse tube refrigerator (6).
This is the cold heat generating part of the electron microscope.
The cold heat generating part (5) is fixed to the retract rail (7) fixed to the main body part (2) of (1) through the traveling platform (8), so that the cold heat generating part (5) is main part (2) of the electron microscope (1). On the other hand, the retract is movable.

【0007】パルス管冷凍機(6)は冷熱発生部(5)と、
圧縮機ユニット(9)及び圧縮機ユニット(9)と冷熱発生
部(5)との間に配置したガス切換モータ部(10)とで構成
してあり、圧縮機ユニット(9)とガス切換モータ部(10)
とを冷熱発生部(5)から切り離して配置してある。ガス
切換モータ部(10)はインバータモータ(11)とロータリー
弁で構成した流路切換弁(12)とで構成してあり、この流
路切換弁(12)と冷熱発生部(5)とは可撓性ガス計導管(1
3)で接続してある。
The pulse tube refrigerator (6) has a cold heat generating section (5),
It is composed of a compressor unit (9) and a gas switching motor section (10) arranged between the compressor unit (9) and the cold heat generating section (5), and the compressor unit (9) and the gas switching motor are included. Division (10)
And are separated from the cold heat generating section (5). The gas switching motor section (10) is composed of an inverter motor (11) and a flow path switching valve (12) composed of a rotary valve. The flow path switching valve (12) and the cold heat generating section (5) are Flexible gas meter conduit (1
Connected in 3).

【0008】この可撓性ガス計導管(13)は四フッ化エチ
レン樹脂パイプの外周を金属螺旋管で被覆し、かつ、こ
の金属螺旋管を金属編管で被覆した構造になっている。
そして、このガス計導管(13)は、床上に取り付けられた
除振ブロック(15)に支持されている。これにより、圧縮
機ユニット(9)及びガス切換モータ部(10)より発生する
微小振動は、除振ブロック(15)により制振・吸収され
る。したがって、電子顕微鏡での検鏡の妨げとなる上記
微小振動が可撓性ガス計導管(13)を介して電子顕微鏡の
鏡胴に伝達されるのが抑えられる構造となっている。
The flexible gas meter conduit (13) has a structure in which the outer circumference of a tetrafluoroethylene resin pipe is covered with a metal spiral tube, and the metal spiral tube is covered with a metal braided tube.
The gas meter conduit (13) is supported by a vibration isolation block (15) mounted on the floor. As a result, minute vibrations generated by the compressor unit (9) and the gas switching motor section (10) are damped and absorbed by the vibration isolation block (15). Therefore, the microvibration that hinders the microscopic examination in the electron microscope is prevented from being transmitted to the lens barrel of the electron microscope through the flexible gas meter conduit (13).

【0009】パルス管冷凍機(6)の圧縮機ユニット(9)
は圧縮機(18)、冷却器(19)、油分離器(20)、油吸着器(2
1)、保圧弁(22)及び予備ガス室(23)で構成してある。こ
の予備ガス室(23)は油吸着器(21)から流路切換弁(12)へ
の高圧ガス路(24)と流路切換弁(12)から圧縮機(18)への
ガス戻し路(25)とにそれぞれ電磁弁(26)(27)を介して接
続してある。
Compressor unit (9) of pulse tube refrigerator (6)
Is a compressor (18), cooler (19), oil separator (20), oil adsorber (2
1), a pressure maintaining valve (22) and a spare gas chamber (23). The backup gas chamber (23) is a high pressure gas passage (24) from the oil adsorber (21) to the flow passage switching valve (12) and a gas return passage (24) from the flow passage switching valve (12) to the compressor (18). 25) and the solenoid valves (26) and (27) respectively.

【0010】予備ガス室(23)と高圧ガス路(24)との接続
路(28)に配置した高圧側電磁弁(26)と、予備ガス室(23)
とガス戻し路(25)との接続路(29)に配置した低圧側電磁
弁(27)とはEDS検出器に設けた温度センサーでの検出
温度情報に基づき開閉制御されるようになっている。
A high pressure side solenoid valve (26) arranged in a connection path (28) between the auxiliary gas chamber (23) and the high pressure gas path (24), and an auxiliary gas chamber (23)
The low-pressure side solenoid valve (27) arranged in the connection path (29) between the gas return path (25) and the gas return path (25) is controlled to be opened and closed based on the temperature information detected by the temperature sensor provided in the EDS detector. .

【0011】パルス管冷凍機(6)の冷熱発生部(5)は、
図1及び図3に示すように、パルス管(30)と蓄冷器(31)
とをその下端部同士で吸熱用連結路(32)で連結すること
により形成してある。そして、パルス管(30)はその内部
上下両端部に整流板(33)が配置してあり、蓄冷器(31)は
その内部にステンレス製又は銅製のメッシュ体を積層配
置するとともに、その上下両端部に整流板(34)を配置し
てある。
The cold heat generating section (5) of the pulse tube refrigerator (6) is
As shown in FIGS. 1 and 3, the pulse tube (30) and the regenerator (31)
And the lower end portions thereof are connected to each other by a heat absorption connecting path (32). Further, the pulse tube (30) has rectifying plates (33) arranged at both upper and lower ends thereof, and the regenerator (31) has a stainless steel or copper mesh body laminated inside thereof and has both upper and lower ends thereof. A rectifying plate (34) is arranged in the section.

【0012】蓄冷器(31)の上端はガス導入路(35)を介し
て流路切換弁(12)に可撓性ガス計導管(13)で接続してあ
る。また、パルス管(30)の上端部はバッファタンク(37)
にオリィフイス(38)を介して連通接続してある。
The upper end of the regenerator (31) is connected to the flow path switching valve (12) through the gas introduction path (35) by the flexible gas meter conduit (13). The upper end of the pulse tube (30) is the buffer tank (37).
It is connected to and connected via an orihuis (38).

【0013】次に、このEDS検出器の素子冷却装置の
作動を説明する。冷却初期には、予備ガス室(23)と高圧
ガス路(24)との接続路(28)に配置した高圧側電磁弁(26)
を閉じるとともに、予備ガス室(23)とガス戻し路(25)と
の接続路(29)に配置した低圧側電磁弁(27)を開ける。す
ると、圧縮機(18)に流入する低圧ガスは予備ガス室(23)
からのガス供給を受けることになり、従来のものより圧
縮機(18)のガス押し除け量が増加して冷却能力が増加す
ることになる。
Next, the operation of the element cooling device for the EDS detector will be described. At the initial stage of cooling, the high pressure side solenoid valve (26) placed in the connection path (28) between the auxiliary gas chamber (23) and the high pressure gas path (24)
Is closed and the low pressure side solenoid valve (27) arranged in the connection path (29) between the auxiliary gas chamber (23) and the gas return path (25) is opened. Then, the low pressure gas flowing into the compressor (18) is stored in the auxiliary gas chamber (23).
Since the gas is supplied from the compressor (18), the gas displacement of the compressor (18) is increased and the cooling capacity is increased.

【0014】そして、EDS検出器に設けた温度センサ
ーが所定温度(例えば123K)に達すると、低圧側電磁
弁(27)を閉じるとともに、高圧側電磁弁(26)が開き、圧
縮機(18)からの吐出ガスの一部が予備ガス室(23)に流入
して予備ガス室(23)は高圧状態に維持される。したがっ
て、圧縮機ユニット系内の循環ガスの一部が予備ガス室
(23)に高圧ガスとして充填される。これにより、循環ガ
スの一部が系外に放出されたのと同様の形となり、低圧
圧力が下がり高圧圧力が降下し、冷却能力を低下させる
とともに圧力波振動を低下させる。
When the temperature sensor provided in the EDS detector reaches a predetermined temperature (for example, 123K), the low pressure side solenoid valve (27) is closed and the high pressure side solenoid valve (26) is opened, and the compressor (18) is opened. A part of the discharge gas from the gas flows into the auxiliary gas chamber (23) and the auxiliary gas chamber (23) is maintained in a high pressure state. Therefore, a part of the circulating gas in the compressor unit system is
(23) is filled as a high pressure gas. As a result, a part of the circulating gas is released to the outside of the system, the low pressure is lowered and the high pressure is lowered, so that the cooling capacity is lowered and the pressure wave oscillation is lowered.

【0015】[0015]

【発明の効果】本発明では、EDS検出器の素子とパル
ス管冷凍機の冷熱発生部とを冷熱伝達棒を介して熱的に
接続しているので、EDS検出器の検出素子をパルス管
冷凍機が発生させる冷熱で直接冷却できるから、液体窒
素の管理を不要にすることができるようになる。
According to the present invention, since the element of the EDS detector and the cold heat generating portion of the pulse tube refrigerator are thermally connected via the cold heat transfer rod, the detecting element of the EDS detector is pulse tube frozen. Since it can be directly cooled by the cold heat generated by the machine, it becomes unnecessary to manage liquid nitrogen.

【0016】また、本発明では、パルス管冷凍機の圧縮
機からの高圧ガス路と圧縮機へのガス戻り路との間に予
備ガス室を配置し、予備ガス室と高圧ガス路及びガス戻
し路との間に配置した流路開閉弁を開閉制御することに
より、冷凍機での圧縮ガス循環系中での見かけのガス量
を変化させるようにして、初期冷却時に増加させて加速
冷却させるとともに、定常運転時にパルス管冷凍機の冷
熱発生部に送り込むガス量を減少させてガス圧力波振動
を低減させるようにしているので、冷却初期には急速
に、定常運転時には圧力波振動の影響を受けることなく
EDS検出器の素子を冷却できる。
Further, in the present invention, a spare gas chamber is arranged between the high pressure gas passage from the compressor of the pulse tube refrigerator and the gas return passage to the compressor, and the spare gas chamber, the high pressure gas passage and the gas return passage are arranged. By controlling the opening and closing of the flow path on-off valve arranged between the passage and the passage, the apparent gas amount in the compressed gas circulation system in the refrigerator is changed, and it is increased during the initial cooling to accelerate cooling. , The gas pressure wave oscillation is reduced by reducing the amount of gas sent to the cold heat generation part of the pulse tube refrigerator during steady operation, so it is affected rapidly by pressure wave oscillation during initial operation of cooling and during steady operation. It is possible to cool the elements of the EDS detector without.

【0017】さらに、本発明では、電子顕微鏡の鏡胴部
分にはパルス管冷凍機の冷熱発生部だけが支持されるこ
とになるから、重量物である液体窒素貯蔵容器の重量を
鏡胴で支持していた従来のものに比べて支持構造を簡素
化することができるとともに、それを取り付けた電子顕
微鏡の重心位置を下げることができ、電子顕微鏡の耐振
性を向上させて検鏡像の像質を向上させることができ
る。
Further, in the present invention, since only the cold heat generating portion of the pulse tube refrigerator is supported by the lens barrel portion of the electron microscope, the weight of the liquid nitrogen storage container, which is a heavy load, is supported by the lens barrel. The support structure can be simplified compared to the conventional one, and the position of the center of gravity of the electron microscope equipped with it can be lowered, improving the vibration resistance of the electron microscope and improving the image quality of the speculum image. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルス管冷凍機の概略構成図である。FIG. 1 is a schematic configuration diagram of a pulse tube refrigerator.

【図2】EDS検出器の素子冷却装置の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of an element cooling device of an EDS detector.

【図3】パルス管冷凍機の冷熱発生部の要部拡大断面図
である。
FIG. 3 is an enlarged cross-sectional view of a main part of a cold heat generating portion of the pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

1…電子顕微鏡、 5…パルス管
冷凍機の冷熱発生部、 6…パルス管冷凍機、 9…圧縮機ユ
ニット、 10…ガス切換モータ部、 13…可撓性ガ
ス計導管、 14…電子顕微鏡の枠体、 15…除振ブロ
ック、 16…電子顕微鏡の鏡胴、 18…パルス管
冷凍機の圧縮機、 23…予備ガス室、 24…高圧ガス
路、 25…ガス戻し路、 26・27…流路開閉
弁。
DESCRIPTION OF SYMBOLS 1 ... Electron microscope, 5 ... Cold heat generation part of pulse tube refrigerator, 6 ... Pulse tube refrigerator, 9 ... Compressor unit, 10 ... Gas switching motor part, 13 ... Flexible gas meter conduit, 14 ... Electron microscope Frame, 15 ... Vibration isolation block, 16 ... Electron microscope lens barrel, 18 ... Pulse tube refrigerator compressor, 23 ... Spare gas chamber, 24 ... High pressure gas passage, 25 ... Gas return passage, 26/27 ... Flow Road open / close valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川口 悦治 滋賀県守山市勝部町1095番地 イワタニプ ランテック株式会社滋賀工場内 (72)発明者 西谷 富雄 滋賀県守山市勝部町1095番地 イワタニプ ランテック株式会社滋賀工場内 (72)発明者 平 正之 東京都昭島市武蔵野三丁目1番2号 日本 電子株式会社内 (72)発明者 渡辺 栄一 東京都昭島市武蔵野三丁目1番2号 日本 電子株式会社内 (72)発明者 細川 聡 東京都昭島市武蔵野三丁目1番2号 日本 電子株式会社内 (56)参考文献 実開 平3−72271(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuji Kawaguchi 1095 Katsube-cho, Moriyama City, Shiga Prefecture Iwataniprantec Co., Ltd. Shiga Plant (72) Tomio Nishitani 1095 Katsubecho, Moriyama-shi, Shiga Prefecture Iwataniplantec Co., Ltd. Shiga Plant (72) Inventor Masayuki Hira 3-1-2 Musashino, Akishima-shi, Tokyo Nihon Denshi Co., Ltd. (72) Inventor Eiichi Watanabe 3-1-2 Musashino, Akishima-shi, Tokyo Nihon Denshi Co., Ltd. (72) Inventor Satoshi Hosokawa 3-12-1, Musashino, Akishima-shi, Tokyo JEOL Ltd. (56) References

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電子顕微鏡(1)に元素分析を行うEDS
検出器を配置し、このEDS検出器の素子とパルス管冷
凍機(6)の冷熱発生部(5)とを冷熱伝達棒を介して熱的
に接続し、 パルス管冷凍機(6)の圧縮機(18)からの高圧ガス路(24)
と圧縮機(18)へのガス戻り路(25)との間に予備ガス室(2
3)を配置し、予備ガス室(23)と高圧ガス路(24)及びガス
戻し路(25)との間に配置した流路開閉弁(26)(27)を開閉
制御することにより、初期冷却時にガス量を増加させて
加速冷却させるとともに、定常運転時にパルス管冷凍機
(6)の冷熱発生部(5)に送り込むガス量を減少させてガ
ス圧力波振動を低減させるようにしたことを特徴とする
EDS検出器の素子冷却装置。
1. An EDS for elemental analysis of an electron microscope (1).
A detector is arranged, and the element of this EDS detector and the cold heat generating part (5) of the pulse tube refrigerator (6) are thermally connected via a cold heat transfer rod to compress the pulse tube refrigerator (6). High pressure gas path (24) from the machine (18)
And the gas return (25) to the compressor (18) between the spare gas chamber (2
By arranging 3) and controlling opening / closing of the flow passage opening / closing valves (26) (27) arranged between the auxiliary gas chamber (23) and the high pressure gas passage (24) and the gas return passage (25), In addition to increasing the amount of gas during cooling to accelerate cooling, a pulse tube refrigerator is used during steady operation.
An element cooling device for an EDS detector, characterized in that the amount of gas sent to the cold heat generating section (5) of (6) is reduced to reduce gas pressure wave oscillation.
【請求項2】 パルス管冷凍機(6)の圧縮機ユニット
(9)と冷熱発生部(5)との間に配置したガス切換モータ
部(10)を切換速度を可変にすることにより初期冷却冷却
時にガス切換速度を増加させた請求項1に記載のEDS
検出器の素子冷却装置。
2. A compressor unit of a pulse tube refrigerator (6)
The EDS according to claim 1, wherein the gas switching speed is increased during the initial cooling and cooling by making the switching speed variable in the gas switching motor section (10) disposed between the (9) and the cold heat generating section (5).
Device cooling device for detector.
【請求項3】 EDS検出器に温度センサーを配置し、
規定温度の設定によりパルス管加速冷却と定常冷却のフ
ィードバック機能を設け、自動運転するように構成した
請求項1又は2に記載のEDS検出器の素子冷却装置。
3. A temperature sensor is arranged in the EDS detector,
The element cooling device for an EDS detector according to claim 1 or 2, wherein a feedback function of pulse tube accelerated cooling and steady cooling is provided by setting a specified temperature, and the device is automatically operated.
【請求項4】 電子顕微鏡(1)に元素分析を行うEDS
検出器を配置し、このEDS検出器の素子とパルス管冷
凍機(6)の冷熱発生部(5)とを冷熱伝達棒を介して熱的
に接続し、パルス管冷凍機(6)の圧縮機ユニット(9)と
ガス切換モータ部(10)とを前記冷熱発生部(5)から分離
して配置し、この圧縮機ユニット(9)とガス切換モータ
部(10)とをそれぞれ防振支持させるとともに、前記ガス
切換モータ部(10)と冷熱発生部(5)とを可撓性ガス計導
管(13)で接続したEDS検出器の素子冷却装置。
4. EDS for elemental analysis of an electron microscope (1)
A detector is arranged, and the element of this EDS detector and the cold heat generating part (5) of the pulse tube refrigerator (6) are thermally connected via a cold heat transfer rod to compress the pulse tube refrigerator (6). The compressor unit (9) and the gas switching motor section (10) are arranged separately from the cold heat generating section (5), and the compressor unit (9) and the gas switching motor section (10) are respectively supported for vibration isolation. An element cooling device for an EDS detector in which the gas switching motor unit (10) and the cold heat generating unit (5) are connected by a flexible gas meter conduit (13).
JP4280943A 1992-09-25 1992-09-25 Element cooling device for EDS detector Expired - Fee Related JPH0772650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4280943A JPH0772650B2 (en) 1992-09-25 1992-09-25 Element cooling device for EDS detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4280943A JPH0772650B2 (en) 1992-09-25 1992-09-25 Element cooling device for EDS detector

Publications (2)

Publication Number Publication Date
JPH06109339A JPH06109339A (en) 1994-04-19
JPH0772650B2 true JPH0772650B2 (en) 1995-08-02

Family

ID=17632083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4280943A Expired - Fee Related JPH0772650B2 (en) 1992-09-25 1992-09-25 Element cooling device for EDS detector

Country Status (1)

Country Link
JP (1) JPH0772650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071515A (en) * 2005-09-09 2007-03-22 Fuji Electric Holdings Co Ltd Cooling device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981185B2 (en) 1997-05-10 2007-09-26 株式会社堀場製作所 Energy dispersive semiconductor X-ray detector
JP3408983B2 (en) 1999-01-25 2003-05-19 三菱電機株式会社 Ceiling-mounted air conditioner
GB0104843D0 (en) * 2001-02-27 2001-04-18 Oxford Instr Analytical Ltd Detection system
DE202004018469U1 (en) 2004-11-29 2006-04-13 Vericold Technologies Gmbh Low-temperature cryostat
JP4692742B2 (en) * 2005-06-24 2011-06-01 富士電機ホールディングス株式会社 Sample analyzer
JP2021148406A (en) * 2020-03-23 2021-09-27 株式会社リコー Cryogenic refrigerating machine and biomagnetism measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071515A (en) * 2005-09-09 2007-03-22 Fuji Electric Holdings Co Ltd Cooling device
JP4655839B2 (en) * 2005-09-09 2011-03-23 富士電機ホールディングス株式会社 Cooling system

Also Published As

Publication number Publication date
JPH06109339A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US5224358A (en) Refrigerating apparatus and modulator
EP0480330A2 (en) Refrigeration apparatus with modulator
JPH0772650B2 (en) Element cooling device for EDS detector
DE60222920T2 (en) SOCKET FOR PULSATION TUBE COOLING DEVICE
US7600385B2 (en) Pulse tube cryogenic cooler
CN109654786A (en) A kind of low vibration cooling device using closed circuit refrigeration machine
US4691528A (en) Air-cooled absorption type water cooling/heating apparatus
JP4932466B2 (en) Refrigerant recondenser
JP3899444B2 (en) Cooling system
EP0216629B1 (en) Air-cooled absorption type water cooling/heating apparatus
US20150168026A1 (en) Regenerative refrigerator
CN114508898B (en) Cold box precooling equipment for liquefying natural gas for chemical industry
GB2339011A (en) Cryostats
USRE36408E (en) Refrigerating apparatus and modulator
US3262277A (en) Low temperature thermal regenerator
JP3460093B2 (en) Cooling device using low temperature liquefied gas
JP2793111B2 (en) Cryogenic refrigeration equipment
JPH1047803A (en) Improvement of cryogenic system
JP2002349981A (en) Pulse-tube refrigeration unit
JP2548269Y2 (en) Gasoline cooling system
JP2910268B2 (en) Pulse tube refrigerator
JPH10141792A (en) Vortex tube refrigerating machine
RU2076811C1 (en) Cryostat for vehicle on magnetic suspension
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JPS6354577A (en) Cold accumulator for cryogenic gas refrigerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees