JPH0764995B2 - Acylated anthocyanin - Google Patents

Acylated anthocyanin

Info

Publication number
JPH0764995B2
JPH0764995B2 JP61255427A JP25542786A JPH0764995B2 JP H0764995 B2 JPH0764995 B2 JP H0764995B2 JP 61255427 A JP61255427 A JP 61255427A JP 25542786 A JP25542786 A JP 25542786A JP H0764995 B2 JPH0764995 B2 JP H0764995B2
Authority
JP
Japan
Prior art keywords
glucopyranosyl
acid
caffeyl
hydrogen
cyanidin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61255427A
Other languages
Japanese (ja)
Other versions
JPS63110259A (en
Inventor
英一 井高
Original Assignee
英一 井高
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英一 井高 filed Critical 英一 井高
Priority to JP61255427A priority Critical patent/JPH0764995B2/en
Publication of JPS63110259A publication Critical patent/JPS63110259A/en
Publication of JPH0764995B2 publication Critical patent/JPH0764995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、食品、医薬品或いは化粧品等の色素として
使用されるアシル化アントシアニンに関する。
TECHNICAL FIELD The present invention relates to an acylated anthocyanin used as a pigment for foods, pharmaceuticals, cosmetics and the like.

(従来の技術) これまで、一般式 (式中、R3は水酸基、R5は水酸基、R3′は水素、水酸基
又は、メトキシ基、R5′は水素、水酸基又は、メトキシ
基である。ANION-は陰イオンである。)で表わされるア
ントシアニジンは、知られている。
(Prior art) Until now, general formula (In the formula, R 3 is a hydroxyl group, R 5 is a hydroxyl group, R 3 ′ is hydrogen, a hydroxyl group or a methoxy group, and R 5 ′ is a hydrogen group, a hydroxyl group or a methoxy group. ANION is an anion.) The represented anthocyanidins are known.

(刊行物 Developments In Food Colours−I Edited b
y John Walford (1980) Applied Science Publishers
Ltd London、又は、The Flavonoids Edited by J.B.Ha
rborne,T.J.Mabry and H.M.abry (1975,1983) Chapma
n & Hall Ltd参照。) これに、糖を結合したものが 一般式 (式中、R3はO−糖又は、O−アシル化糖、R5は水酸基
又は、O−グルコース、R3′は、水素、水酸基又は、メ
トキシ基、R5′は水素、水酸基又は、メトシキ基であ
る。ANION-は陰イオンである。)で表わされるアントシ
アニンである。アントシアニンは、紫トウモロコシ、ベ
リー類、ブドウ果皮、ブドウ果汁、赤キャベツなどに多
量に含有されており、これらの植物の花、葉又は、茎を
酸を含む水又は、アルコール水溶液に浸漬して製造され
るものであって、飲料、食品、菓子等の色素として多量
に使用されている。(刊行物 梅田尭 三栄ニュース
143号 15-21(1983)三栄化学工業 参照。) (発明が解決しようとする問題点) 一般に、アントシアニンは、中性希薄水溶液中で赤紫色
〜青色を呈するが、その色は一般に非常に不安定で速や
かに退色する。しかし、酸性条件下では比較的安定で赤
橙色の色合いをしている。この理由は、アントシアニン
が酸性溶液中では 一般式 (式中、R3はO−糖又は、O−アシル化糖、R5は水酸基
又は、O−グルコース、R3′は水素、水酸基又は、メト
キシ基、R5′は水素、水酸基、又は、メトキシ基であ
る。ANION-は陰イオンである。)で表わされるフラビリ
ウムイオンとして非常に安定であるが、pH4〜6で生ず
る 一般式 (式中、R3はO−糖又は、O−アシル化糖、R5は水酸基
又は、O−グルコース、R3′は水素、水酸基又は、メト
キシ基、R5′は水素、水酸基又は、メトキシ基であ
る。)で表わされる紫色ないし青色を呈するアンヒドロ
塩基は、不安定で容易に水和して 一般式 (式中、R3はO−糖又は、O−アシル化糖、R5は水酸基
又は、O−グルコース、R3′は水素、水酸基又は、メト
キシ基、R5′は水素、水酸基又は、メトキシ基であ
る。)で表わされる無色のプソイド塩基になってしまう
からである。(R.Brouill ard and B.Delaporte,J.Am.C
hem.Soc.,99 8461(1977),星野力、化学の領域、37 2
3-30(1983)参照。)従って、アントシアニン系色素を
利用した食品、医薬品等は酸又はアルカリの影響によ
り、場合によっては温度の上昇によって容易に退色して
しまうという問題点があった。
(Publications Developments In Food Colors-I Edited b
y John Walford (1980) Applied Science Publishers
Ltd London or The Flavonoids Edited by JBHa
rborne, TJMabry and HMabry (1975,1983) Chapma
See n & Hall Ltd. ) This has a sugar attached to it in the general formula (In the formula, R 3 is an O-sugar or O-acylated sugar, R 5 is a hydroxyl group or O-glucose, R 3 ′ is hydrogen, a hydroxyl group or a methoxy group, and R 5 ′ is hydrogen, a hydroxyl group, or ANION - is an anion.) Is an anthocyanin. Anthocyanins are contained in large amounts in purple corn, berries, grape skins, grape juice, red cabbage, etc., and the flowers, leaves, or stems of these plants are produced by immersing them in water containing an acid or an aqueous alcohol solution. And is used in large amounts as a pigment in beverages, foods, confectionery, and the like. (Published by Kei Umeda Sanei News
No. 143 15-21 (1983) See Sanei Chemical Industry. (Problems to be Solved by the Invention) Generally, anthocyanins exhibit a reddish purple to blue color in a neutral dilute aqueous solution, but their colors are generally very unstable and fade quickly. However, it is relatively stable and has a reddish orange shade under acidic conditions. The reason for this is that anthocyanins have the general formula (In the formula, R 3 is an O-sugar or an O-acylated sugar, R 5 is a hydroxyl group or O-glucose, R 3 ′ is hydrogen, a hydroxyl group or a methoxy group, and R 5 ′ is hydrogen, a hydroxyl group, or It is a methoxy group. ANION - is an anion.) It is very stable as a flavylium ion, but it is a general formula generated at pH 4-6. (In the formula, R 3 is an O-sugar or an O-acylated sugar, R 5 is a hydroxyl group or O-glucose, R 3 ′ is hydrogen, a hydroxyl group or a methoxy group, and R 5 ′ is hydrogen, a hydroxyl group or a methoxy group. The anhydro base represented by the formula (1), which is purple to blue in color, is unstable and easily hydrated to give a compound of the general formula (In the formula, R 3 is an O-sugar or an O-acylated sugar, R 5 is a hydroxyl group or O-glucose, R 3 ′ is hydrogen, a hydroxyl group or a methoxy group, and R 5 ′ is hydrogen, a hydroxyl group or a methoxy group. This is because it becomes a colorless pseudo base represented by the group.). (R. Brouill ard and B. Delaporte, J. Am. C
hem.Soc., 99 8461 (1977), Riki Hoshino, Area of Chemistry, 37 2
See 3-30 (1983). Therefore, there has been a problem that foods, pharmaceuticals, etc. using anthocyanin dyes are easily discolored by the influence of acid or alkali and, in some cases, the temperature rises.

本発明者は、このような問題点に鑑み、多くの植物の中
から、より安定したアントシアニンを見つけるため、鋭
意研究を重ねた結果、従来、アントシアニンの分析にお
いて、ペーパークロマトグラフ法(PPC)、或いは、セ
ルロース粉末の薄層クロマトグラフ法(TLC)を使用し
た場合、いずれもテーリングが激しく、よいクロマトグ
ラフが得られず、さらにHPLC法も一部用いられてはいる
が、pH3.5以上で分離のよいクロマトグラフが得られな
いという問題はあったが、本発明者はこれを完全に解決
する新規なアントシアニンの分析及び分取方法を見い出
すことに成功し、これにより、植物の花、葉又は、茎よ
り抽出される安定なアントシアニンが、従来より知られ
ていた一般的なアントシアニンとは全く異なった基本構
造を持っており、又、様々な有機酸で高度にアシル化を
受けた構造(アシル化アントシアニンと名付る。)を有
する事が明かとなった。(井高英一、特開昭61-85476,6
1-85477参照。)この様な複雑なアシル化アントシアニ
ンのNMRによる構造決定は1978年に初めて報告されて以
来、ゲンチオデルフィン、プラチコニン、シネラリン、
HBAの4種類の複雑なアシル化アントシアニンが知られ
るのみである(後藤俊夫、近藤忠雄、化学と生物 22 8
27(1984)参照。)。本発明のアシル化アントシアニン
はこれら4種類のアントシアニンとは全く異なった構造
を有しており、極めて安定な色素である事が明かとなっ
た。
The present inventor, in view of such problems, from many plants, in order to find a more stable anthocyanin, as a result of repeated intensive research, conventionally, in the analysis of anthocyanins, paper chromatographic method (PPC), Alternatively, when a thin layer chromatographic method (TLC) of cellulose powder is used, tailing is severe and a good chromatograph cannot be obtained. In addition, some HPLC methods are used, but at pH 3.5 or higher. Although there was a problem that a chromatograph with good separation could not be obtained, the present inventor succeeded in finding a novel analysis and preparative method of anthocyanins that completely solves this, and thereby, flowers of plants, leaves Or, stable anthocyanins extracted from stems have a completely different basic structure from the conventionally known general anthocyanins, and It has a highly acylated receiving structure with an organic acid (acylating anthocyanins and named.) Was revealed. (Eiichi Idaka, JP 61-85476,6
See 1-85477. ) NMR structural determination of such complex acylated anthocyanins was first reported in 1978, and has since been reported as gentiodelphin, platiconin, cyneralin,
Only four complex acylated anthocyanins of HBA are known (Toshio Goto, Tadao Kondo, Chemistry and Biology 22 8
27 (1984). ). It was revealed that the acylated anthocyanin of the present invention has a structure which is completely different from those of these four kinds of anthocyanins, and is an extremely stable dye.

すなわち、この発明は、 一般式 (式中のR1は、水素、コーヒー酸又は、フェルラ酸、R2
は、コーヒー酸又は、フェルラ酸、R3は、コーヒー酸又
は、フェルラ酸、R4は、コーヒー酸又は、フェルラ酸で
ある。ANION-は陰イオンである。)で表わされるアシル
化アントシアニンである。従来、経験的に使用されてい
たアントシアニン系色素は純粋なアントシアニンを分取
しさらにこのアントシアニンを分析する方法が見い出さ
れていなかったため、アントシアニジンに糖が結合した
のみの不安定なアントシアニンや、アントシアニジンに
糖が結合しさらにこれにアシル基が結合した安定なアシ
ル化アントシアニンを区別して使用することができず、
これらの混合物の形で食品や医薬品等の色素として使用
していた。
That is, the present invention has the general formula (R 1 in the formula is hydrogen, caffeic acid or ferulic acid, R 2
Is caffeic acid or ferulic acid, R 3 is caffeic acid or ferulic acid, and R 4 is caffeic acid or ferulic acid. ANION - is an anion. ) Is an acylated anthocyanin. Conventionally, the anthocyanin dye that has been used empirically has not been found a method for fractionating pure anthocyanin and further analyzing this anthocyanin, so unstable anthocyanins with only sugar bound to anthocyanidins and A stable acylated anthocyanin in which a sugar is bound and an acyl group is bound to it cannot be distinguished and used,
It has been used as a pigment in foods, pharmaceuticals, etc. in the form of a mixture of these.

このため、アントシアニン系色素中の不安定なアントシ
アニンが酸又はアルカリの影響により、場合によって
は、温度の上昇によって退色し、この不安定なアントシ
アニンの含有量によっては色素全体が退色したり、変色
したりするといった問題があった。
Therefore, the unstable anthocyanins in the anthocyanin-based dye are affected by acid or alkali, and in some cases, are discolored by increasing the temperature, and the entire dye is discolored or discolored depending on the content of this unstable anthocyanin. There was a problem that

本発明者は、鋭意研究の結果、純粋なアントシアニンを
分取する方法とこのアントシアニンの構造解析をなし得
る分析方法とを見い出すことに成功したため、不安定な
アントシアニンと安定なアントシアニンとを区別し、安
定なアントシアニンのみを分取することができ、更にこ
れを分析し上記した構造を有するアシル化アントシアニ
ンを構造解析するに至ったものである。
The present inventor, as a result of diligent research, succeeded in finding a method for fractionating pure anthocyanins and an analytical method capable of making a structural analysis of this anthocyanin, and therefore, distinguishing unstable anthocyanins from stable anthocyanins, Only stable anthocyanins can be collected, and this is further analyzed to structurally analyze the acylated anthocyanins having the above structure.

この一般式で表わされるアシル化アントシアニンは、分
子中のアントシアニン母核[3−O−{6−O−(α−
L−arabinofuranosyl)−β−D−glucopyranosyl}−
7−O−(β−D−glucopyranosyl)−3′−O−(β
−D−glucopyranosyl)cyanidin]にそれぞれ2種類の
有機酸(コーヒー酸又はフェルラ酸)のうちいずれかが
エステル結合されたものである。さらに、これらの有機
酸がアントシアニジン母核(シアニジン)のA環又はB
環上で配位結合しており、アントシアニジン母核のA環
のC−2位に対する水酸基の攻撃から分子が保護されて
いる。このため、このアシル化アントシアニンは、耐酸
性、耐アルカリ性、耐熱性及び耐光性に優れた結果を有
し、極めて安定したものとなっている。(アントシアニ
ンの安定化機構に関する文献は、例えば、後藤俊夫、化
学 41 559(1986)参照) この発明のアシル化アントシアニンは、いずれも文献未
載の新規化合物であり、例えば、ツユクサ科植物のゼブ
リナ・プルプシー(Zebrina purpusii Brueckn.)の
花、葉又は茎を粉砕し、次に、これを酸を含有するアル
コール溶液又は、水溶液に漬けて抽出後、ろ過し、真空
乾燥することにより、オイル状のアシル化アントシアニ
ンを得る事ができる。このアントシアニンの精製法には
3種類の方法がある。即ち、エーテル沈澱法、吸着カラ
ムによる精製法、或は逆相分配カラムを用いた液体クロ
マトグラム法等である。例えば、液体クロマトグラム法
では、このアントシアニンを、移動相を酢酸、アセトニ
トリル、テトラヒドロフラン(THF)、ジオキサン、ア
ルコール類、及び水の2種或はそれ以上の混合溶媒と
し、酸としては、鉱酸、又は、有機酸等を0−5%程度
加え、pHを3.5−0の範囲とした逆相分配型カラム[オ
クチル(C3)カラム及び、オクタデシル(C18)カラム
等。]を用いた高速液体クロマトグラフィー(HPLC)に
よって更に精製し、純粋なアシル化アントシアニンを得
ることが出来る。このようにして得られたアシル化アン
トシアニンの分析は、移動相を酢酸、アセトニトリル、
THF、ジオキサン、アルコール類、および、水の2種或
はそれ以上の混合溶媒とし、酸としては、リン酸、硝
酸、塩酸、硫酸等の鉱酸類、又は、トリフルオロ酢酸
(TFA)等の有機酸類を0−5%程度加え、pHを3.5-0の
範囲とした逆相分配型カラム(オクチル(C8)カラム又
は、オクタデシル(C18)カラム等。)を用いたHPLCに
よって行われる。この発明のアシル化アントシアニン
は、UV検出器を用いたHPLC分析(使用カラム:Develosil
ODS-5,250mm x φ4.6mm I.D.,カラム温度:40℃、移動
相:酢酸:アセトニトリル:リン酸:水=10:11:1.5:7
7.5)を行った場合、保持時間(Rt)10分程度に現れる
ピークによってこのアシル化アントシアニン(I)(第
1図参照。)を同定する事が出来る。
An acylated anthocyanin represented by this general formula is an anthocyanin mother nucleus [3-O- {6-O- (α-
L-arabinofuranosyl) -β-D-glucopyranosyl}-
7-O- (β-D-glucopyranosyl) -3′-O- (β
-D-glucopyranosyl) cyanidin] is ester-bonded with one of two kinds of organic acids (caffeic acid or ferulic acid). Furthermore, these organic acids are the A ring or B of the anthocyanidin nucleus (cyanidine).
It has a coordinate bond on the ring, and the molecule is protected from the attack of the hydroxyl group on the C-2 position of the A ring of the anthocyanidin nucleus. Therefore, this acylated anthocyanin has excellent results in acid resistance, alkali resistance, heat resistance and light resistance, and is extremely stable. (For the literature on the mechanism of stabilizing anthocyanins, see, for example, Toshio Goto, Kagaku 41 559 (1986)). The acylated anthocyanins of the present invention are novel compounds that have not been published in the literature. For example, Zebrina The oily acyl is obtained by crushing the flower, leaf or stem of Pulpus (Zebrina purpusii Brueckn.), Then dipping it in an alcoholic solution containing an acid or an aqueous solution for extraction, filtering and vacuum drying. It is possible to obtain the modified anthocyanin. There are three types of methods for purifying this anthocyanin. That is, an ether precipitation method, a purification method using an adsorption column, a liquid chromatogram method using a reverse phase partitioning column, and the like. For example, in the liquid chromatogram method, the mobile phase of this anthocyanin is acetic acid, acetonitrile, tetrahydrofuran (THF), dioxane, alcohols, and a mixed solvent of two or more kinds of water, and the acid is a mineral acid, Alternatively, a reversed-phase partition type column [octyl (C 3 ) column, octadecyl (C 18 ) column, etc., in which an organic acid or the like is added in an amount of about 0-5% to adjust the pH to 3.5-0. Can be further purified by high performance liquid chromatography (HPLC) using] to obtain a pure acylated anthocyanin. Analysis of the acylated anthocyanins obtained in this way was carried out using acetic acid, acetonitrile,
A mixed solvent of two or more of THF, dioxane, alcohols, and water is used, and as the acid, phosphoric acid, nitric acid, hydrochloric acid, sulfuric acid, and other mineral acids, or trifluoroacetic acid (TFA) and other organic solvents. It is carried out by HPLC using a reversed-phase partitioning type column (octyl (C 8 ) column, octadecyl (C 18 ) column, etc.) in which an acid is added in an amount of about 0-5% and the pH is in the range of 3.5-0. The acylated anthocyanins of this invention were analyzed by HPLC using a UV detector (column used: Develosil
ODS-5,250mm x φ4.6mm ID, Column temperature: 40 ℃, Mobile phase: Acetic acid: Acetonitrile: Phosphoric acid: Water = 10: 11: 1.5: 7
When 7.5) is performed, this acylated anthocyanin (I) (see FIG. 1) can be identified by the peak appearing at a retention time (Rt) of about 10 minutes.

(発明の効果) 以上述べたように、この発明のアシル化アントシアニン
は、耐酸性、耐アルカリ性、耐熱性及び、耐光性に優
れ、特に中性−弱酸性でも非常に安定しており、これを
食品、医薬品或は、化粧品等の色素として使用した場
合、その色は、長い時間にわたって極めて安定であり、
退色しないものとなる。次に、この発明のアシル化アン
トシアニンを実施例によって更に詳細に説明する。
(Effects of the Invention) As described above, the acylated anthocyanin of the present invention is excellent in acid resistance, alkali resistance, heat resistance, and light resistance, and is particularly stable even in neutral-weak acid. When used as a pigment in foods, pharmaceuticals or cosmetics, the color is extremely stable over a long period of time,
It will not fade. Next, the acylated anthocyanins of the present invention will be described in more detail with reference to Examples.

実施例1 ゼブリナ・プルプシー(Zebrina purpusii Brueckn.)
には5種類以上のアントシアニンが含まれている事がHP
LC分析の結果明らかになったが、その中の主成分である
アントシアニン(I)をHPLCで分取し(新鮮な葉10kgか
ら純粋な(I)1.2gを塩酸塩として得た。)その構造決
定を以下に行った。
Example 1 Zebrina purpusii Brueckn.
HP contains 5 or more kinds of anthocyanins
As revealed by LC analysis, anthocyanin (I), which is the main component, was separated by HPLC (10 kg of fresh leaves gave 1.2 g of pure (I) as a hydrochloride salt) and its structure. The decision was made below.

(I)の部分構造を解析する為、アルカリ加水分解反応
及び、酸加水分解反応を行った。まず、2%水酸化ナト
リウム−50%メタノール/水溶液中、反応温度−20℃、
窒素雰囲気下でアルカリ加水分解を行い、4Mのコーヒー
酸メチルと色素(II)[3−O−{6−O−(α−L−
arabinofuranosyl)−β−D−glucopyranosyl}−7−
O−(β−D−glucopyranosyl)−3′−O−(β−D
−glucopyranosyl)cyanidin]を得た。反応式はつぎの
通りである。
In order to analyze the partial structure of (I), an alkali hydrolysis reaction and an acid hydrolysis reaction were performed. First, in a 2% sodium hydroxide-50% methanol / water solution, at a reaction temperature of -20 ° C,
Alkaline hydrolysis was performed under a nitrogen atmosphere, and 4M methyl caffeate and dye (II) [3-O- {6-O- (α-L-
arabinofuranosyl) -β-D-glucopyranosyl} -7-
O- (β-D-glucopyranosyl) -3′-O- (β-D
-Glucopyranosyl) cyanidin] was obtained. The reaction formula is as follows.

アルカリ加水分解反応 (I)→(II)+4M コーヒー酸メチル (II)は、FAB-MS(Fast Atom Bombardment Mass Spect
rometry)より分子量905(M+)で、その500MHz1H-NMRか
ら6.8-9.1ppmに6個の水素が特徴的に現れている事、
又、UVスペクトルで最大吸収波長が511nm(0.1%塩酸−
メタノール中)である事から、その母核はシアニジンで
ある事がわかった。UVスペクトルは次の通りである。λ
max(0.01%HCl-MeOH,conc.,5.3×105mol/1,r.t.)nm
(ε)511(25,500),326(3,700),280(17,700);E
440/E511=0.44,E326/E511=0.14 ここで、E511は511nmにおける吸光度を表している。吸
光度の比については文献(林孝三 植物色素 169(198
0)養賢堂)参照。(II)の全構造は500MHz 1H NMRの
詳細な解析により第2図のように決定された。
Alkaline hydrolysis reaction (I) → (II) + 4M methyl caffeate (II) is produced by FAB-MS (Fast Atom Bombardment Mass Spect).
The molecular weight is 905 (M + ) and 500 hydrogen 1 H-NMR shows that 6 hydrogens are characteristically present at 6.8-9.1 ppm.
In addition, the maximum absorption wavelength in the UV spectrum is 511 nm (0.1% hydrochloric acid-
(In methanol), it was found that the mother nucleus was cyanidin. The UV spectrum is as follows. λ
max (0.01% HCl-MeOH, conc., 5.3 × 10 5 mol / 1, rt) nm
(Ε) 511 (25,500), 326 (3,700), 280 (17,700); E
440 / E 511 = 0.44, E 326 / E 511 = 0.14 Here, E 511 represents the absorbance at 511 nm. For the ratio of absorbance, see Kozo Hayashi, Plant Pigment 169 (198
See 0) Yokendo. The entire structure of (II) was determined as shown in FIG. 2 by detailed analysis of 500 MHz 1 H NMR.

次に、酸部分加水分解反応を行った。Next, an acid partial hydrolysis reaction was performed.

酸部分加水分解反応 (I)→(III)+(IV)+(V)+(VI)+(VII) 0.7N塩酸水溶液中、反応温度60℃で反応させた後、HPLC
分取したところ4種類の酸加水分解色素生成物を得た
(III-VI)。糖−有機酸結合体としては(VII)が得ら
れた。FAB-MSより、(III)は分子量(M+)1,097(C51H
53O27)、(IV)は分子量(M+)935(C45H43O22)又、
(V)及び、(VI)はいずれも、分子量(M+)611(C30
H27O14)であった。(III)の500MHz 1H-NMRスペクトル
より、6.6-9ppmに6個の水素が特徴的に現れており、シ
アニジン骨格を有している事が明らかである。5.8-7.4p
pmにかけて2組のコーヒー酸のシグナルが存在する。糖
領域(3-6.8ppm)のデカップリングにより、3個存在す
る糖はグルコピラノース環でそれらのアノマー水素はい
ずれもカップリング定数(J)7.5Hzである事からβ配
置をとっている。又、0℃でNOE(Nuclear Overhauser
Effect)を測定すると▲印糖アノマー水素(5.05ppm,
d)は母核4位(8.40ppm,s)と、△印糖アノマー水素
(5.25ppm,d)は母核2′位(7.56ppm,d 1.2Hz)と、●
印糖アノマー水素(5.80ppm,d)は母核6位(6.78pp
m)、及び8位(6.67ppm)と各々、負のNOEが存在する
事から各糖の母核への結合部位は、第3図に示した構造
式の様になる(低温下における負のNOE測定については
文献、近藤忠雄ら、第24回NMR討論会講演要旨集56−59
(1985)参照。)。又、△、●印の糖は、各々、6位の
メチレン水素が低磁場シフトしている事から、2分子の
コーヒー酸は△、●印糖の6位に結合している。以上の
結果から、(III)の構造式は第3図に示した通りであ
る。(III)のUVスペクトル及び、500MHz 1H-NMRスペク
トルの全帰属を以下に示す。
Acid partial hydrolysis reaction (I) → (III) + (IV) + (V) + (VI) + (VII) After reacting in a 0.7N hydrochloric acid aqueous solution at a reaction temperature of 60 ° C., HPLC
When fractionated, four types of acid hydrolysis dye products were obtained (III-VI). As the sugar-organic acid conjugate, (VII) was obtained. From FAB-MS, (III) has a molecular weight (M + ) of 1,097 (C 51 H
53 O 27 ), (IV) are molecular weight (M + ) 935 (C 45 H 43 O 22 ),
Both (V) and (VI) have a molecular weight (M + ) 611 (C 30
H 27 O 14 ). From the 500 MHz 1 H-NMR spectrum of (III), 6 hydrogens characteristically appear at 6.6-9 ppm, and it is clear that it has a cyanidin skeleton. 5.8-7.4p
There are two sets of caffeic acid signals over pm. Due to the decoupling of the sugar region (3-6.8 ppm), the three existing sugars are in the glucopyranose ring, and all of their anomeric hydrogens have the coupling constant (J) of 7.5 Hz, so the β configuration is adopted. Also, NOE (Nuclear Overhauser at 0 ℃
Effect) is measured. ▲ In sugar anomer hydrogen (5.05ppm,
d) is the 4th position (8.40ppm, s) of the nucleus, and the Δ-sugar anomeric hydrogen (5.25ppm, d) is the 2nd position of the nucleus (7.56ppm, d 1.2Hz).
In sugar anomeric hydrogen (5.80ppm, d) is 6th position (6.78pp) in the nucleus.
Since there are negative NOEs at m) and 8th position (6.67ppm) respectively, the binding site of each sugar to the mother nucleus becomes like the structural formula shown in Fig. 3 (negative at low temperature) For NOE measurement, refer to Tadao Kondo et al., Proceedings of the 24th NMR Symposium 56-59
(1985). ). In addition, since the methylene hydrogens at the 6-positions of the sugars marked with Δ and ● are shifted in a low magnetic field, two molecules of caffeic acid are bonded to the 6-positions of the Δ and ● sugars. From the above results, the structural formula of (III) is as shown in FIG. The full assignments of the UV spectrum and the 500 MHz 1 H-NMR spectrum of (III) are shown below.

3−O−(β−D−glucopyranosyl)−7−O−(6−
O−E−caffeyl−β−D−glucopyranosyl)−3′−
O−(6−O−E−caffeyl−β−D−glucopyranosy
l)cyanidin(III)C51H53O27=1,097 UVλmax(0.01% HCl/MeOH,conc.,2.7x10-5mol/1,20
℃)nm(ε)529(21,200),330(21,900),286(23,70
0);E440/E529=0.28,E330/E529=1.04 1H-NMR(500
MHz,3% CF3COOD/CD3OD,0℃),δ(ppm)8.48(1H,
br.d,J=8.5,H−6′),8.40(1H,s,H−4),7.56(1H,
d,J=1.2,H−2′),7.18(1H,d,J=16,H−β),7.05
(1H,d,J=8.5,H−5′),6.97(1H,d,J=16,H−β),
6.78(1H,d,J=2.0,H−6),6.67(1H,d,J=2.0,H−
8),6.58(1H,d,J=8.5,H−5″),6.28(1H,d,J=8.
0,H−5″),6.15(1H,br,d,J=8.0,H−6″),6.12(1
H,d,J=16,H−α),6.10(1H,d,J=1.0,H−2″),6.09
(1H,d,J=1.0,H−2″),6.00(1H,br.d,J=8.0,H−
6″),5.81(1H,d,J=16,H−α),5.80(1H,d,J=1.0,
●−1),5.25(1H,d,J=7.5,△−1),5.19(1H,br.d,
J=12,△−6a),5.06(1H,br.,●−6a),5.05(1H,d,J
=7.5,▲−1),4.04(3H,br.d,J=7.5,●−6b,▲−6a,
6b),4.03(1H,m,▲−5),3.91(1H,m,△−5),3.86
(1H,t,J=9.0,△−3),3.79(1H,t,J=9.0,●−3),
3.75(1H,dd,J=7.5,9.0,▲−2),3.71(1H,dd,J=7.
5,9.0,△−2),3.70(1H,dd,J=7.5,9.0,●−2),3.6
6(2H,t,J=9.0,▲−3,4),3.43(1H,t,J=9.0,●−
4),3.40(1H,t,J=9.0,△−4),3.38(1H,br.,△−6
b). NOE,●−1→H−6−9%,●−1→H−8−1%,▲
−1→H−4−7%,△−1→H−2′−10% 但し、▲印は、3−O−β−D−グルコピラノシル基の
水素の置換位置を示す。●印は、7−O−β−D−グル
コピラノシル基の水素の置換位置を示す。△印は、3′
−O−β−D−グルコピラノシル基の水素の置換位置を
示す。■印は、α−L−アラビノフラノシル基の水素の
置換位置を示す。6a,6b又は、5a,5bは、低磁場側に現れ
る水素シグナルをaで、高磁場側に現れる水素シグナル
をbで示す。有機酸の水素シグナルの置換位置はH−
2″,H−5″,H−6″,H−α,H−βで示す。母核(シア
ニジン)の水素シグナルの置換位置はH−4,H−6,H−8,
H−2′,H−4′,H−5′で示す。UVスペクトルは最大
吸収波長(λmax)及び、( )中に分子吸光係数
(ε)を示した。各波長における、吸光度比も示した。
NMRスペクトルは、化学シフト(δppm)及び、( )中
に水素数、カップリング、カップリング定数、帰属部位
の順に示した。NOEは、例えば、▲−1→H−4−4%
は、▲−1位の水素核を照射した場合にH−4位の水素
シグナルに−4%の負のNOEが観測される事を示してい
る。
3-O- (β-D-glucopyranosyl) -7-O- (6-
OE-caffeyl-β-D-glucopyranosyl) -3'-
O- (6-O-E-caffeyl-β-D-glucopyranosy
l) cyanidin (III) C 51 H 53 O 27 = 1,097 UVλ max (0.01% HCl / MeOH, conc., 2.7x10 -5 mol / 1,20
℃) nm (ε) 529 (21,200), 330 (21,900), 286 (23,70)
0); E 440 / E 529 = 0.28, E 330 / E 529 = 1.04 1 H-NMR (500
MHz, 3% CF 3 COOD / CD 3 OD, 0 ° C), δ (ppm) 8.48 (1H,
br.d, J = 8.5, H-6 '), 8.40 (1H, s, H-4), 7.56 (1H,
d, J = 1.2, H-2 '), 7.18 (1H, d, J = 16, H-β), 7.05
(1H, d, J = 8.5, H-5 ′), 6.97 (1H, d, J = 16, H−β),
6.78 (1H, d, J = 2.0, H-6), 6.67 (1H, d, J = 2.0, H−)
8), 6.58 (1H, d, J = 8.5, H-5 ″), 6.28 (1H, d, J = 8.
0, H-5 "), 6.15 (1H, br, d, J = 8.0, H-6"), 6.12 (1
H, d, J = 16, H-α), 6.10 (1H, d, J = 1.0, H-2 ″), 6.09
(1H, d, J = 1.0, H-2 ″), 6.00 (1H, br.d, J = 8.0, H−
6 ″), 5.81 (1H, d, J = 16, H−α), 5.80 (1H, d, J = 1.0,
● -1), 5.25 (1H, d, J = 7.5, △ -1), 5.19 (1H, br.d,
J = 12, △ -6a), 5.06 (1H, br., ● -6a), 5.05 (1H, d, J
= 7.5, ▲ -1), 4.04 (3H, br.d, J = 7.5, ● -6b, ▲ -6a,
6b), 4.03 (1H, m, ▲ -5), 3.91 (1H, m, △ -5), 3.86
(1H, t, J = 9.0, △ -3), 3.79 (1H, t, J = 9.0, ● -3),
3.75 (1H, dd, J = 7.5,9.0, ▲ -2), 3.71 (1H, dd, J = 7.
5,9.0, △ -2), 3.70 (1H, dd, J = 7.5,9.0, ● -2), 3.6
6 (2H, t, J = 9.0, ▲ −3,4), 3.43 (1H, t, J = 9.0, ● −
4), 3.40 (1H, t, J = 9.0, △ -4), 3.38 (1H, br., △ -6
b). NOE, ● -1 → H-6-9%, ● -1 → H-8-1%, ▲
-1 → H-4-7%, Δ-1 → H-2′-10% However, the symbol ▲ indicates the hydrogen substitution position of the 3-O-β-D-glucopyranosyl group. The ● symbol indicates the hydrogen substitution position of the 7-O-β-D-glucopyranosyl group. △ mark is 3 '
The substitution position of hydrogen of -O-β-D-glucopyranosyl group is shown. The mark (4) indicates the hydrogen substitution position of the α-L-arabinofuranosyl group. In 6a, 6b or 5a, 5b, a hydrogen signal appearing on the low magnetic field side is indicated by a, and a hydrogen signal appearing on the high magnetic field side is indicated by b. The substitution position of the hydrogen signal of the organic acid is H-
2 ″, H-5 ″, H-6 ″, H-α, H-β. The substitution positions of the hydrogen signal of the mother nucleus (cyanidine) are H-4, H-6, H-8,
It shows with H-2 ', H-4', and H-5 '. The UV spectrum shows the maximum absorption wavelength (λ max ) and the molecular extinction coefficient (ε) in (). The absorbance ratio at each wavelength is also shown.
The NMR spectrum shows the chemical shift (δ ppm) and the number of hydrogen in (), the coupling, the coupling constant, and the assigned site in this order. NOE is, for example, ▲ -1 → H-4-4%
Indicates that a negative NOE of -4% is observed in the hydrogen signal at the H-4 position when the hydrogen nucleus at the -1 position is irradiated.

次に(IV)の500MHz 1H-NMRによる構造解析を以下のよ
うに行った。△、●印糖のアノマー水素を照射するとNO
Eが存在する事、△、●印糖の6位のメチレン水素が低
磁場シフトしている事から、(IV)は3−O−(β−D
−glucopyranosyl)−7−O−(6−O−E−caffeyl
−β−D−glucopyranosyl)−3′−O−(6−O−E
−caffeyl−β−D−glucopyranosyl)cyanidin(III)
から、母核3位に結合していた糖が欠落したものである
と推定される。これは、母核4位のNOEを測定したとこ
ろ、何れのアノマー水素にもNOEが観測されない事か
ら、(IV)は、第4図に示した構造式である事が確認さ
れた。(IV)の500MHz 1H-NMRスペクトルの全帰属を以
下に示す。
Next, structural analysis of (IV) by 500 MHz 1 H-NMR was performed as follows. △, ● NO when irradiated with anomeric hydrogen of sucrose
(IV) is 3-O- (β-D because E is present and the methylene hydrogen at 6-position of Δ, ● saccharose is low-field shifted.
-Glucopyranosyl) -7-O- (6-O-E-caffeyl
-Β-D-glucopyranosyl) -3'-O- (6-O-E
-Caffeyl-β-D-glucopyranosyl) cyanidin (III)
From this, it is presumed that the sugar bound to the 3rd position of the mother nucleus was deleted. It was confirmed that (IV) has the structural formula shown in FIG. 4, since NOE was not observed in any anomeric hydrogen when NOE at the 4-position of the mother nucleus was measured. All attribution of 500 MHz 1 H-NMR spectrum of (IV) are shown below.

7−O−(6−O−E−caffeyl−β−D−glucopyrano
syl)−3′−O−(6−O−E−caffeyl−β−D−gl
ucopyranosyl)cyanidin(IV) C45H43O22=9351 H-NMR(500MHz,3%CF3COOD/CD3OD,40℃),δ(ppm)
8.48(1H,dd,J=2.0,8.5,H−6′),8.10(1H,s,H−
4),7.77(1H,d,J=2.0,H−2′),7.24(1H,d,J=16,
H−β),7.03(1H,d,J=16,H−β),7.01(1H,d,J=9.
0,H−5′),6.80(1H,d,J=1.5,H−6),6.70(1H,d,J
=1.5,H−8),6.50(1H,d,J=8.0,H−5″),6.31(1
H,d,J=8.0,H−5″),6.23(2H,d,J=2.0,H−2″,dd,
J=2.0,8.0,H−6″)6.15(1H,dd,J=2.0,8.0,H−
6″),6.11(1H,d,J=16,H−α),5.79(1H,d,J=16,H
−α),5.41(1H,d,J=7.5,●−1),5.15(1H,d,J=7.
5,△−1),5.09(1H,dd,J=2.0,12,△−6a),4.97(1
H,dd,J=2.5,12,●−6a),4.11(1H,dd,J=9.0,12,●−
6b),4.04(1H,dd,J=9.5,12,△−6b),4.01(1H,ddd,J
=2.5,9.0,9.5,●−5),3.90(1H,ddd,J=2.0,9.0,9.
5,△−5),3.75(1H,t,J=9.5,●−3),3.71(1H,t,J
=9.0,△−3),3.66(1H,dd,J=7.5,9.5,●−2),3.6
4(1H,dd,J=7.5,9.0,△−2),3.41(1H,t,J=9.5,●
−4),3.39(1H,t,J=9.0,△−4). (V)及び、(VI)はFAB-MS及び、NMRから各々、第5
図及び、第6図に示した構造である事が明かになった。
7-O- (6-O-E-caffeyl-β-D-glucopyrano
syl) -3'-O- (6-O-E-caffeyl-β-D-gl
ucopyranosyl) cyanidin (IV) C 45 H 43 O 22 = 935 1 H-NMR (500MHz, 3% CF 3 COOD / CD 3 OD, 40 ° C), δ (ppm)
8.48 (1H, dd, J = 2.0,8.5, H-6 '), 8.10 (1H, s, H-
4), 7.77 (1H, d, J = 2.0, H-2 ′), 7.24 (1H, d, J = 16,
H-β), 7.03 (1H, d, J = 16, H-β), 7.01 (1H, d, J = 9.
0, H-5 '), 6.80 (1H, d, J = 1.5, H-6), 6.70 (1H, d, J
= 1.5, H-8), 6.50 (1H, d, J = 8.0, H-5 "), 6.31 (1
H, d, J = 8.0, H-5 ″), 6.23 (2H, d, J = 2.0, H-2 ″, dd,
J = 2.0,8.0, H-6 ″) 6.15 (1H, dd, J = 2.0,8.0, H−
6 ″), 6.11 (1H, d, J = 16, H−α), 5.79 (1H, d, J = 16, H)
-Α), 5.41 (1H, d, J = 7.5, ● -1), 5.15 (1H, d, J = 7.
5, △ -1), 5.09 (1H, dd, J = 2.0,12, △ -6a), 4.97 (1
H, dd, J = 2.5,12, ● -6a), 4.11 (1H, dd, J = 9.0,12, ●-
6b), 4.04 (1H, dd, J = 9.5,12, △ -6b), 4.01 (1H, ddd, J
= 2.5,9.0,9.5,-5), 3.90 (1H, ddd, J = 2.0,9.0,9.
5, △ -5), 3.75 (1H, t, J = 9.5, ● -3), 3.71 (1H, t, J
= 9.0, △ -3), 3.66 (1H, dd, J = 7.5,9.5, ● -2), 3.6
4 (1H, dd, J = 7.5,9.0, △ -2), 3.41 (1H, t, J = 9.5, ●
-4), 3.39 (1H, t, J = 9.0, △ -4). (V) and (VI) are the fifth from FAB-MS and NMR, respectively.
It became clear that the structure is that shown in the figures and FIG.

(VII)は酸部分加水分解の際、50%の収率で得られて
くる。UVスペクトル、FAB-MS及び、NMPスペクトルの全
帰属を以下に示す。Methyl 2,5-di-O−caffeyl−α−L
−arabinofuranoside(VII) C24H24O11=488 UVλmax(MeOH,20℃)nm207,217,333FAB-MS m/z=489
(M+1)1 H-NMR(500MHz,CD3OD,−26℃),δ(ppm)7.60(1H,
d,J=16,H−β),7.59(1H,d,J=16,H−β),7.03(1H,
d,J=2.0,H−2″),6.92(1H,dd,J=2.0,8.0,H−
6″),6.88(1H,dd,J=2.0,8.0,H−6″),6.76(1H,
d,J=8.0,H−5″),6.72(1H,d,J=8.0,H−5″),6,2
9(1H,d,J=16,H−α),6.27(1H,d,J=16,H−α),5.0
2(1H,dd,J=0.8,2.5,■−2),4.94(1H,s,■−1),
4.47(1H,dd,J=3.5,12,■−5a),4.34(1H,dd,J=5.0,
12,■−5b),4.20(1H,ddd,J=3.5,5.0,6.0,■−4),
4.13(1H,dd,J=2.5,6.0,■−3). 母核の糖はカップリング定数からアラビノースである。
2組のコーヒー酸はNMRにおいて、2位と5位の水素シ
グナルが低磁場シフトしている事から、2位及び、5位
に結合している。アラビノフラノシドのアノマー配位
(α,β)、絶対配置(D,L)構造決定の為、(VII)を
アルカリ加水分解してMethyl α−L−arabinofuranosi
de(VIII)を得た。これは合成によって得た標品(Meth
yl α−L−arabinofuranoside)とUV,NMR及び、FAB-MS
が完全に一致した。
(VII) is obtained in a yield of 50% upon partial hydrolysis of the acid. All the attributions of UV spectrum, FAB-MS and NMP spectrum are shown below. Methyl 2,5-di-O-caffeyl-α-L
-Arabinofuranoside (VII) C 24 H 24 O 11 = 488 UVλ max (MeOH, 20 ° C) nm 207,217,333 FAB-MS m / z = 489
(M + 1) 1 H-NMR (500 MHz, CD 3 OD, −26 ° C.), δ (ppm) 7.60 (1 H,
d, J = 16, H−β), 7.59 (1H, d, J = 16, H−β), 7.03 (1H,
d, J = 2.0, H-2 ″), 6.92 (1H, dd, J = 2.0,8.0, H−
6 ″), 6.88 (1H, dd, J = 2.0,8.0, H−6 ″), 6.76 (1H,
d, J = 8.0, H-5 "), 6.72 (1H, d, J = 8.0, H-5"), 6,2
9 (1H, d, J = 16, H−α), 6.27 (1H, d, J = 16, H−α), 5.0
2 (1H, dd, J = 0.8,2.5, ■ -2), 4.94 (1H, s, ■ -1),
4.47 (1H, dd, J = 3.5,12, -5a), 4.34 (1H, dd, J = 5.0,
12, ■ -5b), 4.20 (1H, ddd, J = 3.5,5.0,6.0, ■ -4),
4.13 (1H, dd, J = 2.5,6.0, ■ -3). The sugar of the mother nucleus is arabinose according to the coupling constant.
In NMR, the two sets of caffeic acid are bonded to the 2nd and 5th positions because the hydrogen signals at the 2nd and 5th positions undergo a low magnetic field shift. Methyl α-L-arabinofuranosi was hydrolyzed by alkaline hydrolysis of (VII) to determine the anomeric coordination (α, β) and absolute configuration (D, L) structure of arabinofuranoside.
I got de (VIII). This is a preparation (Meth
yl α-L-arabinofuranoside) and UV, NMR and FAB-MS
Was a perfect match.

次に、(VIII)をベンゾイル化してMethyl 2,3,5−tri
−O−benzoyl−α−L−arabinofuranoside(IX)とし
た。標品のMethyl 2,3,5−tri−O−benzoyl−α−L−
arabinofuranoside及び、Methyl 1,2,3,5−tri−O−be
nzoyl−α−D−arabinofuranoside(X)とCDスペクト
ルを比較したところ、Methyl 2,3,5−tri−O−benzoyl
−α−L−arabinofuranosideと完全に一致した。従っ
て、母核の五炭糖の構造は、α−L−arabinofuranosid
eである事が明かとなった。
Next, benzoylation of (VIII) is performed to obtain Methyl 2,3,5-tri
It was designated as -O-benzoyl-α-L-arabinofuranoside (IX). Authentic Methyl 2,3,5-tri-O-benzoyl-α-L-
arabinofuranoside and Methyl 1,2,3,5-tri-O-be
Comparing the CD spectrum with nzoyl-α-D-arabinofuranoside (X), Methyl 2,3,5-tri-O-benzoyl
It was completely in agreement with -α-L-arabinofuranoside. Therefore, the structure of the pentose sugar in the nucleus is α-L-arabinofuranosid.
It became clear that it was e.

次に(I)の全構造の検討を行った。FAB-MSより分子量
(M′)は1,553であり、母核はシアニジンである。ア
ルカリ加水分解の結果から、4Mのコーヒー酸が糖にエス
テル結合されており、酸部分加水分解の結果から、3Mの
グルコースと2Mのコーヒー酸の結合位置が明らかになっ
た。又、残る1Mの糖はα−L−アラビノースであり、残
る2Mのコーヒー酸はこのα−L−アラビノースにエステ
ル結合されている事が確認された。
Next, the entire structure of (I) was examined. From FAB-MS, the molecular weight (M ') is 1,553, and the mother nucleus is cyanidin. The result of alkaline hydrolysis showed that 4M caffeic acid was ester-linked to sugar, and the result of partial acid hydrolysis revealed the binding positions of 3M glucose and 2M caffeic acid. It was also confirmed that the remaining 1M sugar was α-L-arabinose and the remaining 2M caffeic acid was ester-bonded to this α-L-arabinose.

(I)のUV、FAB-MS及び、500MHz 1H-NMRスペクトルの
全帰属を以下に示す。3−O−{6−O−(2,5−di−
O−E−caffeyl−α−L−arabinofuranosyl)−β−
D−glucopyraanosyl}−7−O−(6−O−E−caffe
yl−β−D−glucopyranosyl)3′−O−(6−O−E
−caffeyl−β−D−glucopyranosyl)cyanidin(I) C74H73O37=1,553 UV λmax(0.01%HCl/MeOH,conc.,2.7x10-5mol/1,20
℃)nm(ε)532(25,000),329(51,800),292(47,30
0):(1/30M phosphate buffer,pH6.5,conc.,2.7x10-5
mol/1,20℃)583(28,800),543(27,100),506(13,90
0),470(5,700),323(36,500),306(39,300),237
(36,100) FAB-MSm/z1,553(M+1 H-NMR(500MHz,3% CF3COOD/CD3OD,−20℃,δ(pp
m)8.40(1H,br,d,J=9.5,H=−6′),8,28(1H,s,H−
4),7.41(1H,d,J=16,H−β),7.37(1H,br,H−
2′),7.28(1H,d,J=16,H−β),6.99(1H,d,J=9.5,
H−5′),6.93(2H,d,J=16,H−β),6.91(1H,d,J=
1.3,H−2″),6.84(1H,d,J=1.3,H−2″),6.73(1
H,d,J=1.3,H−6),6.65(1H,dd,J=1.3,8.0,H−
6″),6.63(1H,d,J=1.3,H−8),6.61(1H,d,J=8.
0,H−5″),6.59(1H,d,J=8.0,H−5″),6.53(1H,
d,J=8.0,H−5″),6.50(1H,dd,J=1.3,8.0,H−
6″),6.26(1H,d,J=1.3,H−2″),6.21(1H,d,J=
8.0,H−5″),6.14(1H,d,J=16,H−α),6.06(1H,d,
J=1.3,H−2″),6.055(1H,dd,J=1.3,8.0,H−
6″),6.05(1H,d,J=16,H−α),5.87(1H,d,J=16,H
−α),5.76(1H,d,J=16,H−α),5.75(1H,d,J=16,H
−α),5.38(1H,d,J=7.5,●−1),5.20(1H,s,■−
1),5.18(1H,d,J=1.3,■−2),5.07(1H,d,J=7.5,
△−1),5.03(1H,d,J=7.5,▲−1),4.92(1H,dd,J
=9.5,12,●−6a),4.45(1H,dd,J=2.0,■−5a),4.31
(1H,dd,J=5.0,12,■−5b),4.25(1H,m,■−4),4.1
8(1H,br.d,J=10,▲−6a),4.02(1H,dd,J=1.3,9.0,
■−3),3.94(1H,br.d,J=12,△−6a),3.92(1H,dd,
J=7.5,12,●−6b),3.90(1H,br,d,J=12,△−6b),3.
86(2H,m,▲−5,▲−6b),3.81(1H,m,●−5),3.74
(1H,m,△−5),3.71(1H,dd,J=7.5,9.0,▲−2),3.
71(1H,t,J=9.0,●−3),3.67(1H,dd,J=7.5,9.0,●
−2),3.66(1H,dd,J=7.5,9.0,△−2),3.65(2H,t,
J=9.0,▲−3,△−3),3.44(1H,t,J=9.0,▲−4),
3.38(1H,t,J=9.0,△−4). NOE▲−1→H−4−4%,H−4→▲−1−30%,●−
1→H−6−5%,●−1→H−8−17%,△−1→H
−2′−20%,H−2′→△−1−23%,▲−1→▲−3,
5,△−1→△−3,5,■−1→■−3,4,▲−1,6a,6b,H−
α(6.05),H−5″(6.21),■−2→▲−1,6a,6b,●
−1→H−α(5.76),H−2″(6.06),H−2″(6.2
6)→H−α(6.05),H−β(6.93),H−2″(6.06)
→H−α(5.76),H−β(6.93). まず、母核が低磁場に特徴的に現れており、(H−4
位,H−6位,H−8位,H−2′位,H−5′位,H−6′位)
シアニジンである事がわかった。次に、4組のコーヒー
酸のシグナルが同定された(H−β,H−2″,H−6″,H
−5″,H−α)。二重結合は、J=16Hzからいずれもト
ランス配置(E)をとっている。糖領域の1H-NMRデカッ
プリングにより、3個の糖はD−グルコピラノース環で
ある。又、それらのアノマー水素(●、▲、△糖)は、
いずれもカップリング定数(J=7.5Hz)からβ配置で
あった。△、▲印糖は、各々6位のメチレン水素が低磁
場シフトしている事から、2分子のコーヒー酸は、△、
▲印糖の6位に結合している。5炭糖(■印)はカップ
リング定数よりα−L−アラビノフラノース環である。
All the attributions of UV, FAB-MS and 500MHz 1 H-NMR spectrum of (I) are shown below. 3-O- {6-O- (2,5-di-
OE-caffeyl-α-L-arabinofuranosyl) -β-
D-glucopyraanosyl} -7-O- (6-OE-caffe
yl-β-D-glucopyranosyl) 3'-O- (6-O-E
-Caffeyl-β-D-glucopyranosyl) cyanidin (I) C 74 H 73 O 37 = 1,553 UV λ max (0.01% HCl / MeOH, conc., 2.7x10 -5 mol / 1,20
℃) nm (ε) 532 (25,000), 329 (51,800), 292 (47,30)
0): (1 / 30M phosphate buffer, pH6.5, conc., 2.7x10 -5
mol / 1,20 ℃) 583 (28,800), 543 (27,100), 506 (13,90)
0), 470 (5,700), 323 (36,500), 306 (39,300), 237
(36,100) FAB-MSm / z1,553 (M + ) 1 H-NMR (500MHz, 3% CF 3 COOD / CD 3 OD, -20 ℃, δ (pp
m) 8.40 (1H, br, d, J = 9.5, H = -6 '), 8,28 (1H, s, H-
4), 7.41 (1H, d, J = 16, H−β), 7.37 (1H, br, H−
2 '), 7.28 (1H, d, J = 16, H-β), 6.99 (1H, d, J = 9.5,
H-5 '), 6.93 (2H, d, J = 16, H-β), 6.91 (1H, d, J =
1.3, H-2 ″), 6.84 (1H, d, J = 1.3, H-2 ″), 6.73 (1
H, d, J = 1.3, H-6), 6.65 (1H, dd, J = 1.3,8.0, H-
6 ″), 6.63 (1H, d, J = 1.3, H-8), 6.61 (1H, d, J = 8.
0, H-5 "), 6.59 (1H, d, J = 8.0, H-5"), 6.53 (1H,
d, J = 8.0, H-5 ″), 6.50 (1H, dd, J = 1.3,8.0, H−
6 ″), 6.26 (1H, d, J = 1.3, H-2 ″), 6.21 (1H, d, J =
8.0, H-5 ″), 6.14 (1H, d, J = 16, H−α), 6.06 (1H, d,
J = 1.3, H-2 ″), 6.055 (1H, dd, J = 1.3,8.0, H−
6 ″), 6.05 (1H, d, J = 16, H−α), 5.87 (1H, d, J = 16, H
−α), 5.76 (1H, d, J = 16, H−α), 5.75 (1H, d, J = 16, H
-Α), 5.38 (1H, d, J = 7.5, ● -1), 5.20 (1H, s, ■-
1), 5.18 (1H, d, J = 1.3, ■ -2), 5.07 (1H, d, J = 7.5,
△ -1), 5.03 (1H, d, J = 7.5, ▲ -1), 4.92 (1H, dd, J
= 9.5, 12, ● -6a), 4.45 (1H, dd, J = 2.0, ■ -5a), 4.31
(1H, dd, J = 5.0,12, ■ -5b), 4.25 (1H, m, ■ -4), 4.1
8 (1H, br.d, J = 10, ▲ -6a), 4.02 (1H, dd, J = 1.3,9.0,
■ -3), 3.94 (1H, br.d, J = 12, △ -6a), 3.92 (1H, dd,
J = 7.5,12, ● -6b), 3.90 (1H, br, d, J = 12, △ -6b), 3.
86 (2H, m, ▲ -5, ▲ -6b), 3.81 (1H, m, ● -5), 3.74
(1H, m, △ -5), 3.71 (1H, dd, J = 7.5,9.0, ▲ -2), 3.
71 (1H, t, J = 9.0, ● -3), 3.67 (1H, dd, J = 7.5,9.0, ●
-2), 3.66 (1H, dd, J = 7.5,9.0, △ -2), 3.65 (2H, t,
J = 9.0, ▲ -3, △ -3), 3.44 (1H, t, J = 9.0, ▲ -4),
3.38 (1H, t, J = 9.0, △ -4). NOE ▲ -1 → H-4-4%, H-4 → ▲ -1-30%, ●-
1 → H-6-5%, ● -1 → H-8-17%, △ -1 → H
-2'-20%, H-2 '→ △ -1-23%, ▲ -1 → ▲ -3,
5, △ -1 → △ -3,5, ■ -1 → ■ -3,4, ▲ -1,6a, 6b, H-
α (6.05), H-5 ″ (6.21), ■ -2 → ▲ -1,6a, 6b, ●
-1 → H-α (5.76), H-2 "(6.06), H-2" (6.2
6) → H-α (6.05), H-β (6.93), H-2 ″ (6.06)
→ H-α (5.76), H-β (6.93). First, the mother nucleus appears characteristically in the low magnetic field, and (H-4
Position, H-6 position, H-8 position, H-2 'position, H-5' position, H-6 'position)
It turned out to be cyanidin. Next, four sets of caffeic acid signals were identified (H-β, H-2 ″, H-6 ″, H
-5 ″, H-α). The double bond has a trans configuration (E) from J = 16 Hz. 1 H-NMR decoupling of the sugar region causes the three sugars to be D-glucopyranose. A ring, and their anomeric hydrogens (●, ▲, △ sugars) are
All were in the β configuration from the coupling constant (J = 7.5 Hz). In each of the △ and ▲ seal sugars, the methylene hydrogen at the 6-position is shifted in a low magnetic field.
▲ It is attached to the 6-position of sucrose. The 5-carbon sugar (marked with ■) is an α-L-arabinofuranose ring according to the coupling constant.

アラビノース1位の水素は、▲印糖6位とNOEを有する
事から、アラビノース1位は、▲印糖6位とグルコシド
結合している。残る2Mのコーヒー酸はアラビノフラノー
ス環の2位と5位の水素が低磁場シフトしている事か
ら、2位と5位にエステル結合している。以上の結果よ
り、(I)の構造は第1図に示される様に決定した。
Since the hydrogen at the 1-position of arabinose has a NO-E with the 6-position of the saccharose, the 1-position of arabinose is glucosidic to the 6-position of the saccharose. The remaining 2M caffeic acid is ester-bonded to the 2nd and 5th positions because the hydrogens at the 2nd and 5th positions of the arabinofuranose ring are low-field shifted. From the above results, the structure of (I) was determined as shown in FIG.

実施例2 ゼブリナ・ペンジュラ(和名:ハカタカラクサ又はシマ
フムラサキツユクサ、学名:Zebrina pendula Schnitzle
in)の花、葉、及び、茎にも3−O−{6−O−(2,5
−di−O−E−caffeyl−α−L−arabinofuranosyl)
−β−D−glucopyranosyl}−7−O−(6−O−E−
caffeyl−β−D−glucopyranosyl)−3′−O−(6
−O−E−caffeyl−β−D−glucopyranosyl)cyanidi
n(I)、3−O−{6−O−(5−O−E−caffeyl−
α−L−arabinofuranosyl)−β−D−glucopyranosy
l}−7−O−(6−O−E−caffeyl−β−D−glucop
yranosyl)−3′−O−(6−O−E−caffeyl−β−
D−glucopyranosyl)cyanidin(XI)、及び、3−O−
{6−O−(2−O−E−caffeyl−α−L−arabinofu
ranosyl)−β−D−glucopyranosyl}−7−O−(6
−O−E−caffeyl−β−D−glucopyranosyl)−3′
−O−(6−O−E−caffeyl−β−D−glucopyranosy
l)cyanidin(XII)等々のアシル化アントシアニンが含
まれている事が、HPLC分析の結果明らかになった。(X
I)及び、(XII)についてもHPLCで分取し、その構造決
定を(I)の場合と全く同様に500MHz 1H-NMR、FAB-M
S、UVによる分析によって行った。
Example 2 Zebulina pendula Schnitzle (Japanese name: Hakatakarakusa or Symphalus communis, Scientific name: Zebrina pendula Schnitzle
in) flowers, leaves, and stems also have 3-O- {6-O- (2,5
-Di-OE-caffeyl-α-L-arabinofuranosyl)
-Β-D-glucopyranosyl} -7-O- (6-OE-
caffeyl-β-D-glucopyranosyl) -3'-O- (6
-OE-caffeyl-β-D-glucopyranosyl) cyanidi
n (I), 3-O- {6-O- (5-O-E-caffeyl-
α-L-arabinofuranosyl) -β-D-glucopyranosy
l} -7-O- (6-O-E-caffeyl-β-D-glucop
yranosyl) -3'-O- (6-O-E-caffeyl-β-
D-glucopyranosyl) cyanidin (XI) and 3-O-
{6-O- (2-O-E-caffeyl-α-L-arabinofu
ranosyl) -β-D-glucopyranosyl} -7-O- (6
-OE-caffeyl-β-D-glucopyranosyl) -3 '
-O- (6-OE-caffeyl-β-D-glucopyranosy
l) HPLC analysis revealed that it contained acylated anthocyanins such as cyanidin (XII). (X
I) and (XII) were also collected by HPLC, and the structure was determined in exactly the same manner as in (I) by 500 MHz 1 H-NMR, FAB-M.
The analysis was performed by S and UV.

FAB-MSから(XI)及び、(XII)はいずれも同一の分子
量[m/z=1,391(M+)(C65H67O34)]を与えた。アル
カリ加水分解反応を行った結果、いずれも、3−O−
{6−O−(α−L−arabinofuranosyl)−β−D−gl
ucopyranosyl}−7−O−(β−D−glucopyranosyl)
−3′−O−(β−D−glucopyranosyl)cyanidin(I
I)と3Mのコーヒー酸が得られた。
From FAB-MS, both (XI) and (XII) gave the same molecular weight [m / z = 1,391 (M + ) (C 65 H 67 O 34 )]. As a result of carrying out the alkali hydrolysis reaction, both were 3-O-
{6-O- (α-L-arabinofuranosyl) -β-D-gl
ucopyranosyl} -7-O- (β-D-glucopyranosyl)
-3'-O- (β-D-glucopyranosyl) cyanidin (I
I) and 3M caffeic acid were obtained.

酸部分加水分解反応を行った結果、(XI)の場合、(II
I),(IV),(V),(VI)及び、Methyl 5−O−E
−caffeyl−α−L−arabinofuranosideが得られた。一
方、(XII)の場合、(III),(IV),(V),(VI)
及び、Methyl 2−O−E−caffeyl−α−L−arabinofu
ranosideが得られた。以上の結果から(XI)の構造は3
−O−{6−O−(5−O−E−caffeyl−α−L−ara
binofuranosyl)−β−D−glucoptranosyl}−7−O
−(6−O−E−caffeyl−β−D−glucopyranosyl)
−3′−O−(6−O−E−caffeyl−β−D−glucopy
ranosyl)cyanidinであり、(XII)の構造は3−O−
{6−O−(2−O−E−caffeyl−α−L−arabinofu
ranosyl)−β−D−glucopyranosyl}−7−O−(6
−O−E−caffeyl−β−D−glucopyranosyl)−3′
−O−(6−O−E−caffeyl−β−D−glucopyranosy
l)cyanidinである。
As a result of acid partial hydrolysis reaction, in the case of (XI), (II
I), (IV), (V), (VI) and Methyl 5-OE
-Caffeyl-α-L-arabinofuranoside was obtained. On the other hand, in the case of (XII), (III), (IV), (V), (VI)
And Methyl 2-OE-caffeyl-α-L-arabinofu
Got ranoside. From the above results, the structure of (XI) is 3
-O- {6-O- (5-OE-caffeyl-α-L-ara
binofuranosyl) -β-D-glucoptranosyl} -7-O
-(6-OE-caffeyl-β-D-glucopyranosyl)
-3'-O- (6-O-E-caffeyl-β-D-glucopy
ranosyl) cyanidin, and the structure of (XII) is 3-O-
{6-O- (2-O-E-caffeyl-α-L-arabinofu
ranosyl) -β-D-glucopyranosyl} -7-O- (6
-OE-caffeyl-β-D-glucopyranosyl) -3 '
-O- (6-OE-caffeyl-β-D-glucopyranosy
l) cyanidin.

実施例3 ムラサキゴテン(学名:Setcreasea purpurea BOOM)に
も数種類のアシル化アントシアニンが含まれている事
が、HPLC分析の結果明らかになったが、その中の主成分
のひとつであるアントシアニン(XIII)についてもHPLC
で分取し、その構造決定を同様に500MHz 1H-NMR、FAB-M
S、UVによる分析によって行った。
Example 3 As a result of HPLC analysis, it was clarified by HPLC analysis that Murasakigoten (scientific name: Setcreasea purpurea BOOM) also contained several kinds of acylated anthocyanins. Regarding one of the main components, anthocyanin (XIII) Also HPLC
, And its structure was similarly determined by 500 MHz 1 H-NMR, FAB-M
The analysis was performed by S and UV.

FAB-MSから分子量(M+)は1,609(C78H81O37)であっ
た。
From FAB-MS, the molecular weight (M + ) was 1,609 (C 78 H 81 O 37 ).

pH6.5の1/30Mリン酸緩衝溶液中におけるUVスペクトルか
ら最大吸収波長(λmax)及び、分子吸光係数(log
ε)は各々237nm(4.57),310nm(4.64),508nm(4.1
6),543nm(4.34)及び、584nm(4.44)に現われた。ア
ルカリ加水分解反応を行った結果、(II)と4Mのフェル
ラ酸が得られた。酸部分加水分解反応を行った結果、3
−O−β−D−glucopyranosyl−7−O−(6−O−E
−ferulyl−β−D−glucopyranosyl)−3′−O−
(6−O−E−ferulyl−β−D−glucopyranosyl)cya
nidin(XIV),7−O−(6−O−E−ferulyl−β−D
−glucopyranosyl)−3′−O−(6−O−E−feruly
l−β−D−glucopyranosyl)cyanidin(XV)、7−O
−(6−O−E−ferulyl−β−D−glucopyranosyl)c
yanidin(XVI),3′−O−(6−O−E−ferulyl−β
−D−glucopyranosyl)cyanidin(XVII)及び、Methyl
2,5−di−O−ferulyl−α−L−arabinofuranoside
(XVIII)が得られた。従って、(XIII)の構造は3−
O−{6−O−(2,5−di−O−E−ferulyl−α−L−
arabinofuranosyl)−β−D−glucopyranosyl}−7−
O−(6−O−E−ferulyl−β−D−glucopyranosy
l)−3′−O−(6−O−E−ferulyl−β−D−gluc
opyranosyl)cyanidinである。
The maximum absorption wavelength (λ max ) and molecular extinction coefficient (log
ε) is 237 nm (4.57), 310 nm (4.64), 508 nm (4.1
6), 543 nm (4.34) and 584 nm (4.44). As a result of alkaline hydrolysis, (II) and 4M ferulic acid were obtained. As a result of acid partial hydrolysis reaction, 3
-O-β-D-glucopyranosyl-7-O- (6-OE
-Ferulyl-β-D-glucopyranosyl) -3'-O-
(6-OE-ferulyl-β-D-glucopyranosyl) cya
nidin (XIV), 7-O- (6-O-E-ferulyl-β-D
-Glucopyranosyl) -3'-O- (6-O-E-feruly
l-β-D-glucopyranosyl) cyanidin (XV), 7-O
-(6-OE-ferulyl-β-D-glucopyranosyl) c
yanidin (XVI), 3'-O- (6-O-E-ferulyl-β
-D-glucopyranosyl) cyanidin (XVII) and Methyl
2,5-di-O-ferulyl-α-L-arabinofuranoside
(XVIII) was obtained. Therefore, the structure of (XIII) is 3-
O- {6-O- (2,5-di-OE-ferulyl-α-L-
arabinofuranosyl) -β-D-glucopyranosyl} -7-
O- (6-O-E-ferulyl-β-D-glucopyranosy
l) -3'-O- (6-O-E-ferulyl-β-D-gluc
opyranosyl) cyanidin.

実施例4 ムラサキオモト(学名:Rhoeo spathaceae W.T.Stearn)
にも数種のアシル化アントシアニンが含まれている事が
HPLC分析の結果明らかになったが、その中の主成分であ
るアントシアニン(XIX)についてもHPLCで分取し、そ
の構造決定を同様に行った。
Example 4 Purple moto (scientific name: Rhoeo spathaceae WTStearn)
Also contains some acylated anthocyanins
Although it became clear as a result of HPLC analysis, anthocyanin (XIX), which is the main component, was fractionated by HPLC and its structure was similarly determined.

FAB-MSから分子量(M+)は1,433(C68H73O34)である。The molecular weight (M + ) from FAB-MS is 1,433 (C 68 H 73 O 34 ).

pH6.5の1/30Mリン酸緩衝溶液中におけるUVスペクトルか
らλmax及び、log εは各々、236nm(4.53),312nm(4.
54),508nm(4.16),544nm(4.41)及び、588nm(4.4
5)に現われる。
From the UV spectrum in a 1/30 M phosphate buffer solution of pH 6.5, λ max and log ε are 236 nm (4.53) and 312 nm (4.
54), 508nm (4.16), 544nm (4.41) and 588nm (4.4
Appears in 5).

(XIX)のアルカリ加水分解反応の結果、(II)と3Mの
フェルラ酸が得られた。又、酸加水分解の結果、(XI
V),(XV),(XVI),(XVII)及び、Methyl 5−O−
ferulyl−α−L−arabinofuranoside(XX)が得られ
た。従って、(XIX)の構造は3−O−{6−O−(5
−O−E−ferulyl−α−L−arabinofuranosyl)−β
−D−glucopyranosyl}−7−O−(6−O−E−feru
lyl−β−D−glucopyranosyl)−3′−O−(6−O
−E−ferulyl−β−D−glucopyranosyl)cyanidinで
ある。
As a result of the alkaline hydrolysis reaction of (XIX), (II) and 3M ferulic acid were obtained. Also, as a result of acid hydrolysis, (XI
V), (XV), (XVI), (XVII) and Methyl 5-O-
ferulyl-α-L-arabinofuranoside (XX) was obtained. Therefore, the structure of (XIX) is 3-O- {6-O- (5
-OE-ferulyl-α-L-arabinofuranosyl) -β
-D-glucopyranosyl} -7-O- (6-O-E-feru
lyl-β-D-glucopyranosyl) -3'-O- (6-O
-E-ferulyl-β-D-glucopyranosyl) cyanidin.

比較例 pH6.5、1/30Mリン酸緩衝溶液中における(I),(I
I),(III),(XIII),(XIX)の安定性をUVで比較
した結果を第7図に示した。この事から、アシル化アン
トシアニンはデアシル体(II)に比べかなり安定であ
り、アシル基の数に比例して安定性が増加している。
Comparative Example (I), (I in 1/30 M phosphate buffer solution, pH 6.5
The results of UV stability comparison of I), (III), (XIII), and (XIX) are shown in FIG. From this fact, the acylated anthocyanin is much more stable than the deacyl derivative (II), and the stability is increased in proportion to the number of acyl groups.

【図面の簡単な説明】[Brief description of drawings]

第1図は、3−O−{6−O−(2,5−di−O−E−caf
feyl−α−L−arabinofuranosyl)−β−D−glucopyr
anosyl}−7−O−(6−O−E−caffeyl−β−D−g
lucopyranosyl)−3′−O−(6−O−E−caffeyl−
β−D−glucopyranosyl)cyanidin(I)の構造式、第
2図は3−O−{6−O−(α−L−arabinofuranosy
l)−β−D−glucoptranosyl}−7−O−(β−D−g
lucopyranosyl)−3′−O−(β−D−glucopyranosy
l)cyanidin(II)の構造式、第3図は3−O−(β−
D−glucopyranosyl)−7−O−(6−O−E−caffey
l−β−D−glucopyranosyl)−3′−O−(6−O−
E−caffeyl−β−D−glucopyranosyl)cyanidin(II
I)の構造式、第4図は7−O−(6−O−E−caffeyl
−β−D−glucopyranosyl)−3′−O−(6−O−E
−caffeyl−β−D−glucopyranosyl)cyanidin(IV)
の構造式、第5図は、7−O−(6−O−E−caffeyl
−β−D−glucopyranosyl)cyanidin(V)の構造式、
第6図は、3′−O−(6−O−E−caffeyl−β−D
−glucopyranosyl)cyanidin(VI)の構造式、第7図
は、3−O−{6−O−(2,5−di−0−E−caffeyl−
α−L−arabinofuranosyl)−β−D−glucoptranosy
l}−7−O−(6−O−E−caffeyl−β−D−glucop
yranosyl)−3′−O−(6−O−E−caffeyl−β−
D−glucopyranosyl)cyanidin(I)、3−O−{6−
O−(α−L−arabinofuranosyl)−β−D−glucopyr
anosyl}−7−O−(β−D−glucopyranosyl)−3′
−O−(β−D−glucopyranosyl)cyanidin(II)、3
−O−(β−D−glucopyranosyl)−7−O−(6−O
−E−caffeyl−β−D−glucopyranosyl)−3′−O
−(6−O−E−caffeyl−β−D−glucopyranosyl)c
yanidin(III)、3−O−{6−O−(2,5−di−O−
E−ferulyl−α−L−arabinofuranosyl)−β−D−g
lucopyranosyl}−7−O−(6−O−E−ferulyl−β
−D−glucopyranosyl)−3′−O−(6−O−E−fe
rulyl−β−D−glucopyranosyl)cyanidin(XIII)、
及び、3−O−{6−O−(5−O−E−ferulyl−α
−L−arabinofuranosyl)−β−D−glucopyranosyl}
−7−O−(6−O−E−ferulyl−β−D−glucopyra
nosyl)−3′−O−(6−O−E−ferulyl−β−D−
glucopyranosyl)cyanidin(XIX)の安定性の比較を示
したグラフである。
FIG. 1 shows 3-O- {6-O- (2,5-di-OE-caf
feyl-α-L-arabinofuranosyl) -β-D-glucopyr
anosyl} -7-O- (6-O-E-caffeyl-β-D-g
lucopyranosyl) -3'-O- (6-O-E-caffeyl-
Structural formula of β-D-glucopyranosyl) cyanidin (I), FIG. 2 shows 3-O- {6-O- (α-L-arabinofuranosy
l) -β-D-glucoptranosyl} -7-O- (β-D-g
lucopyranosyl) -3'-O- (β-D-glucopyranosy
l) Structural formula of cyanidin (II), Fig. 3 shows 3-O- (β-
D-glucopyranosyl) -7-O- (6-O-E-caffey
l-β-D-glucopyranosyl) -3'-O- (6-O-
E-caffeyl-β-D-glucopyranosyl) cyanidin (II
The structural formula of I), FIG. 4 is 7-O- (6-O-E-caffeyl
-Β-D-glucopyranosyl) -3'-O- (6-O-E
-Caffeyl-β-D-glucopyranosyl) cyanidin (IV)
5 is a structural formula of 7-O- (6-O-E-caffeyl
-Β-D-glucopyranosyl) cyanidin (V) structural formula,
FIG. 6 shows 3'-O- (6-OE-caffeyl-β-D.
-Glucopyranosyl) cyanidin (VI) structural formula, FIG. 7 shows 3-O- {6-O- (2,5-di-0-E-caffeyl-
α-L-arabinofuranosyl) -β-D-glucoptranosy
l} -7-O- (6-O-E-caffeyl-β-D-glucop
yranosyl) -3'-O- (6-O-E-caffeyl-β-
D-glucopyranosyl) cyanidin (I), 3-O- {6-
O- (α-L-arabinofuranosyl) -β-D-glucopyr
anosyl} -7-O- (β-D-glucopyranosyl) -3 '
-O- (β-D-glucopyranosyl) cyanidin (II), 3
-O- (β-D-glucopyranosyl) -7-O- (6-O
-E-caffeyl-β-D-glucopyranosyl) -3'-O
-(6-OE-caffeyl-β-D-glucopyranosyl) c
yanidin (III), 3-O- {6-O- (2,5-di-O-
E-ferulyl-α-L-arabinofuranosyl) -β-D-g
lucopyranosyl} -7-O- (6-O-E-ferulyl-β
-D-glucopyranosyl) -3'-O- (6-O-E-fe
rulyl-β-D-glucopyranosyl) cyanidin (XIII),
And 3-O- {6-O- (5-O-E-ferulyl-α
-L-arabinofuranosyl) -β-D-glucopyranosyl}
-7-O- (6-O-E-ferulyl-β-D-glucopyra
nosyl) -3'-O- (6-O-E-ferulyl-β-D-
It is the graph which showed the comparison of stability of glucopyranosyl) cyanidin (XIX).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式 (式中のR1は、水素、コーヒー酸又は、フェルラ酸、R2
は、コーヒー酸又は、フェルラ酸、R3は、コーヒー酸又
は、フェルラ酸、R4は、コーヒー酸又は、フェルラ酸で
ある。ANION-は陰イオンである。)で表わされるアシル
化アントシアニン。
1. A general formula (R 1 in the formula is hydrogen, caffeic acid or ferulic acid, R 2
Is caffeic acid or ferulic acid, R 3 is caffeic acid or ferulic acid, and R 4 is caffeic acid or ferulic acid. ANION - is an anion. ) An acylated anthocyanin represented by:
JP61255427A 1986-10-27 1986-10-27 Acylated anthocyanin Expired - Lifetime JPH0764995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255427A JPH0764995B2 (en) 1986-10-27 1986-10-27 Acylated anthocyanin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255427A JPH0764995B2 (en) 1986-10-27 1986-10-27 Acylated anthocyanin

Publications (2)

Publication Number Publication Date
JPS63110259A JPS63110259A (en) 1988-05-14
JPH0764995B2 true JPH0764995B2 (en) 1995-07-12

Family

ID=17278614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255427A Expired - Lifetime JPH0764995B2 (en) 1986-10-27 1986-10-27 Acylated anthocyanin

Country Status (1)

Country Link
JP (1) JPH0764995B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210315240A1 (en) * 2018-08-31 2021-10-14 Mars, Incorporated Anthocyanin-based colorant compositions and methods of use thereof
CN115135169A (en) 2019-10-01 2022-09-30 马斯公司 Enzymatic treatment of anthocyanin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biochem.Syst.Ecol.,Vol8No.3P.285−7(1980)
PhytoChemistryVol20P.143−145(1981)

Also Published As

Publication number Publication date
JPS63110259A (en) 1988-05-14

Similar Documents

Publication Publication Date Title
Rastrelli et al. Studies on the constituents of Chenopodium pallidicaule (Canihua) seeds. Isolation and characterization of two new flavonol glycosides
Horton et al. Anomeric equilibria in derivatives of amino sugars. Nuclear magnetic resonance studies on acetylated amino sugars and specifically deuterated analogs
ONO et al. Resin Glycosides. V.: Identification and Characterization of the Component Organic and Glycosidic Acids of the Ether-Soluble Crude Resin Glycosides (" Jalapin") from Rhizoma Jalapae Braziliensis (Roots of Ipomoea Operculata)
Chen et al. Diosgenin-bearing, molluscicidal saponins from Allium vineale: an NMR approach for the structural assignment of oligosaccharide units
Nakayama et al. Identification of cyanidin 3-O-(3 ″, 6 ″-O-dimalonyl-β-glucopyranoside) as a flower pigment of Chrysanthemum (Dendranthema grandiflorum)
Flowers Studies on the Koenigs-Knorr reaction: Part I. Synthesis of 6-O-α-D-glucopyranosyl-D-galactose and 3-O-α-D-glucopyranosyl-D-galactose
Andersen et al. Anthocyanins with an unusual acylation pattern from stem of Allium victorialis
Budzianowski Six flavonol glucuronides from Tulipa gesneriana
Saito et al. Acylated anthocyanins from the blue-violet flowers of Anemone coronaria
Toki et al. Three cyanidin 3-glucuronylglucosides from red flowers ofBellis perennis
Piattelli et al. Betacyanins from bougainvillea
JPH0764995B2 (en) Acylated anthocyanin
Wessel et al. Articial carbohydrate antigens: A block synthesis of a linear, tetrasaccharide repeating-unit of the Shigella flexneri varianty polysaccharide
JPS63243167A (en) Acylated anthocyanin
Toki et al. An acylated delphinidin glycoside in the blue flowers of Evolvulus pilosus
Saito et al. Acylated pelargonidin glucosides in the maroon flowers of Pharbitis nil
Markham et al. Floral pigmentation in two yellow-flowered Lathyrus species and their hybrid
Strack et al. Cyanidin 3-oxalylglucoside in Orchids
JPS63113078A (en) Acylated anthocyanine
Ishikura et al. Flavonol glycosides from Paederia scandens var. mairei
Brimer et al. Structural elucidation and partial synthesis of 3-hydroxyheterodendrin, a cyanogenic glucoside from Acacia sieberiana var. woodii
JPH0764996B2 (en) Acylated anthocyanin
Klimek Acylated 6-hydroxyluteolin diglucosides from Globularia elongata
Siewek et al. Isolation and identification of a branched quercetin triglycoside from Ribes rubrum (Saxifragaceae)
Kraut et al. Acylated flavone and glycerol glucosides from two Frullania species