JPH0765083B2 - Method for producing alloy powder for permanent magnet alloy - Google Patents

Method for producing alloy powder for permanent magnet alloy

Info

Publication number
JPH0765083B2
JPH0765083B2 JP61104358A JP10435886A JPH0765083B2 JP H0765083 B2 JPH0765083 B2 JP H0765083B2 JP 61104358 A JP61104358 A JP 61104358A JP 10435886 A JP10435886 A JP 10435886A JP H0765083 B2 JPH0765083 B2 JP H0765083B2
Authority
JP
Japan
Prior art keywords
powder
rare earth
oxide
less
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61104358A
Other languages
Japanese (ja)
Other versions
JPS62260008A (en
Inventor
実 遠藤
公穂 内田
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61104358A priority Critical patent/JPH0765083B2/en
Publication of JPS62260008A publication Critical patent/JPS62260008A/en
Publication of JPH0765083B2 publication Critical patent/JPH0765083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料として希土類酸化物を使用し、溶解を必
要としない希土類・鉄・ボロン系永久磁石合金用合金粉
末の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an alloy powder for a rare earth / iron / boron permanent magnet alloy, which uses a rare earth oxide as a raw material and does not require melting. is there.

〔従来の技術〕[Conventional technology]

R−Fe−B系永久磁石材料はR−Co系永久磁石材料より
も高い磁気特性が得られる新しい組成系として開発が進
んでいる。(特開昭59−46008号公報,59−64733号公報
及び59−8940号公報,M.Sagawa et al,J.Appl.Phys.55
(6)2083(1984)“New Material for Perwanent Magnet
s on a Base of Nd and Fe")。これによれば、例えばN
d15Fe77B8〔原子%,Nd(Fe0.910.095.67〕なる合金
で(BH)max〜35MGOe,iHc〜10KOeの磁気特性が得られ
る。
The R-Fe-B based permanent magnet material is under development as a new composition system that can obtain higher magnetic properties than the R-Co based permanent magnet material. (JP-A-59-46008, 59-64733 and 59-8940, M. Sagawa et al, J. Appl. Phys. 55.
(6) 2083 (1984) “New Material for Perwanent Magnet
s on a Base of Nd and Fe ").
d 15 Fe 77 B 8 [atomic%, Nd (Fe 0.91 B 0.09 ) 5.67 ] composed of an alloy (BH) max~35MGOe, the magnetic properties of iHc~10KOe obtained.

それらの永久磁石合金の製造方法としては希土類金属,
電解鉄,電解コバルト,純ボロンあるいはフェロボロン
合金を原料とし、溶解により永久磁石合金を得る製造方
法(特開昭59−215460)及び希土類酸化物粉,鉄粉,フ
ェロボロン粉,コバルト粉の混合粉に金属CaあるいはCa
H2を希土類酸化物の還元に要する化学量論的必要量の2
〜4倍(重量比)混合し、不活性ガス雰囲気中で900〜1
200℃に加熱し、得られた反応副生成物を除去する希土
類・鉄・ボロン系永久磁石合金用合金粉の製造方法(特
開昭59−219404)が開示されている。
Rare earth metals are used to manufacture these permanent magnet alloys.
A method for producing a permanent magnet alloy by melting electrolytic iron, electrolytic cobalt, pure boron or ferroboron alloy as a raw material (JP-A-59-215460) and a mixed powder of rare earth oxide powder, iron powder, ferroboron powder, and cobalt powder. Metal Ca or Ca
The stoichiometric amount of H 2 required for the reduction of rare earth oxides is 2
~ 4 times (weight ratio) mixed, 900 ~ 1 in an inert gas atmosphere
A method for producing an alloy powder for a rare earth / iron / boron-based permanent magnet alloy by heating to 200 ° C. and removing the obtained reaction by-product (JP-A-59-219404) is disclosed.

従来技術である希土類酸化物粉,鉄粉,フェロボロン
粉,コバルト粉を出発原料として、金属CaあるいはCaH2
を還元剤として還元拡散法により希土類・鉄・ボロン系
永久磁石用合金粉の製造方法において、反応生成物から
反応副生成物を除去する際に水で洗浄することにより反
応副生成物の除去が行なわれている。即ち、希土類酸化
物を金属Caで還元することによりCaOが主な反応副生成
物として生成する。このCaOは水と反応させ(CaO+H2O
→Ca(OH))生成したCa(OH)を多量の水に溶解さ
せ、上澄み液を過することによりCaOの除去が行なわ
れている。
Using rare earth oxide powder, iron powder, ferroboron powder, and cobalt powder, which are conventional technologies, as starting materials, metal Ca or CaH 2
In the method of producing rare earth / iron / boron-based alloy powder for permanent magnets by the reduction diffusion method using as a reducing agent, the reaction by-products can be removed by washing with water when removing the reaction by-products from the reaction products. Has been done. That is, CaO is produced as a main reaction by-product by reducing the rare earth oxide with metallic Ca. This CaO reacts with water (CaO + H 2 O
→ Ca (OH) 5 ) CaO is removed by dissolving the generated Ca (OH) 2 in a large amount of water and passing the supernatant.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、CaOと水の反応で生成したCa(OH)は水に対
する溶解度が低いため、Ca(OH)の溶解に多量の水を
使用し、繰り返し洗浄するため多くの時間を要する。さ
らに、繰り返し洗浄することにより水の中に含まれる溶
存酸素や不純物が、還元した希土類元素を酸化させ、最
終的に得られる永久磁石合金用合金粉末の含有酸素量を
増加させる結果となっている。
However, since Ca (OH) 2 produced by the reaction of CaO and water has low solubility in water, a large amount of water is used for dissolving Ca (OH) 2 , and repeated washing requires a lot of time. Furthermore, the result of repeated washing is that dissolved oxygen and impurities contained in water oxidize the reduced rare earth elements and increase the oxygen content of the finally obtained alloy powder for permanent magnet alloy. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要点は、R(ただしRはYを含む希土類元素の
内、少くとも1種)8at%〜30at%,B2at%〜28at%,Fe6
5at%〜82at%(Feの一部をFeの50at%以下のCo,Feの20
at%以下のNiのうち少くとも1種で置換したものを含
む)を主成分とする希土類・鉄・ボロン系永久磁石合金
用合金粉末の製造方法において、希土類酸化物にFe粉,
酸化Fe粉の少くとも1種とB粉,フェロボロン粉,酸化
B粉の少くとも1種と、又必要ならCo粉,酸化Co粉の少
くとも1種とNi粉,酸化Ni粉の少くとも1種を主成分が
上記組成になるように配向して、混合し、さらにこの混
合粉に金属CaあるいはCaH2を上記酸化物の還元に要する
化学量論的必要量の1.0〜2.0倍(重量比)混合し、不活
性ガス雰囲気中で900℃〜1350℃に加熱し、得られた反
応生成物を水中に投入して反応副生成物を除去する際
に、20%以下(ただし、0を含まず)のショ糖水溶液又
は0.5(ただし、0を含まず)mol/l以下の塩化アンモニ
ウム水溶液で洗浄することである。
The main point of the present invention is that R (where R is at least one of rare earth elements including Y) 8 at% to 30 at%, B2 at% to 28 at%, Fe6
5at% ~ 82at% (a part of Fe is 50at% or less of Fe, Co, Fe 20
In a method for producing an alloy powder for a rare earth / iron / boron-based permanent magnet alloy containing at least 1% or less of Ni as a main component, Fe powder is used as a rare earth oxide,
At least one Fe oxide powder and at least one B powder, ferroboron powder, B oxide powder, and if necessary, at least one Co powder, at least one Co oxide powder, and at least one Ni powder and at least one Ni oxide powder. The seeds are orientated so that the main component has the above composition and mixed, and further, metal Ca or CaH 2 is added to this mixed powder in an amount 1.0 to 2.0 times the stoichiometric amount required for the reduction of the oxide (weight ratio). ) When mixed and heated to 900 ° C to 1350 ° C in an inert gas atmosphere, and the reaction product obtained is poured into water to remove a reaction by-product, 20% or less (however, 0 is included) No.) or 0.5 (not including 0) mol / l or less ammonium chloride aqueous solution.

上記内容をさらに詳述すると、希土類酸化物粉とFe粉及
び酸化Fe粉の少くとも1種と、B粉,フェロボロン粉及
び酸化B粉の少くとも1種と、必要ならばCo物及び酸化
Co粉の少くとも1種と、Ni粉及び酸化Ni粉の少くとも1
種を所定の組成になるように秤量して混合し、これに還
元剤である金属Ca,CaH2,ボロンMgなどをさらに混合す
る。この混合物を例えば鉄製あるいはステンレス等の容
器に入れ、Ar等の不活性ガス雰囲気中,H2等の還元ガス
雰囲気中,あるいは真空中で900℃〜1350℃まで昇温
し、この範囲の所定温度にて保持する。必要保持時間は
30分以上,好ましくは60分以上である。昇温中に金属C
a,CaH2,金属Mgは気化し、各種酸化物を還元する。同時
に還元された希土類元素Fe,B,あるいはCo,NiがFe,フェ
ロボロン,BあるいはCo,Niと相互拡散して合金化が進
む。還元拡散反応の温度が900℃未満では還元拡散反応
が不十分であり、所定の組成と均質性を有する合金粉が
得られない。又、1350℃を越えると、高温度による効果
が少なく、原料混合物と容器との反応が生じ、最終合金
粉中の不純物が多くなる。還元拡散反応終了後、反応生
成物を常温まで冷却する。次いで、反応生成物を20%以
下(ただし、0を含まず)ショ糖水溶液中又は0〜0.5m
ol/l(ただし、0を含まず)の塩化アンモニウム水溶液
中に投入して、反応副生成物であるCaOあるいはMgOを水
との反応によりCa(OH)あるいはMg(OH)とし、こ
れらの水酸化物を除去する。洗浄に水を使用した場合、
Ca(OH)2,Mg(OH)の水に対する溶解度が小さいた
め、洗浄に多量の水と時間を要する。これに対し、ショ
糖水溶液にはCa(OH)は非常によく溶け、洗浄の回数
が少なくできる。例えば、100gの水に対するCa(OH)
の溶解度は20℃で0.165gであるが、8%ショ糖水溶液10
0mlにはCa(OH)は29.6g溶ける。このため、ショ糖水
溶液を使用した場合水だけを使用した場合に比べ、洗浄
回数,使用する水の量、及び時間を1/100以下に低減可
能である。水洗時に還元された希土類元素が溶存酸素に
より酸化される確率も小さくできる。
In more detail, the above-mentioned contents, at least one kind of rare earth oxide powder and Fe powder and Fe oxide, and at least one kind of B powder, ferroboron powder and oxide B powder, and if necessary, Co product and oxidation product
At least one Co powder and at least one Ni powder and Ni oxide powder
The seeds are weighed and mixed so as to have a predetermined composition, and the reducing agents such as metal Ca, CaH 2 , and boron Mg are further mixed therein. This mixture is placed in, for example, a container made of iron or stainless steel, heated to 900 ° C to 1350 ° C in an inert gas atmosphere such as Ar, a reducing gas atmosphere such as H 2 or in vacuum, and a predetermined temperature within this range. Hold at. The required holding time is
It is 30 minutes or more, preferably 60 minutes or more. Metal C during heating
a, CaH 2 , and metallic Mg are vaporized and reduce various oxides. At the same time, the reduced rare earth elements Fe, B or Co, Ni interdiffuse with Fe, ferroboron, B or Co, Ni and alloying proceeds. If the temperature of the reduction-diffusion reaction is less than 900 ° C, the reduction-diffusion reaction is insufficient and an alloy powder having a predetermined composition and homogeneity cannot be obtained. On the other hand, when the temperature exceeds 1350 ° C, the effect of high temperature is small, the reaction between the raw material mixture and the container occurs, and the impurities in the final alloy powder increase. After completion of the reduction diffusion reaction, the reaction product is cooled to room temperature. Then, the reaction product is 20% or less (excluding 0) in an aqueous sucrose solution or 0 to 0.5 m
The reaction by-product CaO or MgO is converted into Ca (OH) 2 or Mg (OH) 2 by adding it to an ol / l (excluding 0) ammonium chloride aqueous solution, To remove the hydroxide. If water is used for cleaning,
Since Ca (OH) 2 and Mg (OH) 2 have low solubility in water, a large amount of water and time are required for cleaning. On the other hand, Ca (OH) 2 dissolves very well in the aqueous sucrose solution, and the number of washings can be reduced. For example, Ca (OH) 2 for 100g of water
Has a solubility of 0.165g at 20 ℃, but an 8% aqueous sucrose solution 10
29.6 g of Ca (OH) 2 dissolves in 0 ml. Therefore, when the aqueous sucrose solution is used, the number of washings, the amount of water used, and the time can be reduced to 1/100 or less as compared with the case where only water is used. The probability that the rare earth element reduced during washing with water will be oxidized by dissolved oxygen can also be reduced.

Ca(OH)の溶解度は塩化アンモニウム水溶液を使用し
た場合でも増加できる。しかしながら、塩化アンモニウ
ムを使用した場合、還元された希土類を塩素化させ、希
土類の収率を低下させる結果となるので、塩化アンモニ
ウム濃度の高い水溶液は好ましくない。
The solubility of Ca (OH) 2 can be increased even when using an aqueous solution of ammonium chloride. However, when ammonium chloride is used, an aqueous solution having a high ammonium chloride concentration is not preferable because it results in chlorination of the reduced rare earth and a decrease in the yield of the rare earth.

使用する希土類酸化物粉はYを含むLa,Ce,Pr,Nd,Sm,Eu,
Gd,Tb,DY,Ho,Er,Tm,Yb,Lu等の希土類元素の酸化物であ
る。本発明においては通常これらのうちの1種類で十分
であるが、場合によってはこれらの2種類以上が混在し
た混合希土類酸化物粉でも良い。
The rare earth oxide powder used contains Y, such as La, Ce, Pr, Nd, Sm, Eu,
It is an oxide of rare earth elements such as Gd, Tb, DY, Ho, Er, Tm, Yb, and Lu. In the present invention, one of these is usually sufficient, but in some cases, mixed rare earth oxide powder in which two or more of these are mixed may be used.

FeはFe粉,フェロボロン粉,もしくは酸化Fe粉あるいは
これらのうちの2種類以上の混合物を用いることができ
る。酸化Fe粉が存在する場合、希土類酸化物の還元剤に
よる還元反応とそれに引き続いて起こる拡散は、発生す
る反応熱により、より加速される。
As Fe, Fe powder, ferroboron powder, Fe oxide powder, or a mixture of two or more of them can be used. When Fe oxide powder is present, the reduction reaction of the rare earth oxide with the reducing agent and the subsequent diffusion thereof are accelerated by the generated heat of reaction.

BはB粉,フェロボロン粉,もしくは酸化B粉あるいは
これらのうちの2種類以上の混合物を用いることができ
る。
B can be B powder, ferroboron powder, oxide B powder, or a mixture of two or more of these.

CoはCo粉もしくは酸化Co粉あるいはこれらの混合物を使
用することができる。使用する還元剤は通常金属Ca,CaH
2,金属Mgのうちの1種類で十分である。しかし、場合に
よってはこれらの2種類以上が混在した場合還元剤でも
良い。還元剤の形状はその使用目的から言って特に限定
されず、粉末状あるいは20mesh以下程度の粒状のもので
良い。
As Co, Co powder, Co oxide powder, or a mixture thereof can be used. The reducing agent used is usually metallic Ca, CaH
2 , one of Mg and metal Mg is sufficient. However, in some cases, a reducing agent may be used when two or more of these are mixed. The shape of the reducing agent is not particularly limited in view of its purpose of use, and may be a powder or a granular material having a size of 20 mesh or less.

次に本発明を適用する希土類・鉄・ボロン系永久磁石合
金の成分限定理由について説明する。本発明の合金粉は
Yを含む希土類元素の少くとも1種であり、FeおよびB
を必須元素とする。希土類元素としては軽希土類元素で
あるCe,Pr,Ndが特に好ましいが、他に前記のような他の
希土類元素を含んでも良く、総量で8〜30at%とされ
る。8at%未満では十分な保磁力が得られず、30at%を
越えると残留磁束密度が低下する。
Next, the reasons for limiting the components of the rare earth / iron / boron-based permanent magnet alloy to which the present invention is applied will be described. The alloy powder of the present invention is at least one rare earth element including Y, Fe and B.
Is an essential element. As the rare earth element, Ce, Pr, and Nd which are light rare earth elements are particularly preferable, but other rare earth elements as described above may be included, and the total amount is 8 to 30 at%. If it is less than 8 at%, sufficient coercive force cannot be obtained, and if it exceeds 30 at%, the residual magnetic flux density decreases.

ボロンBは2〜28at%とされる。2at%未満では十分な
残留磁束密度と保磁力が得られず、またキューリ点Tcも
低い。28at%を越えると残留磁束密度が低下する。
Boron B is 2 to 28 at%. If it is less than 2 at%, sufficient residual magnetic flux density and coercive force cannot be obtained, and the Curie point Tc is low. If it exceeds 28 at%, the residual magnetic flux density will decrease.

Feは65at%未満では残留磁束密度が低下し、82at%を越
えると高い保磁力が得られないため65〜82at%とされ
る。
If the Fe content is less than 65 at%, the residual magnetic flux density decreases, and if it exceeds 82 at%, a high coercive force cannot be obtained, so the Fe content is set to 65 to 82 at%.

またFeの一部をFeの50at%以下にCoで置換しても本発明
の効果は失われない。Feの一部をCoで置換することによ
りキューリ点Tcは上昇し、永久磁石合金の熱安定性が向
上する。しかしCoの置換量がFeの50at%を越えると残留
磁束密度とともに保磁力が急激に底下し、逆に熱安定性
は低下する。従ってCoの置換量はFeの50at%以下とされ
る。またFeの一部をFeの20at%以下のNiで置換しても本
発明の効果は失われない。Feの一部をNiで置換すること
によりキューリ点Tcはわずかながら上昇し、永久磁石合
金の熱安定性が向上する。しかしNiの置換量がFeの20at
%を越えると残留磁束密度とともに保磁力が急激に低下
し、逆に熱安定性は低下する。従ってNiの置換量はNiの
20at%以下とされる。
Further, even if a part of Fe is replaced with Co at 50 at% or less of Fe, the effect of the present invention is not lost. By substituting a part of Fe with Co, the Curie point Tc rises, and the thermal stability of the permanent magnet alloy improves. However, when the substitution amount of Co exceeds 50 at% of Fe, the coercive force suddenly drops with the residual magnetic flux density, and conversely the thermal stability decreases. Therefore, the substitution amount of Co is 50 at% or less of Fe. Further, even if a part of Fe is replaced with Ni of 20 at% or less of Fe, the effect of the present invention is not lost. By substituting a part of Fe with Ni, the Curie point Tc is slightly increased, and the thermal stability of the permanent magnet alloy is improved. However, the substitution amount of Ni is 20at of Fe.
When it exceeds%, the coercive force rapidly decreases together with the residual magnetic flux density, and conversely the thermal stability decreases. Therefore, the substitution amount of Ni is
20at% or less.

〔実施例〕〔Example〕

以下に、この発明による実施例を示し、その効果を明ら
かにする。
Examples of the present invention will be shown below, and the effects thereof will be clarified.

(実施例1) Nd2O3粉末115.6g,CaH2粉末83.1g(化学量論的必要量の
1.25倍),B2O3粉末12.7g,100mesh以下の電解鉄粉196.9g
を秤量し、これらをV型混合器で混合して合計408.3gの
母原料を2個分作製した。これらの母原料をステンレス
製の容器に入れ、Arガス雰囲気中で1150℃×3hrsの条件
で還元・拡散処理を行なった。次にこれらの反応生成物
を1つは水中に、1つは8%ショ糖水溶液中に投入し、
洗浄を繰り返し行なって反応副生成物であるCaOを除去
した。この時、洗浄に使用した水の量は、水を使用した
場合177であるのに対し、8%ショ糖水溶液を使用し
た場合1であった。この結果得られた粗粉を乾燥後、
重量及び組成を分析し、表1の結果を得た。
(Example 1) Nd 2 O 3 powder 115.6 g, CaH 2 powder 83.1 g (stoichiometrically required amount)
1.25 times), B 2 O 3 powder 12.7g, 100mesh or less electrolytic iron powder 196.9g
Were weighed and mixed in a V-type mixer to produce two mother raw materials of 408.3 g in total. These mother raw materials were placed in a stainless steel container and subjected to reduction / diffusion treatment in an Ar gas atmosphere at 1150 ° C. for 3 hours. Next, one of these reaction products was put into water, and one was put into an 8% sucrose aqueous solution,
The washing was repeated to remove the reaction by-product CaO. At this time, the amount of water used for washing was 177 when water was used, while it was 1 when an 8% aqueous sucrose solution was used. After drying the resulting coarse powder,
The weight and composition were analyzed and the results in Table 1 were obtained.

これらの粗粉をジェットミルで微粉砕し、平均粒径3.6
μmの微粉を得た。次に微粉を配向磁界12KOe,成形圧2t
on/cmの条件で横磁場成形し、得られた成形体をArガ
ス雰囲気中で1090℃×1hrの条件で焼結した。得られた
焼結体を640℃×1hrの条件で熱処理を施し、試料の磁気
特性及び酸素量を測定したところ、表2の結果を得た。
These coarse powders were finely pulverized with a jet mill to give an average particle size of 3.6.
A fine powder of μm was obtained. Next, fine powder is oriented magnetic field 12KOe, molding pressure 2t
A transverse magnetic field was formed under the condition of on / cm 2 , and the obtained formed body was sintered under the condition of 1090 ° C. × 1 hr in an Ar gas atmosphere. The obtained sintered body was heat-treated under the condition of 640 ° C. × 1 hr, and the magnetic properties and oxygen content of the sample were measured. The results shown in Table 2 were obtained.

(実施例2)Nd2O3粉末99.6g,Dy2O3粉末17.0g,10mesh以
下の大きさの粒状のCaメタル51.3g(化学量論的必要量
の1.25倍),100mesh以下の粒度のフェロボロン粉(B=
20wt%)19.6g,100mesh以下の粒度の電解鉄粉180.2gを
秤量し、これらをV型混合器で混合して合計367.7gの母
原料を2個分作製した。これらの母原料をステンレス製
の容器に入れ、Arガス雰囲気中で1200℃×2hrの条件で
還元・拡散処理を行なった。次にこれらの反応生成物を
1つは水中に、1つは8%ショ糖水溶液中に投入し、洗
浄を繰り返し行なって反応副生成物であるCaOを除去し
た。この時洗浄に使用した水の量は、水を使用した場合
115であるのに対し、4%ショ糖水溶液を使用した場
合1.5であった。この結果得られた粗粉を乾燥後、重
量及び組成を分析し、表3の結果を得た。
(Example 2) Nd 2 O 3 powder 99.6 g, Dy 2 O 3 powder 17.0 g, granular Ca metal having a size of 10 mesh or less 51.3 g (1.25 times the stoichiometrically required amount), and having a particle size of 100 mesh or less Ferroboron powder (B =
20 wt%) 19.6 g, 180.2 g of electrolytic iron powder having a particle size of 100 mesh or less was weighed and mixed in a V-type mixer to prepare two mother raw materials of 367.7 g in total. These mother raw materials were placed in a stainless steel container and subjected to reduction / diffusion treatment in an Ar gas atmosphere at 1200 ° C. for 2 hours. Next, one of these reaction products was put into water and one was put into an 8% sucrose aqueous solution, and washing was repeated to remove CaO as a reaction by-product. The amount of water used for cleaning at this time is
While it was 115, it was 1.5 when a 4% aqueous sucrose solution was used. After drying the resulting coarse powder, the weight and composition were analyzed, and the results in Table 3 were obtained.

これらの粗粉を実施例1と同一条件で微粉砕,成形を行
ない、成形体をArガス雰囲気中で1100℃×2hrsの条件で
焼結した。熱処理は660℃×1hr加熱保持した後、急冷し
た。第4表に得られた試料の磁気特性及び酸素量を示
す。
These coarse powders were finely pulverized and molded under the same conditions as in Example 1, and the molded body was sintered in an Ar gas atmosphere at 1100 ° C. for 2 hours. The heat treatment was performed by heating and holding at 660 ° C. for 1 hour and then rapidly cooling. Table 4 shows the magnetic properties and oxygen content of the obtained samples.

(実施例3) Nd2O3粉末115.6g,10mesh以下の大きさの粒状のCaメタル
61.9g(化学量論的必要量の1.5倍),100mesh以下の粒度
のフェロボロン粉(B=20wt%)19.8g,100mesh以下の
粒度の電解鉄粉181.1gを秤量し、これらはV型混合器で
混合して合計378.4g母原料を2個分作製した。これらの
母原料をステンレス製の容器に入れ、Arガス雰囲気中で
1100℃×3hrsの条件で還元・拡散処理を行なった。次に
これらの反応生成物を1つは水に、1つは0.1mol/lの塩
化アンモニウム水溶液中に投入し、洗浄を繰り返し行な
って、反応副生成物であるCaOを除去した。この時、洗
浄に使用した水の量は、水を使用した場合139,0.1mol
/lの塩化アンモニウム水溶液を使用した場合3であっ
た。この結果、得られた粗粉を乾燥後、重量及び組成を
分析し、表5の結果を得た。
(Example 3) Nd 2 O 3 powder 115.6 g, granular Ca metal having a size of 10 mesh or less
61.9g (1.5 times the stoichiometrically required amount), ferroboron powder with a particle size of 100mesh or less (B = 20wt%) 19.8g, 181.1g of electrolytic iron powder with a particle size of 100mesh or less was weighed, and these were V type mixers. Were mixed to prepare a total of 378.4 g of two mother raw materials. Put these mother raw materials in a stainless steel container and in an Ar gas atmosphere.
The reduction / diffusion treatment was performed under the conditions of 1100 ° C x 3 hrs. Next, one of these reaction products was put into water and the other was poured into a 0.1 mol / l ammonium chloride aqueous solution, and washing was repeated to remove CaO as a reaction by-product. At this time, the amount of water used for cleaning was 139,0.1 mol when water was used.
It was 3 when the ammonium chloride aqueous solution of / l was used. As a result, the obtained coarse powder was dried and then analyzed for weight and composition, and the results shown in Table 5 were obtained.

これらの粗粉を実施例1と同一条件で微粉砕・成形を行
ない、成形体を真空中で1090℃/2hrsの条件で焼結し
た。熱処理は680℃×1hr加熱保持した後、急冷した。表
6に得られた試料の磁気特性及び酸素量を示す。
These coarse powders were finely pulverized and molded under the same conditions as in Example 1, and the molded body was sintered under vacuum at 1090 ° C / 2 hrs. The heat treatment was performed by heating and holding at 680 ° C. for 1 hour and then rapidly cooling. Table 6 shows the magnetic properties and oxygen content of the obtained samples.

(実施例4) Nd2O3粉末84.9g,Pr2O3粉末22.7g,Ce2O3粉末7.5g,10mesh
以下の大きさの粒状のCaメタル95.1g(化学量論的必要
量の1.5倍),B2O3粉末12.7g,100mesh以下の粒度の電解
鉄粉197.4gを秤量し、これらをV型混合器で混合して合
計420.3gの母原料を2個分作製した。この母原料をステ
ンレス製の容器に入れ、H2ガス雰囲気中で1200℃×3hrs
の条件で還元拡散処理を行なった。次にこれらの反応生
成物を1つは水中に投入し、1つは8%ショ糖水溶液中
に投入し、洗浄を繰り返し行なって反応副生成物である
CaOを除去した。この時、洗浄に使用した水の量は、水
の場合213であるのに対し、8%ショ糖水溶液の場合
は1.1であった。この結果得られた粗粉を乾燥後、重
量及び組成を分析し、表7の結果を得た。
(Example 4) Nd 2 O 3 powder 84.9 g, Pr 2 O 3 powder 22.7 g, Ce 2 O 3 powder 7.5 g, 10 mesh
95.1g of granular Ca metal of the following size (1.5 times the stoichiometrically required amount), 12.7g of B 2 O 3 powder, 197.4g of electrolytic iron powder of 100mesh or less particle size, and V-type mixing them Two mother raw materials of 420.3 g in total were prepared by mixing in a vessel. Put this mother raw material in a stainless steel container, 1200 ℃ × 3hrs in H 2 gas atmosphere.
The reduction diffusion process was performed under the conditions of. Next, one of these reaction products is put into water and one is put into an 8% aqueous sucrose solution, and washing is repeated to obtain reaction by-products.
CaO was removed. At this time, the amount of water used for washing was 213 in the case of water, whereas it was 1.1 in the case of the 8% sucrose aqueous solution. After drying the resulting coarse powder, the weight and composition were analyzed, and the results shown in Table 7 were obtained.

これらの粗粉を実施例1と同一の条件で微粉砕,成形を
行ない、成形体を真空中で1090℃×2hrsの条件で焼結し
た。熱処理は620℃×1hr加熱保持した後、急冷した。表
8に得られた試料の磁気特性及び酸素量を示す。
These coarse powders were finely pulverized and molded under the same conditions as in Example 1, and the molded body was sintered in a vacuum at 1090 ° C. × 2 hrs. The heat treatment was performed by heating and holding at 620 ° C. for 1 hour and then rapidly cooling. Table 8 shows the magnetic properties and oxygen content of the obtained samples.

〔発明の効果〕 以上、上記実施例から明らかなように、還元・拡散反応
により得られた反応生成物から反応副生成物であるCaO
を除去するには、水を洗浄液として使用するよりも、シ
ョ糖水溶液及び塩化アンモニウム水溶液を使用した方
が、洗浄に使用する水,洗浄回数,洗浄時間を著しく低
減可能であり、又酸素含有量の少ない永久磁石合金用合
金粉末が得られる。
[Effects of the Invention] As is apparent from the above examples, the reaction product obtained by the reduction / diffusion reaction is CaO which is a reaction by-product.
To remove water, it is possible to significantly reduce the water used for cleaning, the number of times of cleaning, and the cleaning time by using an aqueous sucrose solution and an aqueous ammonium chloride solution, rather than using water as a cleaning solution. It is possible to obtain an alloy powder for a permanent magnet alloy having a low content.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(ただしRはYを含む希土類元素の内、
少なくとも1種)8at%〜30at%、B2at%〜28at%、Fe6
5at%〜82at%(Feの一部をFeの50at%以下のCo、Feの2
0at%以下のNiのうち少なくとも1種で置換したものを
含む)を主成分とする希土類・鉄・ボロン系永久磁石用
合金粉末の製造方法において、希土類酸化物にFe粉、酸
化Fe粉の少なくとも1種とB粉、フェロボロン粉、酸化
B粉の少なくとも1種と、又必要ならばCo粉、酸化Co粉
の少なくとも1種とNi粉、酸化Ni粉の少なくとも2種を
主成分が上記組成になるように配合して、混合し、さら
にこの混合粉に金属CaあるいはCaH2を上記酸化物の還元
に要する化学量論的必要量の1.0〜2.0倍(重量比)混合
し、不活性ガス雰囲気中で900℃〜1350℃に加熱し、得
られた反応生成物を水中に投入して反応副生成物を除去
する際に、20%以下(ただし、0を含まず)のショ糖水
溶液又は0.5mol/l以下(ただし、0を含まず)の塩化ア
ンモニウム水溶液で洗浄することを特徴とする希土類・
鉄・ボロン系永久磁石合金用合金粉末の製造方法。
1. R (where R is a rare earth element containing Y,
At least one) 8at% ~ 30at%, B2at% ~ 28at%, Fe6
5at% ~ 82at% (a part of Fe is 50at% or less of Co, Co, Fe 2
In the method for producing a rare earth / iron / boron-based alloy powder for permanent magnets, which contains at least one of Ni of 0 at% or less) as a main component, at least Fe powder and Fe oxide are used as the rare earth oxide. 1 type and at least 1 type of B powder, ferroboron powder and B oxide powder, and if necessary, at least 1 type of Co powder and Co oxide type, and at least 2 types of Ni powder and Ni oxide powder, the main components of which are the above composition Are mixed and mixed in such a manner that the mixed powder is mixed with metallic Ca or CaH 2 in an amount of 1.0 to 2.0 times (stoichiometric ratio) the stoichiometrically necessary amount required for reduction of the above oxide (weight ratio). When heated to 900 ° C to 1350 ° C in water to remove the reaction by-product by adding the obtained reaction product to water, 20% or less (not including 0) of an aqueous sucrose solution or 0.5 It is recommended to wash with an aqueous solution of ammonium chloride below mol / l (excluding 0). Rare earth to Chow
A method for producing an alloy powder for an iron-boron permanent magnet alloy.
JP61104358A 1986-05-07 1986-05-07 Method for producing alloy powder for permanent magnet alloy Expired - Fee Related JPH0765083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104358A JPH0765083B2 (en) 1986-05-07 1986-05-07 Method for producing alloy powder for permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104358A JPH0765083B2 (en) 1986-05-07 1986-05-07 Method for producing alloy powder for permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS62260008A JPS62260008A (en) 1987-11-12
JPH0765083B2 true JPH0765083B2 (en) 1995-07-12

Family

ID=14378626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104358A Expired - Fee Related JPH0765083B2 (en) 1986-05-07 1986-05-07 Method for producing alloy powder for permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH0765083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766681B2 (en) * 1989-08-11 1998-06-18 住友金属鉱山株式会社 Production method of rare earth-iron-boron alloy powder for sintered magnet
CN107686938B (en) * 2017-07-20 2019-06-14 中南大学 A kind of iron-based powder metallurgy friction material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160809A (en) * 1984-09-03 1986-03-28 Sumitomo Special Metals Co Ltd Production of rare earth alloy powder

Also Published As

Publication number Publication date
JPS62260008A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
JPH09143636A (en) Rare earth-iron-nitrogen magnetic alloy
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
US20230162913A1 (en) Rare earth magnet and production method thereof
JPH0765083B2 (en) Method for producing alloy powder for permanent magnet alloy
JPH0372124B2 (en)
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JPH0461042B2 (en)
JP2985545B2 (en) Manufacturing method of alloy powder
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP4407047B2 (en) Method for producing rare earth-transition metal alloy powder and product obtained
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JPS62262406A (en) Manufacture of powder for permanent magnet alloy
JPH0524975B2 (en)
JP2994685B2 (en) Production method of raw material for rare earth permanent magnet
JP3120546B2 (en) Manufacturing method of permanent magnet material
JPS62261101A (en) Manufacture of alloy powder for permanent magnet
JPS61238903A (en) Production of rare earth containing alloy powder
JP2000054011A (en) Production of rare earth metal-iron-boron based sintered magnet raw material alloy powder
JPS627831A (en) Manufacture of permanent magnet material
JP3797153B2 (en) Nitriding method of rare earth-iron alloy powder and raw material of alloy powder used in the method
JPH05247600A (en) Magnet material and its production
JPS61287105A (en) Manufacture of alloy powder containing rare-earth
JPS6244501A (en) Production of fare earth-containing alloy powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees