JPH0765109B2 - Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation - Google Patents

Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Info

Publication number
JPH0765109B2
JPH0765109B2 JP2056333A JP5633390A JPH0765109B2 JP H0765109 B2 JPH0765109 B2 JP H0765109B2 JP 2056333 A JP2056333 A JP 2056333A JP 5633390 A JP5633390 A JP 5633390A JP H0765109 B2 JPH0765109 B2 JP H0765109B2
Authority
JP
Japan
Prior art keywords
steel sheet
electron beam
scanning
iron loss
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2056333A
Other languages
Japanese (ja)
Other versions
JPH03260022A (en
Inventor
征夫 井口
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP2056333A priority Critical patent/JPH0765109B2/en
Publication of JPH03260022A publication Critical patent/JPH03260022A/en
Publication of JPH0765109B2 publication Critical patent/JPH0765109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性珪素鋼板に関し、とく
に鋼板表面上の被膜を地鉄に圧入することによって磁区
の細分化をはかり、鉄損を低減しようとするものであ
る。
Description: TECHNICAL FIELD The present invention relates to a unidirectional silicon steel sheet having a low iron loss, and in particular, a magnetic domain is subdivided by press-fitting a coating on the surface of the steel sheet into base iron. It is intended to reduce iron loss.

(従来の技術) 一方向性珪素鋼板は製品の2次再結晶粒をゴス方位に高
度に集積させ、また鋼板表面上にはフォルステライト質
被膜を形成し、さらにその上に熱膨張係数の小さい絶縁
被膜を被成したもので、厳格な制御を必要とする複雑、
多岐にわたる工程を経て製造される。
(Prior Art) In a unidirectional silicon steel sheet, secondary recrystallized grains of a product are highly integrated in a Goss orientation, and a forsterite coating is formed on the surface of the steel sheet, and a thermal expansion coefficient is small on the forsterite coating. It is an insulating coating, and requires complicated control,
It is manufactured through various processes.

このような一方向性珪素鋼板は、主として変圧器、その
他電気機器の鉄心として使用されており、磁気特性とし
て製品の磁束密度(B10値で代表される)が高く、鉄損
(W17/50値で代表される)が低いこと、さらに表面性
状が良好な絶縁被膜を有することが要求されている。
Such a unidirectional silicon steel sheet is mainly used as an iron core for transformers and other electric devices, and has a high magnetic flux density (represented by a B 10 value) of a product as a magnetic property, and an iron loss (W 17 / (Represented by 50 values) is low, and further, it is required to have an insulating coating having good surface properties.

とくにエネルギー危機を境にして電力損失の低減を至上
とする要請が著しく強まり、変圧器用鉄心材料としての
鉄損のより低い一方向性珪素鋼板の必要性は増々重要な
ものとなってきている。
In particular, the demand for reduction of power loss has been remarkably increased at the border of the energy crisis, and the need for a unidirectional silicon steel sheet having a lower iron loss as an iron core material for a transformer is becoming more and more important.

さて一方向性珪素鋼板の鉄損改善の歴史は、ゴス方位2
次再結晶集合組織の改善の歴史であると言っても過言で
はない。このような2次再結晶粒を制御する方法とし
て、AlN,MnS及びMnSe等の1次再結晶粒成長抑制剤、い
わゆるインヒビターを用いてゴス方位2次再結晶粒を優
先成長させる方法が実施されている。
Now, the history of iron loss improvement in unidirectional silicon steel sheet is Goss orientation 2
It is no exaggeration to say that this is the history of improvement in secondary recrystallization texture. As a method for controlling such secondary recrystallized grains, a method for preferentially growing secondary recrystallized grains of Goss orientation using a primary recrystallized grain growth inhibitor such as AlN, MnS and MnSe, a so-called inhibitor is implemented. ing.

一方これら2次再結晶集合組織を制御する方法とは全く
異なる方法、すなわち鋼板表面にレーザー照射{市山
正:鉄と鋼,69(1983),P.895、特公昭57−2252号、同5
7−53419号、同58−24605号、同58−24606号各公報参
照}又はプラズマ照射{特開昭62−96617号、同62−151
511号、同62−151516号および同62−151517号各公報参
照}により局部微小歪を導入して磁区を細分化し、もっ
て鉄損を低下する画期的な方法が提案された。しかしな
がらこれらの方法により得られた鋼板は、高温域まで加
熱すると微小歪が消失するため、高温の歪取り焼鈍を施
す巻鉄心トランス用材料には使用できないという欠点が
ある。
On the other hand, a method completely different from the method for controlling these secondary recrystallization textures, that is, laser irradiation on the surface of a steel sheet {Tadashi Ichiyama: Iron and Steel, 69 (1983), P.895, JP-B-57-2252, ibid. Five
7-53419, 58-24605, 58-24606, respectively} or plasma irradiation {Japanese Patent Laid-Open No. 62-96617, 62-151
No. 511, No. 62-151516, and No. 62-151517), an epoch-making method has been proposed in which local microstrain is introduced to subdivide magnetic domains and thereby reduce iron loss. However, the steel sheet obtained by these methods has a drawback that it cannot be used as a material for a wound core transformer that is subjected to high temperature strain relief annealing because minute strain disappears when heated to a high temperature range.

このような高温の歪取り焼鈍を施しても鉄損が劣化しな
い方法が提案されている。例えば、仕上焼鈍板の表面に
溝もしくはセレーションを形成する方法(特公昭50−35
679号、特開昭59−28525号及び同59−197520号各公報参
照)、仕上焼鈍板の表面に微再結晶領域を形成する方法
(特開昭56−130454号公報参照)、フォルステライト質
被膜に異厚或いは欠損領域を形成する方法(特開昭60−
92479号、同60−92480号、同60−92481号及び同60−258
479号各公報参照)、地鉄中、フォルステライト質被膜
中又は張力絶縁被膜中に異組成領域を形成する方法(特
開昭60−103124号及び同60−103182号各公報参照)、等
である。
A method has been proposed in which iron loss does not deteriorate even if such high temperature strain relief annealing is performed. For example, a method of forming grooves or serrations on the surface of a finish annealed plate (Japanese Patent Publication No. 50-35).
679, JP-A-59-28525 and JP-A-59-197520), a method for forming a fine recrystallized region on the surface of a finish annealed plate (refer to JP-A-56-130454), forsterite A method for forming a different thickness or defective region in the coating (Japanese Patent Laid-Open No. 60-
92479, 60-92480, 60-92481 and 60-258
No. 479), a method of forming a different composition region in a base metal, a forsterite coating, or a tension insulating coating (see JP-A-60-103124 and 60-103182). is there.

しかしながらこれらの方法はいずれも工程が複雑となる
わりには鉄損の低減効果は少なく、また製造コストが高
いこともあって、工業的に採用されるには至っていな
い。
However, all of these methods have not been industrially adopted because the effect of reducing iron loss is small in spite of the complicated process and the manufacturing cost is high.

そこで発明者は、電子ビームを利用して、鋼板表面の被
膜を地鉄に圧入して磁区の細分化をはかることによっ
て、歪取り焼鈍を施しても磁区細分化の効果が消失しな
い手法を開発し、先に特願平1−27578号明細書にて提
案した。
Therefore, the inventor has developed a method in which the effect of magnetic domain subdivision does not disappear even if strain relief annealing is performed by press-fitting the coating film on the surface of the steel plate into the base metal by using electron beams to subdivide the magnetic domains. However, it was previously proposed in the specification of Japanese Patent Application No. 1-257578.

(発明が解決しようとする課題) この発明は、上記した、電子ビームによって鋼板表面の
被膜を地鉄に圧入する処理の改善に係り、この処理をよ
り有効かつ確実に行う方途について提案することを目的
とする。
(Problems to be Solved by the Invention) The present invention relates to an improvement in the above-described process of press-fitting a coating film on the surface of a steel sheet into a base metal by an electron beam, and proposes a method of more effectively and surely performing this process. To aim.

(課題を解決するための手段) この発明は、仕上焼鈍を施したフォルステライト質被膜
付、又はフォルステライト質被膜上にさらに絶縁被膜を
そなえる一方向性珪素鋼板につき、高電圧および小電流
にて発生させた電子ビームを鋼板の圧延方向を横切る向
きに走査し、鋼板表面上の被膜を局所的に地鉄に圧入し
て微小圧入領域を形成するに当たり、 鋼板の圧延方向と直交する向きに行う電子ビームの走査
を、鋼板の圧延方向へ間隔を置いて繰り返す際、各電子
ビームの走査向きを同一方向に統一し、微小圧入領域を
圧延方向と直交する向きに導入することを特徴とする電
子ビーム照射による一方向性けい素鋼板の鉄損低減方法
である。
(Means for Solving the Problem) The present invention relates to a unidirectional silicon steel sheet with a forsterite coating that has been subjected to finish annealing, or a forsterite coating further having an insulating coating, at high voltage and small current. The generated electron beam is scanned in a direction transverse to the rolling direction of the steel sheet, and the coating on the surface of the steel sheet is locally press-fitted into the base metal to form a minute press-fit region, in the direction orthogonal to the rolling direction of the steel plate. When the scanning of the electron beam is repeated at intervals in the rolling direction of the steel sheet, the scanning directions of the respective electron beams are unified in the same direction, and the minute press-fitting region is introduced in a direction orthogonal to the rolling direction. This is a method of reducing iron loss of unidirectional silicon steel sheet by beam irradiation.

この発明で対象とする一方向性珪素鋼板は、その表面上
にフォルステライト被膜をそなえているか、さらにフォ
ルステライト被膜上に絶縁被膜を形成したものが適合す
る。
The unidirectional silicon steel sheet targeted by the present invention is suitable if it has a forsterite coating on its surface or has an insulating coating formed on the forsterite coating.

なおフォルステライト被膜および絶縁被膜を微小領域に
おいて鋼板の幅方向へ地鉄内部の奥深くまで圧入して得
た微小圧入領域に起因した磁区細分化による鉄損改善効
果を歪取り焼鈍によっても消失させないためには、高電
圧および小電流の電子ビーム(以下EBと示す)を使用し
てはじめて可能になる。すなわち、特に高電圧および小
電流のEBを使用した場合には、他の方法(レーザー、プ
ラズマ、メカニカルな手法等)にくらべ、深さ方向への
透過力が強く、しかも最も狭い幅で浸透するたため、下
地被覆および絶縁被膜を消失することなく、地鉄へ押込
めることが可能となる。
In addition, in order to prevent the loss of iron loss improvement effect due to the magnetic domain refinement due to the fine press-fitting region obtained by press-fitting the forsterite coating and the insulating coating in the microregion in the width direction of the steel plate deeply inside the base steel, even by strain relief annealing. For the first time, it becomes possible only by using a high voltage and small current electron beam (hereinafter referred to as EB). In other words, when EB with a high voltage and a small current is used, the penetrating power in the depth direction is stronger than other methods (laser, plasma, mechanical method, etc.), and it penetrates in the narrowest width. Therefore, the base coating and the insulating coating can be pushed into the base metal without disappearing.

さらにこの発明の素材である含珪素鋼としては、従来公
知の成分組成のものいずれもが適合するが、代表組成を
掲げると次のとおりである。
Further, as the silicon-containing steel which is the material of the present invention, any of the conventionally known component compositions are suitable, and the representative compositions are as follows.

C:0.01〜0.10% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達に有用な元素であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.10%を超
えて含有されるとかえってゴス方位に乱れが生じるので
上限は0.10%程度が好ましい。
C: 0.01 to 0.10% C is an element useful not only for uniform refinement of the structure during hot rolling and cold rolling but also for development of Goss orientation, and at least
Addition of 0.01% or more is preferable. However, if the content exceeds 0.10%, the Goss orientation is rather disordered, so the upper limit is preferably about 0.10%.

Si:2.0〜4.5% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.5%を上回ると冷延性が損なわれ、一方2.0%に満
たないと比抵抗が低下するだけでなく、2次再結晶・純
化のために行われる最終高温焼鈍中にα−γ変態によっ
て結晶方位のランダムを生じ、十分な鉄損改善効果が得
られないので、Si量は2.0〜4.5%程度とするのが好まし
い。
Si: 2.0 to 4.5% Si increases the resistivity of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold ductility is impaired, while if it is less than 2.0%, the resistivity decreases. However, during the final high temperature annealing performed for secondary recrystallization and purification, the α-γ transformation causes random crystallographic orientation, and a sufficient iron loss improving effect cannot be obtained. Therefore, the Si content is 2.0 to 4.5%. It is preferably about the same.

Mn:0.02〜0.12% Mnは、熱間脆化するため少なくとも0.02%程度を必要と
するが、あまりに多すぎると磁気特性を劣化させるので
上限は0.12%程度に定めるの好ましい。
Mn: 0.02 to 0.12% Mn needs to be at least about 0.02% for hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%.

インヒビターとしては、いわゆるMnS,MnSe系とAIN系と
がある。MnS,MnSe系の場合は、 Se,Sのうちから選ばれる少なくとも1種:0.005〜0.06% Se,Sはいずれも、方向性けい素鋼板の2次再結晶を制御
するインヒビターとして有力な元素である。抑制力確保
の観点からは、少なくとも0.005%程度を必要とする
が、0.06%を超えるとその効果が損なわれるので、その
下限、上限はそれぞれ0.01%,0.06%程度とするのが好
ましい。
As the inhibitor, there are so-called MnS, MnSe type and AIN type. In the case of MnS and MnSe, at least one selected from Se and S: 0.005 to 0.06% Se and S are all effective elements as inhibitors that control the secondary recrystallization of grain-oriented silicon steel sheets. is there. From the viewpoint of securing the suppression power, at least about 0.005% is required, but if it exceeds 0.06%, the effect is impaired, so the lower and upper limits are preferably set to about 0.01% and 0.06%, respectively.

AlN系の場合は、 Al:0.05〜0.10%,N:0.004〜0.015% AlおよびNの範囲についても、上述したMnS,MnSe系の場
合と同様な理由により、上記の範囲に定めた。ここに上
記したMnS,MnSe系およびAlN系はそれぞれ併用が可能で
ある。
In the case of AlN system, Al: 0.05 to 0.10%, N: 0.004 to 0.015% Al and N ranges are set to the above range for the same reason as in the case of MnS and MnSe systems described above. The above-mentioned MnS, MnSe-based and AlN-based can be used together.

インヒビター成分としては上記したS,Se,Alの他、Cu,S
n,Cr、Ge,Sb,Mo,Te,BiおよびPなども有利に適合するの
で、それぞれ少量併せて含有させることもできる。ここ
に上記成分の好適添加範囲はそれぞれ、Cu,Sn,Cr:0.01
〜0.15%、Ge,Sb,Mo,Te,Bi:0.005〜0.1%、P:0.01〜0.2
%であり、これらの各インヒビター成分についても、単
独使用および複合使用いずれもが可能である。
As the inhibitor component, in addition to the above S, Se, Al, Cu, S
Since n, Cr, Ge, Sb, Mo, Te, Bi, P, etc. are also advantageously suited, a small amount of each can be included. Here, the preferred addition range of each of the above components is Cu, Sn, Cr: 0.01
~ 0.15%, Ge, Sb, Mo, Te, Bi: 0.005-0.1%, P: 0.01-0.2
%, And each of these inhibitor components can be used alone or in combination.

(作 用) 次にこの発明について実験例に基いて詳細に述べる。(Operation) Next, the present invention will be described in detail based on experimental examples.

C:0.048wt%(以下単に%と示す),Si:3.42%,Mn:0.072
%,Se:0.021%,Sb:0.027%,Mo:0.012%を含み残部実質
的にFeよりなる珪素鋼スラブを、1390℃で4時間加熱
後、熱間圧延して2.4mm厚の熱延板とした後、1000℃で
3分の中間焼鈍をはさむ2回の冷間圧延を施して0.20mm
厚の最終冷延板とした。ついで825℃の湿水素中で脱炭
1次再結晶焼鈍を施した後、鋼板表面上にMgOを主成分
とする焼鈍分離剤をスラリー塗布し、その後850℃で50
時間の2次再結晶焼鈍を行ってゴス方位2次再結晶粒を
優先成長させた後、1200℃の乾水素中で5時間の純化焼
鈍を施した。次いで鋼板表面上にリン酸塩とコロイダル
シリカを主成分とする絶縁被膜を被成した後、150kV,1.
3mAで発生させた0.12mmφのEBを、下記の〜の条件
に従って圧延方向と直角方向に走査して照射し、かつこ
の照射を圧延方向へ5mmの間隔で繰り返し施し、その後8
00℃で3時間の歪取り焼鈍を行った。また比較としてEB
照射を施さない場合についても、同様の実験を行った。
C: 0.048wt% (hereinafter simply referred to as%), Si: 3.42%, Mn: 0.072
%, Se: 0.021%, Sb: 0.027%, Mo: 0.012% and the balance is a silicon steel slab consisting essentially of Fe, heated at 1390 ° C for 4 hours, then hot-rolled to a 2.4 mm thick hot-rolled sheet. And then cold rolled twice at 1000 ° C with intermediate annealing for 3 minutes to 0.20mm
It was a thick final cold-rolled sheet. Then, after decarburizing primary recrystallization annealing in wet hydrogen at 825 ° C, an annealing separator containing MgO as a main component is slurry-coated on the surface of the steel sheet, and then at 850 ° C for 50 minutes.
After performing secondary recrystallization annealing for a period of time to preferentially grow Goss-direction secondary recrystallized grains, purification annealing was performed for 5 hours in dry hydrogen at 1200 ° C. Then, after forming an insulating coating mainly composed of phosphate and colloidal silica on the surface of the steel sheet, 150kV, 1.
0.12 mmφ EB generated at 3 mA was scanned and irradiated in the direction perpendicular to the rolling direction according to the following conditions, and this irradiation was repeatedly applied at intervals of 5 mm in the rolling direction, and then 8
Strain relief annealing was performed at 00 ° C for 3 hours. For comparison, EB
The same experiment was performed even when irradiation was not performed.

記 走査速度:6m/min、走査方向:両方向(第2図参
照)、ドット状照射:間隔300μm(第3図(a)参
照) 走査速度:6m/min、走査方向:一方向(第1図参
照)、ドット状照射:間隔300μm(第3図(a)参
照) 走査速度:6m/min、走査方向:両方向(第2図参
照)、線状照射(第3図(b)参照) 走査速度:6m/min、走査方向:一方向(第1図参
照)、線状照射(第3図(b)参照) 走査速度:6m/min、走査方向:両方向(第2図参
照)、ジグザグ状照射:X方向間隔300μm,Y方向間隔300
μm(第3図(c)参照) 走査速度:6m/min、走査方向:一方向(第1図参
照)、ジグザグ状照射:X方向間隔300μm,Y方向間隔300
μm(第3図(c)参照) なお第1及び2図中、符号1はEBの走査線、2の矢印は
鋼板の進行(圧延)方向を示す。
Note Scanning speed: 6 m / min, scanning direction: both directions (see Fig. 2), dot irradiation: 300 μm interval (see Fig. 3 (a)) Scanning speed: 6 m / min, scanning direction: one direction (Fig. 1) Dot-shaped irradiation: 300 μm interval (see FIG. 3 (a)) Scanning speed: 6 m / min, scanning direction: both directions (see FIG. 2), linear irradiation (see FIG. 3 (b)) Scanning speed : 6m / min, scanning direction: one direction (see Fig. 1), linear irradiation (see Fig. 3 (b)) scanning speed: 6m / min, scanning direction: both directions (see Fig. 2), zigzag irradiation : X-direction spacing 300 μm, Y-direction spacing 300
μm (See FIG. 3 (c)) Scanning speed: 6 m / min, Scanning direction: One direction (See FIG. 1), Zigzag irradiation: X direction interval 300 μm, Y direction interval 300
μm (see FIG. 3 (c)) In FIGS. 1 and 2, reference numeral 1 indicates a scanning line of EB, and arrow 2 indicates a traveling (rolling) direction of the steel sheet.

かくして得られた歪取り焼鈍後の鋼板の磁気特性を、第
1表に示す。
The magnetic properties of the steel sheet thus obtained after strain relief annealing are shown in Table 1.

同表から明らかなように、EBを照射しない鋼板は、鉄損
17/50が0.05〜0.12W/kgと大幅に向上する。これは鋼
板表面のフォルステライト質被膜および絶縁被膜が地鉄
(ゴス方位を有する2次再結晶粒)へ微小領域において
深さ方向に圧入されたことによって、歪取り焼鈍を施し
ても有効な磁区細分化核として作用し、磁区細分化が可
能となったことによる。
As is clear from the table, the iron loss W 17/50 of the steel sheet not irradiated with EB is significantly improved to 0.05 to 0.12 W / kg. This is because the forsterite coating and the insulating coating on the surface of the steel sheet were pressed into the base iron (secondary recrystallized grains having Goss orientation) in the depth direction in the minute region, and thus effective magnetic domains were obtained even after strain relief annealing. It acts as a subdivision nucleus, and it is possible to subdivide magnetic domains.

また鉄損の向上は、EBの照射条件によって異なることも
わかる。
It can also be seen that the improvement in iron loss depends on the EB irradiation conditions.

すなわち照射条件、及びの両方向走査を経た鋼板
は、照射条件、及びの一方向走査を経た鋼板に比
較して、鉄損の低下が0.04〜0.05W/kg程度少ない。
That is, the steel sheet that has undergone irradiation conditions and bidirectional scanning has a decrease in iron loss of approximately 0.04 to 0.05 W / kg compared to the steel sheet that has undergone irradiation conditions and one-way scanning.

EBの走査を両方向とした場合は、第2図に示す。鋼板の
進行(圧延)方向に対して直角の方向に走査方向を維持
することが技術的に困難である。
FIG. 2 shows the case where the EB scanning is performed in both directions. It is technically difficult to maintain the scanning direction at a right angle to the traveling (rolling) direction of the steel sheet.

なぜなら、EBの走査を両方向で行うことは、第2図に示
したように、鋼板幅方向において、一方から他方に行っ
たEBの走査(往路)を、一度鋼板長手方向にずらして他
方から一方に行う(復路)ことであり、その走査形態は
通常台形状になる。つまり、往路と復路の走査線が平行
配置とならないため、往路と復路の走査線の間で、鋼板
進行方向に対する角度、すなわち鋼板長手方向における
走査線間隔にずれが生じて、磁区の細分化が適正に行わ
れずに、鉄損の向上度が少なくなると考えられる。
Because the EB scanning is performed in both directions, as shown in FIG. 2, the EB scanning (outward path) performed from one side to the other side in the steel plate width direction is shifted once in the steel plate longitudinal direction and then the other side is moved from the other side. (Return pass), and the scanning form is usually trapezoidal. In other words, since the forward and backward scan lines are not arranged in parallel, the angle between the forward and backward scan lines with respect to the steel plate traveling direction, that is, the scan line interval in the steel plate longitudinal direction is displaced, and the magnetic domains are subdivided. It is considered that the degree of improvement of iron loss is reduced without proper performance.

特に、鋼板の両面に照射を行う場合は、鋼板の表裏面で
EB走査線の鋼板進行方向にに対する角度のずれが大きく
なるため、鉄損の向上度はより少なくなる。
Especially when irradiating both sides of the steel plate,
Since the angle deviation of the EB scanning line with respect to the steel sheet traveling direction becomes large, the degree of improvement in iron loss becomes smaller.

これに対して、第1図に示すようにEBの走査を一方向と
した場合は、鋼板の圧延(進行)方向に対して直角の方
向に走査方向を維持すること、つまりEBの各走査線を相
互に平行に配置することが可能であり、各走査線間での
鋼板進行方向に対する角度ずれは発生しないから、磁区
の細分化は充分に行われる。なおEBの一方向走査は、走
査後に一度走査始点に戻し再び同一方向に走査すること
で実現し、走査始点に戻す際の走査を超高速で行うこと
で鉄損への悪影響は回避できる。
On the other hand, as shown in FIG. 1, when the EB is scanned in one direction, the scanning direction should be maintained in a direction perpendicular to the rolling (progressing) direction of the steel sheet, that is, each scanning line of EB. Can be arranged in parallel with each other, and no angular deviation between the scanning lines with respect to the traveling direction of the steel plate occurs, so that the magnetic domains are sufficiently subdivided. One-way scanning of the EB is realized by returning to the scanning start point once after scanning and scanning again in the same direction, and adversely affecting the iron loss can be avoided by performing the scanning when returning to the scanning start point at an ultrahigh speed.

なお珪素鋼板の板厚方向(深さ方向)におけるEBの透過
力は、通常X線が大量発生する65kV以上の加速電圧にお
いて増大するため、この発明の効果を最大限に生かすに
は加速電圧を高く(65〜500kV)、加速電流を小さく
(0.001〜5mA)設定して用いることが重要であり、それ
により珪素鋼板の板厚方向への透過力が強くなる。さら
に磁区細分化を効率よく行うため、小径のEBを用いるこ
とによって照射領域を0.5mmφ以下の大きさにすること
が好ましい。さらにこのEB照射した後、その上に絶縁被
膜を施して、EB照射痕跡上の絶縁性をより強くしてもよ
いが、コストアップとなるため、通常は施さなくても充
分絶縁効果を発揮できる。
Since the EB penetrating force in the plate thickness direction (depth direction) of a silicon steel plate increases at an acceleration voltage of 65 kV or more where a large amount of X-rays are usually generated, the acceleration voltage should be set to maximize the effect of the present invention. It is important to use with high (65 to 500 kV) and small accelerating current (0.001 to 5 mA), which increases the penetrating power of the silicon steel sheet in the plate thickness direction. Further, in order to efficiently subdivide the magnetic domains, it is preferable to make the irradiation region have a size of 0.5 mmφ or less by using EB having a small diameter. Furthermore, after this EB irradiation, an insulating coating may be applied on top of this to increase the insulation on the EB irradiation trace, but this will increase the cost, so it is possible to exhibit a sufficient insulating effect even if it is not usually applied. .

さらにこの発明に従う鋼板は、積鉄心や巻鉄心に供する
ことが可能であるが、積鉄心材に供する場合は巻鉄心材
に比較して細い微小圧入領域の導入が必要なので、EB照
射条件は電流を小さく、走査間隔を広くすることが好ま
しい。一方巻鉄心材に供する場合のEB照射条件は、歪取
り焼鈍を施しても特性の劣化がないように、電流を若干
大きく、走査間隔を狭くして鋼板表面での微小圧入領域
の導入を促進することが好ましい。
Further, the steel sheet according to the present invention can be used for a laminated iron core or a wound iron core, but when it is used for a laminated iron core material, it is necessary to introduce a fine minute press-fitting region as compared with a wound iron core material, so the EB irradiation condition is current It is preferable that the scanning distance is small and the scanning interval is wide. On the other hand, the EB irradiation condition when used as a wound iron core material is that the current is slightly increased and the scanning interval is narrowed to promote the introduction of a micro press-fitted region on the steel plate surface so that the characteristics do not deteriorate even if strain relief annealing is performed. Preferably.

なおEBの一方向走査は、鋼板の進行(圧延)方向に等間
隔で規則正しく走査するときに特に有効であり、この手
法は磁気特性の向上のみならず、通常の冷延鋼板等に用
いられる局部熱処理等をはかる場合においても有利に適
合する。
The EB unidirectional scanning is particularly effective when scanning regularly (equally) in the direction of rolling (rolling) of the steel sheet. This method not only improves the magnetic properties, but also local areas used for ordinary cold-rolled steel sheets, etc. It is advantageously suitable for heat treatment and the like.

(実施例) 実施例1 (A) C:0.072%、Si:3.36%、Al:0.026%、S:0.028
%、Cu:0.98%、Sn:0.08%又は (B) C:0.045%、Si:3.39%、Mn:0.063%、Se:0.021
%、Sb:0.029%、Mo:0.012%をそれぞれ含有し残部実質
的にFeよりなる珪素鋼のフォルステライト質被膜付仕上
焼鈍板(0.20mm厚)に、EB装置を用いて圧延方向と直角
方向へ走査するEBを全て同一方向で走査し、EB照射を行
った。なおEB照射条件では、加速電圧:150kV,加速電流:
1.3mA,ビーム径:0.15mm,ビームスポットの中心間隔:300
μmおよび走査間隔:5mmでまたEB照射は鋼板の両面に施
した。
(Example) Example 1 (A) C: 0.072%, Si: 3.36%, Al: 0.026%, S: 0.028
%, Cu: 0.98%, Sn: 0.08% or (B) C: 0.045%, Si: 3.39%, Mn: 0.063%, Se: 0.021
%, Sb: 0.029%, Mo: 0.012%, and the balance consisting essentially of Fe, for the forsterite film-finished annealed sheet of silicon steel (0.20 mm thick), using the EB device and in the direction perpendicular to the rolling direction. All EBs to be scanned were scanned in the same direction to perform EB irradiation. Under EB irradiation conditions, acceleration voltage: 150 kV, acceleration current:
1.3mA, beam diameter: 0.15mm, beam spot center spacing: 300
μm and scanning interval: 5 mm, and EB irradiation was applied to both sides of the steel sheet.

処理後の製品に800℃で2時間の歪取り焼鈍を施したと
ころ、その磁気特性は次に示すとおりであった。
When the treated product was subjected to strain relief annealing at 800 ° C. for 2 hours, its magnetic properties were as shown below.

(A) B10=1.95T、W17/50=0.77W/kg (B) B10=1.92T、W17/50=0.78W/kg (発明の効果) この発明によれば、歪取り焼鈍によっても鉄損の劣化し
ない一方向性珪素鋼板を安定して製造することができ
る。
(A) B 10 = 1.95T, W 17/50 = 0.77W / kg (B) B 10 = 1.92T, W 17/50 = 0.78W / kg ( Effect of the Invention) According to the present invention, stress relief annealing By this, it is possible to stably manufacture a unidirectional silicon steel sheet in which iron loss is not deteriorated.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に従うEBの走査要領を示す模式図、 第2図は一般的なEBの走査要領を示す模式図、 第3図(a)はドット状のEB照射痕を示す模式図、 同図(b)は線状のEB照射痕を示す模式図、 同図(c)はジグザグ状のEB照射痕を示す模式図、 である。 1……EB走査線、2……鋼板の進行方向 1 is a schematic diagram showing an EB scanning procedure according to the present invention, FIG. 2 is a schematic diagram showing a general EB scanning procedure, and FIG. 3 (a) is a schematic diagram showing dot-like EB irradiation marks, FIG. 2B is a schematic diagram showing linear EB irradiation marks, and FIG. 3C is a schematic diagram showing zigzag EB irradiation marks. 1 ... EB scanning line, 2 ... steel plate traveling direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】仕上焼鈍を経たフォルステライト質被膜付
の一方向性珪素鋼板につき、高電圧および小電流にて発
生させた電子ビームを鋼板の圧延方法を横切る向きに走
査し、鋼板表面上の被膜を局所的に地鉄に圧入して微小
圧入領域を形成するに当たり、 鋼板の圧延方向と直交する向きに行う電子ビームの走査
を、鋼板の圧延方向へ間隔を置いて繰り返す際、各電子
ビームの走査向きを同一方向に統一することを特徴とす
る電子ビーム照射による一方向性けい素鋼板の鉄損低減
方法。
1. A unidirectional silicon steel sheet with a forsterite coating that has been subjected to finish annealing is scanned with an electron beam generated at a high voltage and a small current in a direction transverse to the rolling method of the steel sheet, When the coating is locally press-fitted into the base steel to form the micro-press-fitted region, the electron beam scanning performed in the direction orthogonal to the rolling direction of the steel sheet is repeated at intervals in the rolling direction of the steel sheet. A method for reducing iron loss in unidirectional silicon steel sheet by electron beam irradiation, which is characterized by unifying the scanning directions in the same direction.
【請求項2】仕上焼鈍を経たフォルステライト質被膜上
にさらに絶縁被膜をそなえる一方向性珪素鋼板につき、
高電圧および小電流にて発生させた電子ビームを鋼板の
圧延方向を横切る向きに走査し、鋼板表面上の被膜を局
所的に地鉄に圧入して微小圧入領域を形成するに当た
り、 鋼板の圧延方向と直交する向きに行う電子ビームの走査
を、鋼板の圧延方向へ間隔を置いて繰り返す際、各電子
ビームの走査向きを同一方向に統一することを特徴とす
る電子ビーム照射による一方向性けい素鋼板の鉄損低減
方法。
2. A unidirectional silicon steel sheet having an insulating coating further formed on the forsterite coating which has been subjected to finish annealing.
The electron beam generated by a high voltage and a small current is scanned across the rolling direction of the steel sheet, and the coating on the steel sheet surface is locally pressed into the base steel to form a micro press-fit area. One-way directional by electron beam irradiation characterized by unifying the scanning direction of each electron beam in the same direction when repeating electron beam scanning in the direction orthogonal to the direction at intervals in the rolling direction of the steel sheet. A method for reducing iron loss in plain steel sheets.
JP2056333A 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation Expired - Lifetime JPH0765109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056333A JPH0765109B2 (en) 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056333A JPH0765109B2 (en) 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Publications (2)

Publication Number Publication Date
JPH03260022A JPH03260022A (en) 1991-11-20
JPH0765109B2 true JPH0765109B2 (en) 1995-07-12

Family

ID=13024277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056333A Expired - Lifetime JPH0765109B2 (en) 1990-03-09 1990-03-09 Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation

Country Status (1)

Country Link
JP (1) JPH0765109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159847A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same
JP2014189832A (en) * 2013-03-27 2014-10-06 Jfe Steel Corp Production method of grain oriented silicon steel plate by high speed electron beam irradiation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953690B2 (en) * 2011-09-28 2016-07-20 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5642052B2 (en) * 2011-11-29 2014-12-17 三菱電機株式会社 Electron beam alloying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159847A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same
JP2014189832A (en) * 2013-03-27 2014-10-06 Jfe Steel Corp Production method of grain oriented silicon steel plate by high speed electron beam irradiation

Also Published As

Publication number Publication date
JPH03260022A (en) 1991-11-20

Similar Documents

Publication Publication Date Title
JP6319605B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US20160276081A1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
RU2610204C1 (en) Method of making plate of textured electrical steel
CN108699621A (en) The manufacturing method of orientation electromagnetic steel plate
JP5740854B2 (en) Oriented electrical steel sheet
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH0765109B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JP5888525B2 (en) Method for producing grain-oriented electrical steel sheet
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH04202627A (en) Method for irradiating electron beam
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet