JPH0766498B2 - Method of manufacturing thin film magnetic head - Google Patents

Method of manufacturing thin film magnetic head

Info

Publication number
JPH0766498B2
JPH0766498B2 JP62020839A JP2083987A JPH0766498B2 JP H0766498 B2 JPH0766498 B2 JP H0766498B2 JP 62020839 A JP62020839 A JP 62020839A JP 2083987 A JP2083987 A JP 2083987A JP H0766498 B2 JPH0766498 B2 JP H0766498B2
Authority
JP
Japan
Prior art keywords
thin film
insulating layer
etching
film magnetic
coil insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62020839A
Other languages
Japanese (ja)
Other versions
JPS63188812A (en
Inventor
久美子 和田
裕二 永田
善博 戸崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62020839A priority Critical patent/JPH0766498B2/en
Publication of JPS63188812A publication Critical patent/JPS63188812A/en
Publication of JPH0766498B2 publication Critical patent/JPH0766498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜記録再生装置に使用する薄膜磁気ヘッド
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film magnetic head used in a thin film recording / reproducing apparatus.

従来の技術 高透磁率強磁性体基板上に絶縁層を形成し、薄膜コイル
層,薄膜コイル絶縁層,薄膜磁気コアを順次積層して形
成し構成される薄膜磁気ヘッドで、高効率薄膜磁気ヘッ
ドを製造するための重要なプロセスとして、薄膜コイル
絶縁層の平坦化加工がある。これは、コイル段差が、そ
の後形成されるコイル絶縁層及び薄膜磁気コアに転写さ
れて上記薄膜磁気コア形状に段差が生じると、透磁率の
劣化を招き、記録,再生効率劣化の主要因となる。そこ
で上記薄膜コア形成の下地であるコイル絶縁層の平坦化
加工が必要となる。
2. Description of the Related Art A high-efficiency thin-film magnetic head is a thin-film magnetic head that is formed by forming an insulating layer on a high-permeability ferromagnetic substrate and then sequentially stacking a thin-film coil layer, a thin-film coil insulating layer, and a thin-film magnetic core As an important process for manufacturing, the thin film coil insulating layer is planarized. This is because if a coil step is transferred to a coil insulating layer and a thin film magnetic core that are subsequently formed to cause a step in the shape of the thin film magnetic core, the permeability is deteriorated, which is a main factor of deterioration of recording and reproducing efficiency. . Therefore, it is necessary to flatten the coil insulating layer that is the base for forming the thin film core.

第4図に従来の薄膜磁気ヘッドの製造プロセスを示す。
第4図において、1は高透磁率強磁性体基板、2は絶縁
層、3は薄膜コイル、4は薄膜コイル絶縁層、5は薄膜
コイル段差を吸収するために塗布を行うホトレジスト、
6は磁気回路を構成する薄膜磁気コアである。この構成
で以下、第4図a〜fの順序で薄膜ヘッドにおける薄膜
磁気コアの製造プロセスについて述べる。第4図aは、
高透磁率強磁性体基板1上に絶縁層2を形成したプロセ
スを、bは絶縁層2上に薄膜コイル3をイオンビームミ
リング等で微細エッチング加工を行いパターンニングを
行ったものを示す。同図cには薄膜コイル3上にコイル
絶縁層4を形成したプロセスを示す。この時、薄膜コイ
ル3は凹凸はそのままコイル絶縁層4に転写されてい
る。同図dは絶縁層4の段差を縮小せしめるためにホト
レジスト5をスピンコートで平坦塗布を行った様子を示
し、同図eはコイル絶縁層4及びホトレジスト5の等速
エッチングレートであるエッチング条件で、コイル絶縁
層4を必要な厚さにまでエッチングを行い、更に不必要
な絶縁層2を微細エッチング加工したものを示す。同図
fは薄膜コイル絶縁層4上に薄膜磁気コア6を形成した
状態を示している。
FIG. 4 shows a manufacturing process of a conventional thin film magnetic head.
In FIG. 4, 1 is a high-permeability ferromagnetic substrate, 2 is an insulating layer, 3 is a thin-film coil, 4 is a thin-film coil insulating layer, and 5 is a photoresist that is applied to absorb a step difference in the thin-film coil.
Reference numeral 6 is a thin film magnetic core forming a magnetic circuit. With this configuration, the manufacturing process of the thin film magnetic core in the thin film head will be described below in the order of FIGS. Figure 4a shows
A process in which the insulating layer 2 is formed on the high-permeability ferromagnetic substrate 1 is shown, and b shows a pattern in which the thin film coil 3 is finely etched on the insulating layer 2 by ion beam milling or the like. FIG. 3C shows a process of forming the coil insulating layer 4 on the thin film coil 3. At this time, the unevenness of the thin film coil 3 is directly transferred to the coil insulating layer 4. FIG. 4d shows a state in which the photoresist 5 is applied by flattening by spin coating in order to reduce the step difference of the insulating layer 4, and FIG. 4e shows the etching conditions which are constant-rate etching rates of the coil insulating layer 4 and the photoresist 5. The coil insulating layer 4 is etched to a required thickness, and the unnecessary insulating layer 2 is finely etched. FIG. 6F shows a state in which the thin film magnetic core 6 is formed on the thin film coil insulating layer 4.

発明が解決しようとする問題点 しかしながら、上記のようなヘッドの製造プロセスで
は、薄膜コイル3の導体間のピッチ,導体の段差等の影
響により、ホトレジスト5の完全な平坦塗布は困難であ
る。そのため第2図dにおけるホトレジスト5の表面の
凹凸は、薄膜コイル絶縁層4をホトレジスト5等速エッ
チングレートとなるエッチング条件でエッチングを行っ
た後もそのまま薄膜コイル絶縁層4の表面に転写され
る。従って、その上部に形成される薄膜磁気コア6の表
面にも同様に凹凸が転写され、透磁率の劣化を招き、記
録再生効率劣化の主要因となる問題点があった。
Problems to be Solved by the Invention However, in the above-described head manufacturing process, it is difficult to apply the photoresist 5 completely flatly because of the influence of the pitch between the conductors of the thin film coil 3, the step of the conductors, and the like. Therefore, the unevenness of the surface of the photoresist 5 in FIG. 2D is transferred to the surface of the thin film coil insulating layer 4 as it is even after the thin film coil insulating layer 4 is etched under the etching condition that provides a constant etching rate of the photoresist 5. Accordingly, the unevenness is similarly transferred to the surface of the thin film magnetic core 6 formed on the upper part of the thin film magnetic core 6, resulting in deterioration of magnetic permeability, which is a main factor of deterioration of recording / reproducing efficiency.

本発明は上記問題点に鑑み、薄膜磁気コア6の表面にお
ける凹凸の転写を解消し、すなわちコイル絶縁層4にお
ける平坦加工を行い薄膜磁気コア6の透磁率を向上し、
記録再生効率の向上を実現させ、高効率な薄膜磁気ヘッ
ドの製造方法を提供するものである。
In view of the above problems, the present invention eliminates the transfer of irregularities on the surface of the thin film magnetic core 6, that is, flattens the coil insulating layer 4 to improve the magnetic permeability of the thin film magnetic core 6,
An object of the present invention is to provide a method of manufacturing a thin film magnetic head with high efficiency, which realizes improvement of recording / reproducing efficiency.

問題点を解決するための手段 この目的を実現するために本発明の薄膜磁気ヘッドの製
造方法では、薄膜磁気コア形成時の下地となるコイル絶
縁層について、次に示す各パラメータすなわちコイル絶
縁層の段差をS,コイル絶縁層及びホトレジストのエッチ
ングレートをそれぞれγs/γoホトレジストの塗布後の
段差をRcとした際γs/γo=S/(S−Rc)なる関係式が
成立するエッチング条件でエッチングを行ない平坦化加
工を行うものである。
Means for Solving the Problems In order to achieve this object, in the method for manufacturing a thin film magnetic head of the present invention, in the coil insulating layer which is a base for forming the thin film magnetic core, the following respective parameters, namely, coil insulating layer When the step is S and the etching rate of the coil insulating layer and the photoresist is γ s / γ o where the step after applying the photoresist is R c , the relational expression γ s / γ o = S / (S−R c ) is established. The flattening process is performed by performing the etching under the etching conditions.

作用 この方法により、エッチング後のコイル絶縁層上面はほ
ぼ平坦となり、この上部に形成される薄膜磁気コア形状
も平坦となり、透磁率の劣化を防ぎ記録再生効率の向上
が実現できる。
By this method, the upper surface of the coil insulating layer after etching becomes substantially flat, and the shape of the thin film magnetic core formed on this becomes flat, so that the deterioration of magnetic permeability can be prevented and the recording / reproducing efficiency can be improved.

実施例 以下に本発明の一実施例について図面を参照しながら説
明を行う。本発明の製造方法で製造される薄膜磁気ヘッ
ドは、強磁性体基板上に絶縁層を形成し、上記絶縁層上
に薄膜コイル絶縁層(以下コイル絶縁層という)薄膜磁
気コアと順次積層に形成して構成されるものである。第
1図に本発明の薄膜磁気ヘッドの製造方法におけるコイ
ル絶縁層の平坦加工プロセスを示す。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. A thin-film magnetic head manufactured by the manufacturing method of the present invention has an insulating layer formed on a ferromagnetic substrate, and a thin-film coil insulating layer (hereinafter referred to as a coil insulating layer) and a thin-film magnetic core sequentially laminated on the insulating layer. It is configured by. FIG. 1 shows a flattening process of a coil insulating layer in the method of manufacturing a thin film magnetic head of the present invention.

平坦加工には、イオンビームミリング法を用いた。この
方法は数十ev以上に加速されたイオンを試料面に当て、
表面原子を外へたたき出すものであり、原理的にはあら
ゆる物質のエッチングができ、加工精度も高い。そし
て、エッチングレートは、イオンビーム入射角度に大き
く依存する。第1図中、11はコイル絶縁層段差を吸収す
るために塗布を行ったホトレジスト及びその段差Rc12は
コイル絶縁層及びその段差S、13はイオンビームミリン
グ後の薄膜コイル絶縁層及びその段差R′でありaはコ
イル絶縁層12の上面位置を示している。またコイル絶縁
層12のエッチングレートをγs,ホトレジスト11のエッ
チングレートをγoとする。今、ホトレジスト11が、図
中aの位置までエッチングが行なわれ、コイル絶縁層12
が露出して、第1図中bの位置からのエッチングプロセ
スを考える。これにより一般性は何ら失われるものでは
ない。
An ion beam milling method was used for flattening. This method applies ions accelerated to several tens of ev or more to the sample surface,
It knocks out surface atoms to the outside. In principle, any substance can be etched and the processing accuracy is high. Then, the etching rate largely depends on the incident angle of the ion beam. In FIG. 1, 11 is a photoresist applied to absorb the step of the coil insulating layer and its step R c 12 is the coil insulating layer and its step S, 13 is the thin film coil insulating layer after ion beam milling and its step R'is a and indicates the position of the upper surface of the coil insulating layer 12. The etching rate of the coil insulating layer 12 is γ s , and the etching rate of the photoresist 11 is γ o . Now, the photoresist 11 is etched to the position a in the figure, and the coil insulating layer 12 is removed.
Is exposed and the etching process from the position b in FIG. 1 is considered. This does not lose any generality.

コイル絶縁層12が、平坦加工の最終位置Cまでエッチン
グされる時間をtとすると次式が成立する。
When the time taken for the coil insulating layer 12 to be etched to the final position C for flattening is t, the following formula is established.

γs・t=S+α ……(1) αは、第1図中aの位置からCの位置までのコイル絶縁
層12の厚さからコイル絶縁層段差Sを減じたものであ
る。また、ホトレンジスト11が完全にエッチングされる
までの時間をt1とすると γo・t1=S−Rc ……(2) となり、レジストが完全にエッチングされた後、所定の
平坦加工最終位置Cまでは、γs・t2=R′+α ……
(3) となる。そして、時間の関係式は次式で示される。
γ s · t = S + α (1) α is obtained by subtracting the coil insulating layer step S from the thickness of the coil insulating layer 12 from the position a to the position C in FIG. Also, assuming that the time until the photoresist 11 is completely etched is t 1 , then γ o · t 1 = S−R c (2), and after the resist is completely etched, the predetermined flattening final position Up to C, γ s · t 2 = R ′ + α ....
(3) And the relational expression of time is shown by the following expression.

t=t1+t2 ……(4) 上記(1)〜(4)式よりtを消去すると次式が成立す
る。
t = t 1 + t 2 (4) When t is deleted from the above equations (1) to (4), the following equation holds.

R′=S−γs/γo・(S−Rc) ……(5) この時R′=0とおくと γs/γ=S/(S−Rc) ……(6) が成立する。これは、エッチング後の段差とコイル絶縁
層に及びホトレジスト11のエッチングレートに関する一
般式である。
R '= S-γ s / γ o · (S-R c ) ... (5) At this time, if R' = 0, then γ s / γ = S / (S-R c ) ... (6) To establish. This is a general formula for the step after etching, the coil insulating layer, and the etching rate of the photoresist 11.

第2図に本実施例の薄膜磁気ヘッドにおける製造プロセ
スの断面図を示す。第2図中において、1は強磁性体基
板、2はSiO2等からなる絶縁層、3はAl,Au等の薄膜コ
イル、4はSiO2等の薄膜コイル絶縁層、5は薄膜コイル
絶縁層4の上面の段差を吸収するために用いるゴム環化
系ホトレジスト、6は薄膜磁気コアである。尚、第4図
と同一の材質を示すものには同一の番号を付している。
FIG. 2 shows a sectional view of the manufacturing process in the thin film magnetic head of this embodiment. In FIG. 2, 1 is a ferromagnetic substrate, 2 is an insulating layer made of SiO 2 or the like, 3 is a thin film coil of Al, Au or the like, 4 is a thin film coil insulating layer of SiO 2 or the like, and 5 is a thin film coil insulating layer. A rubber cyclization type photoresist used to absorb the step difference on the upper surface of 4 and 6 is a thin film magnetic core. It should be noted that the same reference numerals are given to those showing the same material as in FIG.

以下本実施例の薄膜磁気ヘッドの製造方法について、第
2図を参照しながら順に説明を行う。
Hereinafter, a method of manufacturing the thin film magnetic head of this embodiment will be described in order with reference to FIG.

第2図aでは高透磁率強磁性体基板1上に絶縁層2を形
成し、同図bでは絶縁層2上にAuを形成し、微細エッチ
ング加工により薄膜コイル3を形成する。薄膜コイル3
上に薄膜コイル絶縁層4を形成した状態を第2図cに示
す。同図dでは、薄膜コイル絶縁層4の段差を低減する
ためのホトレジスト5を塗布する。ここで各パラメー
タ,コイル絶縁層4及びホトレジスト5の段差を(6)
式に代入、各々のエッチングレート比を算出する。更に
第3図に示す、イオンビーム入射角度とホトレジスト5
及びコイル絶縁層のエッチングレート比の特性を参照
し、平坦加工を行うイオンビーム入射角度を決定する。
In FIG. 2a, the insulating layer 2 is formed on the high magnetic permeability ferromagnetic substrate 1, and in FIG. 2b, Au is formed on the insulating layer 2 and the thin film coil 3 is formed by fine etching. Thin film coil 3
FIG. 2c shows a state in which the thin-film coil insulating layer 4 is formed on the top. In FIG. 3D, a photoresist 5 is applied to reduce the step difference of the thin film coil insulating layer 4. Here, the step of each parameter, the coil insulating layer 4 and the photoresist 5 is (6)
Substituting into the equation, each etching rate ratio is calculated. Further, as shown in FIG. 3, the ion beam incident angle and the photoresist 5 are shown.
Also, the ion beam incident angle for flattening is determined with reference to the characteristics of the etching rate ratio of the coil insulating layer.

今、コイル絶縁層4にSiO2を用いその段差Sが2.5μm
であり、ホトレジスト5にゴム環化系レジストを用い、
塗布後の段差Rcが0.16μmである試料を用いエッチング
を行った。この時(6)式を用いてレート比γs/γo
して0.92を算出した。上記算出された値0.92と第3図よ
り適正イオンビーム入射角度として75度を求め、このエ
ッチング角度でエッチングを行った結果、段差は0.1μ
m以下となり、初期値の約4%以下に平坦加工を行うこ
とを実現した。この状態を第2図eに示す。同図fは薄
膜磁気コア6を形成したものを示すもので、薄膜コイル
絶縁層4は、平坦加工においてほぼ上面が平坦に形成さ
れており、その上部に形成された薄膜磁気コア6は、透
磁率の劣化もなく記録再生の磁束が容易に流れ、記録再
生効率が約4dB向上した。
Now, SiO 2 is used for the coil insulating layer 4 and the step S is 2.5 μm.
And a rubber cyclization type resist is used for the photoresist 5,
Etching was performed using a sample having a step R c after coating of 0.16 μm. At this time, 0.92 was calculated as the rate ratio γ s / γ o using the equation (6). From the calculated value of 0.92 and Fig. 3, as a proper ion beam incident angle of 75 degrees, the etching was performed at this etching angle.
m or less, and it was possible to perform flattening to about 4% or less of the initial value. This state is shown in FIG. 2e. FIG. 6F shows the thin film magnetic core 6 formed. The thin film coil insulating layer 4 has a flat upper surface formed by flattening, and the thin film magnetic core 6 formed on the upper surface of the thin film coil insulating layer 4 is transparent. The magnetic flux for recording / reproducing easily flows without deterioration of magnetic susceptibility, and the recording / reproducing efficiency is improved by about 4 dB.

また、本実施例においては、エッチング後の薄膜コイル
段差R′を薄膜コイル絶縁層4及びホトレジスト5のエ
ッチングレート比を算出して、エッチング条件を決定し
ていたが、塗布後のホトレジスト5の段差を制御するこ
とで、イオンビーム入射角度θを、希望する値に設定す
ることも可能である。従来、等速エッチングレートのイ
オンビーム入射角度のみで平坦加工を行っていた場合に
比べると、より汎用性を持ち製造ばらつきにも対応でき
る平坦加工を行うことが可能であり、その平坦特性も良
好な結果が得られ、薄膜磁気ヘッドの記録再生効率向上
のための有効な製造方法である。
In the present embodiment, the etching condition is determined by calculating the etching rate ratio of the thin film coil insulating layer 4 and the photoresist 5 to the thin film coil step R ′ after etching, but the step of the photoresist 5 after coating is determined. It is also possible to set the ion beam incident angle θ to a desired value by controlling Compared to the case where flattening was performed only with the ion beam incident angle with a constant etching rate, it is possible to perform flattening that is more versatile and can cope with manufacturing variations, and its flatness characteristics are also good. It is an effective manufacturing method for improving the recording / reproducing efficiency of the thin film magnetic head.

なお、本実施例では、単体の高透磁率基板を用いている
が、基板として非磁性基板上に高透磁率材料薄膜を形成
したものを用いても良い。更に、エッチング過程におい
てイオンビームミリング装置を用いたが、他にドライエ
ッチング,プラズマエッチングを用いた場合も、同様で
ある。この場合CF4等導入するガス圧等を制御すること
によってもb式を成立すれば、平坦化加工を行えるもの
である。
In this embodiment, a single high magnetic permeability substrate is used, but a non-magnetic substrate on which a high magnetic permeability material thin film is formed may be used as the substrate. Further, although the ion beam milling device was used in the etching process, the same applies when dry etching or plasma etching is used. In this case, the flattening process can be performed if the expression b is satisfied by controlling the gas pressure of CF 4 or the like.

発明の効果 本発明の薄膜磁気ヘッドの製造方法は、薄膜コイル絶縁
層の平坦化加工において、次に示す各パラメータから一
般式を導出した。すなわち薄膜コイル絶縁層及びホトレ
ジスト塗布後の段差を各々S,Rc,イオンビーム入射角度
θにおける薄膜コイル絶縁層及びホトレジストのエッチ
ングレートを各々γs,γo、そしてエッチング後段差を
R′とすると、次式が成立する。R′=S−γs/γ
o(S−Rc)、またR′=0とおくとγs/γo=S/(S
−Rc)となる。
EFFECTS OF THE INVENTION In the method of manufacturing a thin film magnetic head of the present invention, a general formula is derived from the following parameters in the flattening process of the thin film coil insulating layer. That is, assuming that the thin-film coil insulating layer and the step after applying the photoresist are S, R c , the etching rates of the thin-film coil insulating layer and the photoresist at the ion beam incident angle θ are γ s and γ o , respectively, and the step after etching is R ′. , The following equation holds. R ′ = S−γ s / γ
o (S−R c ), and R ′ = 0, γ s / γ o = S / (S
−R c ).

上式を用い、測定データーを上式に代入エッチング加工
におけるイオンビーム入射角度などのエッチング条件を
決定し、平坦加工を行うことで、製造ばらつきにも対応
が可能な、かつ良好な平坦特性を実現できる。そして、
上記薄膜コイル絶縁層の上部に形成される薄膜磁気コア
形状も平坦で磁束が流れ易いものであり、記録効率を著
しく向上させることができる。
By using the above formula and substituting the measured data into the above formula, determining the etching conditions such as the ion beam incident angle in the etching process and performing flattening, it is possible to cope with manufacturing variations and achieve good flatness characteristics. it can. And
The shape of the thin-film magnetic core formed on the thin-film coil insulating layer is also flat and allows magnetic flux to easily flow, thus significantly improving recording efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における薄膜磁気ヘッドの製
造方法の薄膜コイル絶縁層の平坦化加工模式図、第2図
は同本実施例の薄膜磁気ヘッドの製造方法におけるプロ
セスの断面図、第3図はイオンビームミリング法におけ
るイオンビーム入射角度と薄膜コイル絶縁層であるSiO2
とホトレジストのエッチングレート比の特性図、第4図
は従来の薄膜磁気ヘッドの製造プロセスの断面図であ
る。 1……高透磁率強磁性体基板、2……絶縁層、3……薄
膜コイル、4……薄膜コイル絶縁層、5……ホトレジス
ト、6……薄膜磁気コア、11……ホトレジスト、12……
薄膜コイル絶縁層、13……エッチング後における薄膜コ
イル絶縁層。
FIG. 1 is a schematic diagram of a flattening process of a thin film coil insulating layer in a method of manufacturing a thin film magnetic head according to an embodiment of the present invention, and FIG. 2 is a sectional view of a process in a method of manufacturing a thin film magnetic head according to the same embodiment. Figure 3 shows the ion beam incident angle and the thin-film coil insulation layer SiO 2 in the ion beam milling method.
FIG. 4 is a characteristic view of the etching rate ratio of photoresist and FIG. 4, and FIG. 4 is a sectional view of a conventional thin film magnetic head manufacturing process. 1 ... High permeability ferromagnetic substrate, 2 ... Insulating layer, 3 ... Thin film coil, 4 ... Thin film coil insulating layer, 5 ... Photoresist, 6 ... Thin film magnetic core, 11 ... Photoresist, 12 ... …
Thin film coil insulation layer, 13 ... Thin film coil insulation layer after etching.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−227183(JP,A) 特開 昭61−222010(JP,A) 特開 昭61−175919(JP,A) 特開 昭59−112416(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-227183 (JP, A) JP 61-222010 (JP, A) JP 61-175919 (JP, A) JP 59- 112416 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高透磁率強磁性体基板上に絶縁層を形成
し、上記絶縁層上に薄膜コイル及び、上記薄膜コイル絶
縁層を順次形成し、上記薄膜コイル絶縁層上にホトレジ
ストを塗布し、エッチングを行なって薄膜磁気コアを形
成するに際し、上記薄膜コイル絶縁層の平坦化加工で、
上記薄膜コイル絶縁層の段差をS,エッチングレートをγ
s,平坦化加工に用いるホトレジストの塗布後の段差をR
c,エッチングレートをγoとしたときγs/γo=S/(S
−Rc)なる関係式が成立するエッチング条件でエッチン
グを行い平坦加工を行うことを特徴とする薄膜磁気ヘッ
ドの製造方法。
1. An insulating layer is formed on a high magnetic permeability ferromagnetic substrate, a thin film coil and the thin film coil insulating layer are sequentially formed on the insulating layer, and a photoresist is applied on the thin film coil insulating layer. When flattening the thin film coil insulating layer when forming a thin film magnetic core by etching,
The step of the thin film coil insulation layer is S, and the etching rate is γ
s , R is the step difference after applying the photoresist used for planarization
c , and the etching rate is γ o γ s / γ o = S / (S
-R c ) A method for manufacturing a thin film magnetic head, characterized in that etching is performed and flattening is performed under etching conditions that satisfy the relational expression.
【請求項2】エッチング方法として、加速されたイオン
を試料面に当て、上記試料表面原子をエッチングするイ
オンビームミリング法を用い、γs/γo=S(S−Rc
が成立するように、イオンビームの入射角度を制御して
平坦化加工を行うことを特徴とする特許請求の範囲第1
項記載の薄膜磁気ヘッドの製造方法。
2. An ion beam milling method in which accelerated ions are applied to the sample surface and the sample surface atoms are etched is used as an etching method, and γ s / γ o = S (S−R c ).
The flattening process is performed by controlling the incident angle of the ion beam so that
3. A method of manufacturing a thin film magnetic head according to the item.
JP62020839A 1987-01-30 1987-01-30 Method of manufacturing thin film magnetic head Expired - Fee Related JPH0766498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020839A JPH0766498B2 (en) 1987-01-30 1987-01-30 Method of manufacturing thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020839A JPH0766498B2 (en) 1987-01-30 1987-01-30 Method of manufacturing thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS63188812A JPS63188812A (en) 1988-08-04
JPH0766498B2 true JPH0766498B2 (en) 1995-07-19

Family

ID=12038243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020839A Expired - Fee Related JPH0766498B2 (en) 1987-01-30 1987-01-30 Method of manufacturing thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH0766498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744400A (en) * 1996-05-06 1998-04-28 Accord Semiconductor Equipment Group Apparatus and method for dry milling of non-planar features on a semiconductor surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222010A (en) * 1985-03-27 1986-10-02 Fuji Photo Film Co Ltd Flattening method
JPH0718024B2 (en) * 1985-03-29 1995-03-01 富士写真フイルム株式会社 Flattening method

Also Published As

Publication number Publication date
JPS63188812A (en) 1988-08-04

Similar Documents

Publication Publication Date Title
JPS62245509A (en) Manufacture of thin film magnetic head
US4614563A (en) Process for producing multilayer conductor structure
US4971896A (en) Method for forming thin film pattern and method for fabricating thin film magnetic head using the same
JPH0766498B2 (en) Method of manufacturing thin film magnetic head
JP2005025915A (en) Gmr-reproducing head and manufacturing method therefor
JP2740698B2 (en) Thin film magnetic head
JP2517479B2 (en) Method of manufacturing thin film magnetic head
JPS5975422A (en) Thin film magnetic head
JP2002197612A (en) Method for forming embedded pattern, and method for manufacturing magnetic head
JPS5963706A (en) Magnetic thin film body
JPH0718024B2 (en) Flattening method
JPH01169713A (en) Thin film magnetic head
JPS5893327A (en) Minute processing method
JPS59104718A (en) Production of thin film magnetic head
JPS62219215A (en) Thin film magnetic head and its production
JPH04102208A (en) Manufacture of thin film magnetic head
JP2574260B2 (en) Thin film magnetic head
JPH0370848B2 (en)
JPS6299910A (en) Manufacture of lower magnetic core of thin film magnetic head
JPS5898821A (en) Production for thin film magnetic head
JPS6320710A (en) Production of thin film magnetic head
JPS6115492B2 (en)
JPS6217399B2 (en)
JPH04119512A (en) Manufacture of thin film magnetic head
JPS61276208A (en) Manufacture of coil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees