JP2007071515A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2007071515A
JP2007071515A JP2005262287A JP2005262287A JP2007071515A JP 2007071515 A JP2007071515 A JP 2007071515A JP 2005262287 A JP2005262287 A JP 2005262287A JP 2005262287 A JP2005262287 A JP 2005262287A JP 2007071515 A JP2007071515 A JP 2007071515A
Authority
JP
Japan
Prior art keywords
expander
compressor
wall surface
cooling device
phase control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262287A
Other languages
Japanese (ja)
Other versions
JP4655839B2 (en
Inventor
Shin Matsumoto
伸 松本
Keiji Oshima
恵司 大嶋
Yoshinori Mizoguchi
義則 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005262287A priority Critical patent/JP4655839B2/en
Publication of JP2007071515A publication Critical patent/JP2007071515A/en
Application granted granted Critical
Publication of JP4655839B2 publication Critical patent/JP4655839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide stable measurement accuracy in a hypersensitive analyzer of an object to be cooled by positively preventing influence of minute electric noise caused by movement of a mechanical movable component of a compressor or the like with respect to a cold head, without impairing pressure-proof property and air tightness of a pipe arrangement, a pipe joint, or the like interposed between the compressor and an expander of a pulse pipe refrigerating machine. <P>SOLUTION: An integrated connection joint 35 is formed between a gas passage fixing part 40 and a flange part 42 via an electrical insulating part 41. For example, an opening portion of a gas passage 26b of a wall surface 26a of the expander of the cooling device to which the connection joint 35 will be fixed, is formed such that a rim of the opening portion is positioned on the insulating part 41 when the connection joint 35 is fixed to the wall surface 26a. In connection of the expander and a phase control part via the connection joint 35, the rim of the opening portion of the wall surface 26a becomes an abutting state on the insulating part 41, and the gas passage fixing part 40 and the gas passage 32 become completely electrically insulated states with respect to the wall surface 26a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子顕微鏡、蛍光X線分析計、NMR(Nuclear Magnetic Resonance)等の超高感度分析装置の検出部や検出素子を冷却する冷却装置に関し、特に、冷却源としてパルス管冷凍機を使用する冷却装置に関する。   The present invention relates to a cooling device for cooling a detection unit and a detection element of an ultrasensitive analysis device such as an electron microscope, a fluorescent X-ray analyzer, and NMR (Nuclear Magnetic Resonance), and in particular, a pulse tube refrigerator is used as a cooling source. The present invention relates to a cooling device.

特許文献1に記載の冷却装置は、パルス管冷凍機を備え、電子顕微鏡、蛍光X線分析計等の超高感度分析装置の検出部や検出素子等の冷却に用いられ、機械的に運動する部品を有するガス圧縮機やバルブユニットをパルス管冷凍機のコールドヘッドから切り離した状態で配置するとともに、バルブユニットとコールドヘッドとをガス配管を介して配管接続することにより、ガス圧縮機やバルブユニットの機械的振動がコールドヘッドに伝わらない構造とされている。   The cooling device described in Patent Document 1 includes a pulse tube refrigerator, is used for cooling a detection unit, a detection element, and the like of an ultrasensitive analysis device such as an electron microscope and a fluorescent X-ray analyzer, and moves mechanically. The gas compressor and valve unit having components are arranged in a state separated from the cold head of the pulse tube refrigerator, and the gas compressor and valve unit are connected by pipe connection between the valve unit and the cold head via the gas pipe. The mechanical vibration is not transmitted to the cold head.

更に、特許文献2に記載の冷却装置では、バルブユニットからコールドヘッドに冷媒ガスを供給する経路を形成する器具やガス配管、管継手等を、ガラスエポキシ樹脂やポリカーボネート等の電気絶縁材料で形成することにより、ガス圧縮機やバルブユニットにおける機械的な可動部品の運動に起因する微少な電気ノイズがガス配管を介してコールドヘッドに伝達されることを阻止し、電気ノイズに起因する超感度分析装置の検出精度の低下を阻止するように成されている。   Further, in the cooling device described in Patent Document 2, an instrument, a gas pipe, a pipe joint, and the like that form a path for supplying the refrigerant gas from the valve unit to the cold head are formed of an electrically insulating material such as glass epoxy resin or polycarbonate. This prevents the minute electric noise caused by the movement of mechanical moving parts in the gas compressor and valve unit from being transmitted to the cold head via the gas pipe, and the super sensitivity analyzer caused by the electric noise. The detection accuracy is prevented from decreasing.

また、特許文献3に記載の冷却装置は、電気絶縁として、管継手の接合面や締結部品にタフラム加工等で絶縁表面処理を施す方法等が取られている。
特公平7−72650号公報 特許第2997877号公報 特開2004−116816号公報
In addition, the cooling device described in Patent Document 3 employs a method of applying an insulating surface treatment to a joint surface of a pipe joint or a fastening part by means of, for example, a tuffing process as electrical insulation.
Japanese Examined Patent Publication No. 7-72650 Japanese Patent No. 29997877 JP 2004-116816 A

しかし、上記の特許文献2の冷却装置においては、コールドヘッドに対する微少な電気ノイズの影響を防止できるが、管継手等がガラスエポキシ樹脂やポリカーボネート等の樹脂からなる電気絶縁材料で形成されているため、耐圧性、機密性及びアウトガスによる性能劣化等の問題がある。
また、特許文献3の冷却装置では、管継手等の接合面や締結部品に表面処理を施しているため、製作時や、メンテナンス時の取り付け、取り外しの際に、電気絶縁処理をした表面に生じた傷や磨耗により電気的絶縁が確保出来なくなるといった問題がある。
However, in the cooling device of Patent Document 2 described above, the influence of minute electrical noise on the cold head can be prevented, but the pipe joint and the like are formed of an electrically insulating material made of resin such as glass epoxy resin or polycarbonate. There are problems such as pressure resistance, confidentiality and performance degradation due to outgassing.
Further, in the cooling device of Patent Document 3, since surface treatment is applied to the joint surfaces such as pipe joints and fastening parts, it is generated on the surface subjected to electrical insulation treatment at the time of manufacture, attachment and removal during maintenance. There is a problem that electrical insulation cannot be secured due to scratches or wear.

本発明は、このような課題に鑑みてなされたものであり、パルス管冷凍機の圧縮機と膨張機の間に介在する配管や管継手等の耐圧性及び気密性を損なうことなく、コールドヘッドに対する圧縮機等の機械的な可動部品の運動に起因する微小な電気ノイズの影響を確実に防止することができ、これによって冷却対象の超高感度分析装置で安定した測定精度を得ることができる冷却装置を提供することを目的としている。   The present invention has been made in view of such a problem, and without damaging the pressure resistance and airtightness of pipes and pipe joints interposed between the compressor and the expander of the pulse tube refrigerator. It is possible to reliably prevent the influence of minute electrical noise caused by the movement of mechanical moving parts such as a compressor against the air, and thereby to obtain a stable measurement accuracy with an ultra-sensitive analyzer to be cooled. It aims to provide a cooling device.

上記目的を達成するために、本発明の請求項1による冷却装置は、冷媒ガスを圧縮する圧縮機と、その圧縮された冷媒ガスが寒冷発生用のコールドヘッドへ供給される膨張機と、この膨張機に供給された冷媒ガスの圧力と流速の位相を制御する位相制御部とを有し、冷媒ガスが流れるガス流路が連通される状態で、圧縮機と膨張機とが連結されると共に、膨張機が位相制御部と一体型でなければ膨張機と位相制御部とも連結されて成るパルス管冷凍機を用いた超高感度分析装置を冷却する冷却装置において、前記圧縮機と前記膨張機との連結又は前記膨張機と前記位相制御部との連結を行う接続継手を、前記ガス流路の挿入固定用の貫通穴が形成された環状の第1の金属部材と、この第1の金属部材の外周に嵌合固定された環状の電気絶縁部材と、この電気絶縁部材の外周に嵌合固定された環状の第2の金属部材との三層一体構造で形成し、この形成された接続継手が固定される圧縮機又は膨張機の壁面の前記ガス流路の開口部分を、当該壁面に前記接続継手を固定した際に、その開口部分の周縁が前記接続継手の電気絶縁部材の領域上に位置するように形成したことを特徴とする。   In order to achieve the above object, a cooling device according to claim 1 of the present invention includes a compressor for compressing a refrigerant gas, an expander for supplying the compressed refrigerant gas to a cold head for generating cold, A phase control unit that controls the phase of the pressure and flow velocity of the refrigerant gas supplied to the expander, and the compressor and the expander are connected in a state in which the gas flow path through which the refrigerant gas flows is connected. If the expander is not integrated with the phase control unit, the compressor and the expander in the cooling device for cooling the ultra-high sensitivity analyzer using the pulse tube refrigerator connected to both the expander and the phase control unit Or a connecting joint for connecting the expander and the phase control unit, an annular first metal member in which a through hole for inserting and fixing the gas flow path is formed, and the first metal An annular electrical insulating part fitted and fixed to the outer periphery of the member And an annular second metal member fitted and fixed to the outer periphery of the electrical insulating member, and the wall surface of the compressor or expander to which the formed connection joint is fixed. The opening portion of the gas flow path is formed such that when the connection joint is fixed to the wall surface, the periphery of the opening portion is positioned on the region of the electrical insulating member of the connection joint.

この構成によれば、圧縮機と膨張機との連結、並びに膨張機と位相制御部との連結を行う際に、圧縮機の壁面のガス流路の開口部分に接続継手を介して膨張機を連結し、膨張機の壁面のガス流路の開口部分に接続継手を介して位相制御部を連結すると、通常金属材料を用いた各々の壁面のガス流路の開口部分の周縁が、接続継手の電気絶縁部材に当接した状態となる。これによって、電気絶縁部材の内側の第1の金属部材並びに当該第1の金属部材に挿入固定されたガス流路は、圧縮機又は膨張機の壁面に対して完全に電気的に絶縁された状態となる。従って、圧縮機等の機械的な可動部品の運動に起因する微小な電気ノイズは、各接続継手で阻止されているので、コールドヘッドに伝達されることが無く、れのため、超高感度分析装置の測定精度に悪影響を及ぼすことが無くなる。また、各接続継手に電気絶縁部材を第1及び第2の金属部材の間に介在させて一体化して構成しているので、第2の金属部材を壁面とのシール面を有するフランジ部とし、このフランジ部のボルトネジ等の締結部品に金属部材を用いることができる。金属部材は、樹脂と比較して遥かに強度があり、シール面からの冷媒ガスのリークも無く、また、アウトガスが発生することが無い。しかも、金属製のフランジ部(第2の金属部材)に複数の取付穴を形成し、これら取付穴にボルトネジを螺合して接続継手を金属製の壁面に固定するので、強固な金属同士でガス流路を所望の締結力で密閉することができる。更に、各接続継手自体に電気絶縁部材を備えているため、従来の薄い絶縁表面処理とは異なってシール面や締結部品等の接触面の傷等により通電する恐れが無く、信頼性を高くすることができる。   According to this configuration, when connecting the compressor and the expander and connecting the expander and the phase control unit, the expander is connected to the opening portion of the gas flow path on the wall surface of the compressor via the connection joint. When the phase control unit is connected to the opening portion of the gas flow path on the wall surface of the expander via the connection joint, the peripheral edge of the opening portion of the gas flow path on each wall surface, usually using a metal material, is connected to the connection joint. It will be in the state contact | abutted to the electrical insulation member. As a result, the first metal member inside the electric insulating member and the gas flow path inserted and fixed to the first metal member are completely electrically insulated from the wall surface of the compressor or the expander. It becomes. Therefore, minute electrical noise caused by the movement of mechanical moving parts such as compressors is blocked by each connecting joint, so it is not transmitted to the cold head. The measurement accuracy of the device is not adversely affected. Moreover, since the electric insulation member is interposed between the first and second metal members and integrated with each connection joint, the second metal member is a flange portion having a seal surface with the wall surface, A metal member can be used for a fastening part such as a bolt screw of the flange portion. The metal member is much stronger than the resin, there is no leakage of refrigerant gas from the sealing surface, and no outgas is generated. Moreover, a plurality of mounting holes are formed in the metal flange portion (second metal member), and bolts are screwed into these mounting holes to fix the connection joint to the metal wall surface. The gas flow path can be sealed with a desired fastening force. Furthermore, since each connection joint itself is provided with an electrical insulation member, unlike conventional thin insulation surface treatment, there is no risk of energization due to scratches on the contact surfaces such as seal surfaces and fastening parts, and reliability is increased. be able to.

また、本発明の請求項2による冷却装置は、請求項1において、前記電気絶縁部材は、前記第1及び第2の金属部材の間にロー付けによって一体に固定されていることを特徴とする。
この構成によれば、ロー付けの際に、圧縮機や膨張機のその他の接合部と一度にロー付け成形できるので、製作コストを低減することができる。
According to a second aspect of the present invention, there is provided the cooling device according to the first aspect, wherein the electrical insulating member is integrally fixed by brazing between the first and second metal members. .
According to this configuration, since brazing can be performed at a time with other joints of the compressor and the expander at the time of brazing, the manufacturing cost can be reduced.

以上説明したように本発明によれば、パルス管冷凍機の圧縮機と膨張機の間に介在する配管や管継手等の耐圧性及び気密性を損なうことなく、コールドヘッドに対する圧縮機等の機械的な可動部品の運動に起因する微小な電気ノイズの影響を確実に防止することができ、これによって冷却対象の超高感度分析装置で安定した測定精度を得ることができるという効果がある。   As described above, according to the present invention, a machine such as a compressor for a cold head without impairing pressure resistance and airtightness of piping and pipe joints interposed between a compressor and an expander of a pulse tube refrigerator. It is possible to reliably prevent the influence of minute electric noise resulting from the movement of a typical movable part, and this has the effect that a stable measurement accuracy can be obtained with the ultra-high sensitivity analyzer to be cooled.

以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
図1は、本発明の実施の形態に係る冷却装置の構成を示す図である。
但し、本冷却装置10においては、特に圧縮機12の方式や膨張機13の形状について問わないが、ここでは、圧縮機12をスターリング方式とし、膨張機13をU字型として説明する。U字型とは、蓄冷器27とパルス管29とが平行状態で双方27,29の一端が連通された部分にコールドヘッド28を有する形状である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
FIG. 1 is a diagram showing a configuration of a cooling device according to an embodiment of the present invention.
However, in the present cooling device 10, the method of the compressor 12 and the shape of the expander 13 are not particularly limited, but here, the compressor 12 is described as a Stirling method and the expander 13 is described as a U-shape. The U-shape is a shape in which the regenerator 27 and the pulse tube 29 are in a parallel state and the cold head 28 is provided in a portion where both ends of the regenerator 27 and 29 communicate with each other.

図1に示すように、低振動のスターリング方式パルス管冷凍機の圧縮機12は、対向状態で逆向きに往復運動する一対のピストン15を備え、これらピストン15はフレクシャーベアリング16により支持されることによってシリンダ17と非接触で微少隙間を保持する構造となっている。
また、永久磁石18とヨーク19により形成された磁路中にコイル20が配置されており、このコイル20に交流電流を流して発生する電磁力によって、各ピストン15が逆向きに往復運動するようになっている。この運動によって各ピストン15の対向面で圧縮空間22が伸縮して冷媒ガスが圧縮されるようになっている。また、2つのピストン15を逆向きに往復運動させることで、一方のピストン15で発生する振動力を相殺し、更に、ピストン15がシリンダ17と非接触とされていることでピストン15の運動と垂直の方向(半径方向)への振動力を発生させないようにして低振動を実現している。
As shown in FIG. 1, a compressor 12 of a low-vibration Stirling pulse tube refrigerator includes a pair of pistons 15 that reciprocate in opposite directions, and these pistons 15 are supported by flexure bearings 16. In this way, a small gap is maintained without contact with the cylinder 17.
Further, a coil 20 is disposed in a magnetic path formed by the permanent magnet 18 and the yoke 19, and each piston 15 reciprocates in the reverse direction by an electromagnetic force generated by passing an alternating current through the coil 20. It has become. By this movement, the compression space 22 expands and contracts on the opposing surface of each piston 15 and the refrigerant gas is compressed. Further, by reciprocating the two pistons 15 in the opposite directions, the vibration force generated in one piston 15 is canceled out, and further, the piston 15 is not in contact with the cylinder 17 so that the movement of the piston 15 Low vibration is realized without generating a vibration force in the vertical direction (radial direction).

このような構成の圧縮機12に膨張機13が圧縮機接続継手24により連結されている。膨張機13は、熱交換器26、蓄冷器27、コールドヘッド28、パルス管29及び位相制御部30を備えて構成されている。位相制御部30は、イナータンスチューブ32にバッファタンク33が接続されて成り、そのイナータンスチューブ32とパルス管29とが連通するように、位相制御部接続継手35によって膨張機13に連結されている。   The expander 13 is connected to the compressor 12 having such a configuration by a compressor connection joint 24. The expander 13 includes a heat exchanger 26, a regenerator 27, a cold head 28, a pulse tube 29, and a phase controller 30. The phase control unit 30 includes a buffer tank 33 connected to an inertance tube 32, and is connected to the expander 13 by a phase control unit connection joint 35 so that the inertance tube 32 and the pulse tube 29 communicate with each other. Yes.

上記のように、圧縮機12により圧縮された冷媒ガスはガス流路を通って熱交換器26を通過し、この際、熱交換器26により放熱された後、蓄冷器27で等温変化をしながら、コールドヘッド28を通りパルス管29にて膨張される。この膨張仕事を効率良く取り出すために、位相制御部30によって冷媒ガスの圧力と流速の位相が最適化される。
先のパルス管29での膨張の際に、コールドヘッド28にて寒冷が発生されると、冷媒ガスは今通って来た流路を逆にたどり圧縮機12まで戻る。これら一連の動作を繰り返すことで、コールドヘッド28で極低温を得ることができる。
As described above, the refrigerant gas compressed by the compressor 12 passes through the heat exchanger 26 through the gas flow path. At this time, after being radiated by the heat exchanger 26, the refrigerant gas is isothermally changed by the regenerator 27. However, it is expanded by the pulse tube 29 through the cold head 28. In order to take out this expansion work efficiently, the phase of the refrigerant gas pressure and flow velocity is optimized by the phase control unit 30.
When cold is generated in the cold head 28 during the expansion in the previous pulse tube 29, the refrigerant gas reversely follows the flow path that has just passed through and returns to the compressor 12. By repeating these series of operations, the cold head 28 can obtain a cryogenic temperature.

実際に、冷却対象の超高感度分析計等の検出部や検出素子は、上記のコールドヘッド28に機械的振動を吸収する部材を介して取り付けられる。
次に、圧縮機接続継手24及び位相制御部接続継手35の詳細構成を、図2に位相制御部接続継手35を代表して示し、その説明を行う。但し、図2(a)は位相制御部接続継手35の平面図、(b)は位相制御部接続継手35を熱交換器26の壁面26aに取付けた状態の断面図である。
Actually, a detection unit and a detection element such as an ultrasensitive analyzer to be cooled are attached to the cold head 28 via a member that absorbs mechanical vibration.
Next, detailed configurations of the compressor connection joint 24 and the phase control unit connection joint 35 are shown in FIG. 2A is a plan view of the phase control unit connection joint 35, and FIG. 2B is a cross-sectional view of the phase control unit connection joint 35 attached to the wall surface 26a of the heat exchanger 26. FIG.

図2に示すように、位相制御部接続継手35は、冷媒ガスの流路であるイナータンスチューブ32を挿入固定するための貫通穴40aが中心部分に形成された円板形状(環状)のガス流路固定部40と、このガス流路固定部40の外周に嵌合された環状のセラミックス等の電気絶縁部材による絶縁部41と、この絶縁部41の外周に嵌合された環状のフランジ部42との三層構造となっている。但し、ガス流路固定部40とフランジ部42は、ステンレス等の強度の高い金属部材によって形成されている。熱交換器26も同様に強度の高い金属で形成されている。   As shown in FIG. 2, the phase control unit connecting joint 35 is a disk-shaped (annular) gas in which a through hole 40 a for inserting and fixing an inertance tube 32 that is a refrigerant gas flow path is formed in the center portion. A flow path fixing portion 40, an insulating portion 41 made of an electrically insulating member such as an annular ceramic fitted to the outer periphery of the gas flow passage fixing portion 40, and an annular flange portion fitted to the outer periphery of the insulating portion 41 42 and a three-layer structure. However, the gas flow path fixing part 40 and the flange part 42 are formed of a high-strength metal member such as stainless steel. Similarly, the heat exchanger 26 is formed of a high strength metal.

また、各部40,41,42はロー付け等により接合されており、気密性及び耐圧性が保持されて一体化されている。更に、フランジ部42には、壁面26aに位相制御部接続継手35を取付固定する際の貫通した取付穴42aが複数形成されると共に、壁面26aへの取り付け側にシール溝42bが形成されている。
一方、位相制御部接続継手35が取り付けられる壁面26aのガス流路26bの開口部分が、26cで示すようにテーパ形状に加工されている。このテーパ状部分26cは、壁面26aにガス流路26b,32同士の流路方向の中心軸を合わせて位相制御部接続継手35を取付けた際に、その絶縁部41の領域上の位置からガス流路26bに向かって円錐状に狭まる形状を成す。
Moreover, each part 40,41,42 is joined by brazing etc., and airtightness and pressure | voltage resistance are hold | maintained and integrated. Further, a plurality of through holes 42a are formed in the flange portion 42 when the phase control portion connection joint 35 is fixedly attached to the wall surface 26a, and a seal groove 42b is formed on the attachment side to the wall surface 26a. .
On the other hand, the opening part of the gas flow path 26b of the wall surface 26a to which the phase control unit connection joint 35 is attached is processed into a tapered shape as indicated by 26c. This tapered portion 26c is formed from the position on the region of the insulating portion 41 when the phase control portion connection joint 35 is attached to the wall surface 26a with the center axis of the gas flow passages 26b and 32 being aligned with each other. The shape narrows in a conical shape toward the flow path 26b.

つまり、壁面26aに位相制御部接続継手35をフランジ部42の取付穴42aにボルトネジ(図示せず)を螺合して固定すると、その壁面26aのテーパ状部分26cの外縁が絶縁部41に当接した状態となるので、絶縁部41の内側のガス流路固定部40とガス流路であるイナータンスチューブ32は、熱交換器26の壁面26aに対して完全に電気的に絶縁された状態となる。   That is, when the phase control portion connection joint 35 is fixed to the wall surface 26a by screwing a bolt screw (not shown) into the mounting hole 42a of the flange portion 42, the outer edge of the tapered portion 26c of the wall surface 26a contacts the insulating portion 41. Since the gas flow path fixing part 40 inside the insulating part 41 and the inertance tube 32 which is the gas flow path are completely electrically insulated from the wall surface 26a of the heat exchanger 26 because they are in contact with each other. It becomes.

しかも、金属製のフランジ部42の取付穴42aにボルトネジを螺合して位相制御部接続継手35を金属製の壁面26aに固定するので、強固な金属同士でガス流路26b,32を所望の締結力で密閉することができる。
このような構成を、電気絶縁が要求される圧縮機12及び膨張機13のガス流路接続部分と、膨張機13及び位相制御部30のガス流路接続部分とに施した。
Moreover, since the bolts are screwed into the mounting holes 42a of the metal flange portion 42 and the phase control unit connection joint 35 is fixed to the metal wall surface 26a, the gas flow paths 26b and 32 are made of a desired metal with a desired shape. It can be sealed with a fastening force.
Such a configuration was applied to the gas flow path connecting portions of the compressor 12 and the expander 13 that require electrical insulation and the gas flow path connecting portions of the expander 13 and the phase control unit 30.

従って、本実施の形態の冷却装置10によれば、それら2箇所のガス流路接続部分を完全に電気的に絶縁された状態で、圧縮機12、膨張機13及び位相制御部30を互いに強固に連結することができるので、従来のような耐圧性、機密性及びアウトガスによる性能劣化等の問題や、管継手等の接合面や締結部品に施した表面の電気絶縁処理が、製作時やメンテナンス時の取り付け取り外しの際に損傷・磨耗し、電気的絶縁が確保出来なくなるといった問題を解消することができる。   Therefore, according to the cooling device 10 of the present embodiment, the compressor 12, the expander 13, and the phase control unit 30 are firmly connected to each other in a state where these two gas flow path connection portions are completely electrically insulated. Therefore, problems such as pressure resistance, confidentiality and outgassing due to outgassing, and electrical insulation treatment of joint surfaces such as pipe joints and surfaces applied to fastening parts are possible during production and maintenance. It is possible to solve the problem that electrical insulation cannot be secured due to damage or wear during installation and removal.

つまり、パルス管冷凍機の圧縮機12と膨張機13の間に介在するガス配管や管継手等の耐圧性及び気密性を損なうことなく、コールドヘッド28に対する圧縮機12等の機械的な可動部品の運動に起因する微小な電気ノイズの影響を確実に防止することができる。これによって、本冷却装置10によって検出部が冷却される超高感度分析装置において安定した測定精度を得ることができる。   That is, mechanically movable parts such as the compressor 12 with respect to the cold head 28 without impairing pressure resistance and airtightness of gas pipes and pipe joints interposed between the compressor 12 and the expander 13 of the pulse tube refrigerator. It is possible to reliably prevent the influence of minute electric noise caused by the movement of the. As a result, it is possible to obtain stable measurement accuracy in the ultrasensitive analyzer in which the detection unit is cooled by the cooling device 10.

更に説明すると、圧縮機12等が発生する機械的振動は、圧縮機12が対向ピストン型でそのピストン15をフレクシャーベアリング16でシリンダ17と非接触保持された低振動型の圧縮機12の使用により阻止、又は圧縮機12と膨張機13を接続する圧縮機接続継手24で阻止されている。
更に、圧縮機12等の機械的な可動部品の運動に起因する微小な電気ノイズは、各接続継手24,35で阻止されているので、コールドヘッド28に伝達されることがない。従って、超高感度分析装置の測定精度に悪影響を及ぼすことが無くなる。
More specifically, the mechanical vibration generated by the compressor 12 or the like is caused by the use of the low vibration type compressor 12 in which the compressor 12 is an opposed piston type and the piston 15 is held in contact with the cylinder 17 by the flexure bearing 16. Or by a compressor connection joint 24 connecting the compressor 12 and the expander 13.
Further, minute electrical noise caused by the movement of mechanical moving parts such as the compressor 12 is blocked by the connection joints 24 and 35, and therefore is not transmitted to the cold head 28. Therefore, the measurement accuracy of the ultrasensitive analyzer is not adversely affected.

また、本冷却装置10は、各接続継手24,35に電気的な絶縁部材である絶縁部41を金属部材のガス流路固定部40及びフランジ部42との間に介在させて一体化して構成している。このため、シール面や締結部品であるフランジ部42及びそれと接する部分を金属材料で成形することができる。金属材料は、樹脂と比較して遥かに強度があり、シール面からの冷媒ガスのリークも無く、また、アウトガスが発生することが無い。このため、シール面及び締結部品を金属材料で成形することができる本冷却装置10は、従来の管継手等を樹脂などの電気絶縁材料で成形したものに比べて、耐圧性、気密性、性能性に優れている。   Further, the cooling device 10 is configured such that an insulating portion 41 that is an electrically insulating member is interposed between each of the connection joints 24 and 35 between a gas flow path fixing portion 40 and a flange portion 42 that are metal members. is doing. For this reason, the flange part 42 which is a sealing surface and fastening parts, and the part which touches it can be shape | molded with a metal material. The metal material is much stronger than the resin, there is no leakage of the refrigerant gas from the sealing surface, and no outgas is generated. For this reason, the present cooling device 10 capable of forming the seal surface and the fastening part with a metal material is more resistant to pressure, air tightness, and performance than a conventional pipe joint or the like formed from an electrically insulating material such as resin. Excellent in properties.

更に、本冷却装置10は、各接続継手24,35自体に絶縁部41を備えているため、従来の薄い絶縁表面処理とは異なってシール面や締結部品等の接触面の傷等により通電する恐れが無く、信頼性を高くすることができる。
また、本冷却装置10は、管継手の電気的に絶縁可能な層(絶縁部41)として金属層(ガス流路固定部40及びフランジ部42)の間にセラミックスをロー付けして成形することができる。従って、そのロー付けの際に、圧縮機12や膨張機13のその他の接合部と一度にロー付け成形できるので、製作コストを低減することができる。
Furthermore, since the present cooling device 10 is provided with an insulating portion 41 in each connection joint 24, 35 itself, it is energized by a scratch on the contact surface such as a sealing surface or a fastening part, unlike the conventional thin insulating surface treatment. There is no fear and reliability can be increased.
The cooling device 10 is formed by brazing ceramics between metal layers (the gas flow path fixing portion 40 and the flange portion 42) as an electrically insulating layer (insulating portion 41) of the pipe joint. Can do. Therefore, since the brazing can be performed at once with the other joints of the compressor 12 and the expander 13 during the brazing, the manufacturing cost can be reduced.

以上説明した各接続継手24,35並びに当該接続継手24,35が連結される壁面26aのテーパ状部分26cの構造を、図3及び図4に示すように他の構成の冷却装置50,60に備えても、上述した冷却装置10と同様な効果を得ることができる。
図3に示す冷却装置50は、膨張機13のパルス管29に連通するガス流路部分にオリフィス51を介してバッファタンク33を固定してある。つまり、膨張機13と位相制御部30とが一体化された構成を成しているので、圧縮機12と膨張機13とを連結する部分のみに圧縮機接続継手24並びにテーパ状部分26cの構造が適用されている。
The structures of the connecting joints 24 and 35 described above and the tapered portion 26c of the wall surface 26a to which the connecting joints 24 and 35 are connected are provided in other cooling devices 50 and 60 as shown in FIGS. Even if it provides, the effect similar to the cooling device 10 mentioned above can be acquired.
In the cooling device 50 shown in FIG. 3, the buffer tank 33 is fixed to the gas flow path portion communicating with the pulse tube 29 of the expander 13 via the orifice 51. That is, since the expander 13 and the phase control unit 30 are integrated, the structure of the compressor connecting joint 24 and the tapered portion 26c is provided only in the portion connecting the compressor 12 and the expander 13. Has been applied.

図4に示す冷却装置60は、圧縮機12と膨張機13とが独立しており、それら双方のガス流路が接続管61によって連結されている。従って、その接続管61の一端と圧縮機12との接続部分に圧縮機接続継手24並びにテーパ状部分26cの構成が適用され、また、接続管61の他端と膨張機13との接続部分に膨張機接続継手35並びにテーパ状部分26cの構造が適用されている。   In the cooling device 60 shown in FIG. 4, the compressor 12 and the expander 13 are independent, and the gas flow paths of both are connected by a connecting pipe 61. Therefore, the configuration of the compressor connection joint 24 and the tapered portion 26c is applied to the connection portion between one end of the connection pipe 61 and the compressor 12, and the connection portion between the other end of the connection pipe 61 and the expander 13 is applied. The structure of the expander connection joint 35 and the tapered portion 26c is applied.

本発明の実施の形態に係る冷却装置の構成を示す図である。It is a figure which shows the structure of the cooling device which concerns on embodiment of this invention. 上記実施の形態に係る冷却装置の位相制御部接続継手の構成を示し、(a)は位相制御部接続継手の平面図、(b)は位相制御部接続継手を冷却装置の熱交換器の壁面に取付けた状態の断面図である。The structure of the phase control part connection joint of the cooling device which concerns on the said embodiment is shown, (a) is a top view of a phase control part connection joint, (b) is the wall surface of the heat exchanger of a cooling device with a phase control part connection joint It is sectional drawing of the state attached to. 上記実施の形態に係る冷却装置の他の構成を示す図である。It is a figure which shows the other structure of the cooling device which concerns on the said embodiment. 上記実施の形態に係る冷却装置のその他の構成を示す図である。It is a figure which shows the other structure of the cooling device which concerns on the said embodiment.

符号の説明Explanation of symbols

10,50,60 冷却装置
12 圧縮機
13 膨張機
15 ピストン
16 フレクシャーベアリング
17 シリンダ
18 永久磁石
19 ヨーク
20 コイル
22 圧縮空間
24 圧縮機接続継手
26 熱交換器
26a 壁面
26b ガス流路
26c テーパ状部分
27 蓄冷器
28 コールドヘッド
29 パルス管
30 位相制御部
32 イナータンスチューブ
33 バッファタンク
40 ガス流路固定部
40a 貫通穴
41 絶縁部
42 フランジ部
42a 取付穴
42b シール溝
51 オリフィス
61 接続管
DESCRIPTION OF SYMBOLS 10, 50, 60 Cooling device 12 Compressor 13 Expander 15 Piston 16 Flexure bearing 17 Cylinder 18 Permanent magnet 19 Yoke 20 Coil 22 Compression space 24 Compressor connection joint 26 Heat exchanger 26a Wall surface 26b Gas flow path 26c Tapered part 27 Regenerator 28 Cold head 29 Pulse tube 30 Phase controller 32 Inertance tube 33 Buffer tank 40 Gas flow path fixing part 40a Through hole 41 Insulating part 42 Flange part 42a Mounting hole 42b Seal groove 51 Orifice 61 Connection pipe

Claims (2)

冷媒ガスを圧縮する圧縮機と、その圧縮された冷媒ガスが寒冷発生用のコールドヘッドへ供給される膨張機と、この膨張機に供給された冷媒ガスの圧力と流速の位相を制御する位相制御部とを有し、冷媒ガスが流れるガス流路が連通される状態で、圧縮機と膨張機とが連結されると共に、膨張機が位相制御部と一体型でなければ膨張機と位相制御部とも連結されて成るパルス管冷凍機を用いた超高感度分析装置を冷却する冷却装置において、
前記圧縮機と前記膨張機との連結又は前記膨張機と前記位相制御部との連結を行う接続継手を、前記ガス流路の挿入固定用の貫通穴が形成された環状の第1の金属部材と、この第1の金属部材の外周に嵌合固定された環状の電気絶縁部材と、この電気絶縁部材の外周に嵌合固定された環状の第2の金属部材との三層一体構造で形成し、
この形成された接続継手が固定される圧縮機又は膨張機の壁面の前記ガス流路の開口部分を、当該壁面に前記接続継手を固定した際に、その開口部分の周縁が前記接続継手の電気絶縁部材の領域上に位置するように形成した
ことを特徴とする冷却装置。
A compressor that compresses the refrigerant gas, an expander that supplies the compressed refrigerant gas to a cold head for generating cold, and phase control that controls the phase of the pressure and flow velocity of the refrigerant gas supplied to the expander The compressor and the expander are connected in a state where the gas flow path through which the refrigerant gas flows is connected, and the expander and the phase control unit are not integrated with the phase control unit. In the cooling device for cooling the ultra-sensitive analyzer using a pulse tube refrigerator connected to both,
An annular first metal member in which a through-hole for inserting and fixing the gas flow path is formed as a connection joint for connecting the compressor and the expander or connecting the expander and the phase control unit. And an annular electric insulating member fitted and fixed to the outer periphery of the first metal member, and an annular second metal member fitted and fixed to the outer periphery of the electric insulating member. And
When the connecting joint is fixed to the wall surface of the opening portion of the wall surface of the compressor or the expander to which the formed connecting joint is fixed, the periphery of the opening portion is the electrical connection of the connecting joint. A cooling device, wherein the cooling device is formed so as to be positioned on a region of an insulating member.
前記電気絶縁部材は、前記第1及び第2の金属部材の間にロー付けによって一体に固定されている
ことを特徴とする請求項1に記載の冷却装置。
The cooling device according to claim 1, wherein the electrical insulating member is integrally fixed by brazing between the first and second metal members.
JP2005262287A 2005-09-09 2005-09-09 Cooling system Active JP4655839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262287A JP4655839B2 (en) 2005-09-09 2005-09-09 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262287A JP4655839B2 (en) 2005-09-09 2005-09-09 Cooling system

Publications (2)

Publication Number Publication Date
JP2007071515A true JP2007071515A (en) 2007-03-22
JP4655839B2 JP4655839B2 (en) 2011-03-23

Family

ID=37933102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262287A Active JP4655839B2 (en) 2005-09-09 2005-09-09 Cooling system

Country Status (1)

Country Link
JP (1) JP4655839B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007881A (en) * 2008-06-24 2010-01-14 Fuji Electric Systems Co Ltd Refrigerating device and charged particle beam device
JP2012104781A (en) * 2010-11-15 2012-05-31 Railway Technical Research Institute High-temperature superconductive magnet cooling system with vehicle-mounted pulse tube refrigerator
JP2020532705A (en) * 2017-09-08 2020-11-12 レイセオン カンパニー Pulse tube cryocooler with axis-matched components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183186A (en) * 1983-11-28 1984-10-18 三菱電機株式会社 Manufacture of insulating pipe joint
JPH0772650B2 (en) * 1992-09-25 1995-08-02 岩谷産業株式会社 Element cooling device for EDS detector
JP2997877B2 (en) * 1997-03-07 2000-01-11 岩谷産業株式会社 Cooling device for ultra-sensitive analyzer
JP2003229368A (en) * 2002-02-06 2003-08-15 Mitsubishi Heavy Ind Ltd Electric current introduction terminal and vacuum processing apparatus having the same
JP2003232477A (en) * 2002-02-06 2003-08-22 Taku Seisakusho:Kk Metal pipe connecting structure and metal pipe connector
JP2004116816A (en) * 2002-09-24 2004-04-15 Sumitomo Heavy Ind Ltd Cooling system
JP2004127964A (en) * 2002-09-30 2004-04-22 Yyl:Kk Superconducting magnet device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183186A (en) * 1983-11-28 1984-10-18 三菱電機株式会社 Manufacture of insulating pipe joint
JPH0772650B2 (en) * 1992-09-25 1995-08-02 岩谷産業株式会社 Element cooling device for EDS detector
JP2997877B2 (en) * 1997-03-07 2000-01-11 岩谷産業株式会社 Cooling device for ultra-sensitive analyzer
JP2003229368A (en) * 2002-02-06 2003-08-15 Mitsubishi Heavy Ind Ltd Electric current introduction terminal and vacuum processing apparatus having the same
JP2003232477A (en) * 2002-02-06 2003-08-22 Taku Seisakusho:Kk Metal pipe connecting structure and metal pipe connector
JP2004116816A (en) * 2002-09-24 2004-04-15 Sumitomo Heavy Ind Ltd Cooling system
JP2004127964A (en) * 2002-09-30 2004-04-22 Yyl:Kk Superconducting magnet device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007881A (en) * 2008-06-24 2010-01-14 Fuji Electric Systems Co Ltd Refrigerating device and charged particle beam device
JP2012104781A (en) * 2010-11-15 2012-05-31 Railway Technical Research Institute High-temperature superconductive magnet cooling system with vehicle-mounted pulse tube refrigerator
JP2020532705A (en) * 2017-09-08 2020-11-12 レイセオン カンパニー Pulse tube cryocooler with axis-matched components

Also Published As

Publication number Publication date
JP4655839B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US7942651B2 (en) Refrigeration device with improved DC motor
JP2004283580A (en) Pulse tube cryocooler system for magnetic resonance superconducting magnet
CN109210818B (en) Cryogenic refrigerator and magnetic shielding structure thereof
JP4655839B2 (en) Cooling system
JP2008215440A (en) Plate spring and refrigerator
US7137259B2 (en) Cryocooler housing assembly apparatus and method
JP2006275477A (en) Pulse tube refrigerator
JP2005520089A (en) Structural equipment for resonant compressors
KR20210144711A (en) Cryopump and cryogenic freezer dustproof structure
JP4178461B2 (en) Vibration compressor
JP5657479B2 (en) Regenerative refrigerator
JP2009257625A (en) Pulse tube refrigerating machine
JP4760421B2 (en) Vibration type compressor
JP3584762B2 (en) Method of manufacturing cold head vacuum vessel for refrigerator
KR101717351B1 (en) Pressure sensor for measuring refrigerant
JP2004116816A (en) Cooling system
EP3699426B1 (en) Linear compressor for cryocooler
WO2024101042A1 (en) Cryogenic refrigerator
JPH11148736A (en) Electromagnetically-driven reciprocating mechanism
JP2010071210A (en) Linear drive compressor
JP2006144568A (en) Vibration type compressor
JP2003148341A (en) Lead wire fitting structure of linear motor type driving part
JP4861902B2 (en) Rotary valve unit and pulse tube refrigerator
JP2006017422A (en) Phase control mechanism for pulse tube refrigerator
KR101289394B1 (en) Damping flange assembly for reducing vibration and cryopump having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250