JPH0761213A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH0761213A
JPH0761213A JP5209385A JP20938593A JPH0761213A JP H0761213 A JPH0761213 A JP H0761213A JP 5209385 A JP5209385 A JP 5209385A JP 20938593 A JP20938593 A JP 20938593A JP H0761213 A JPH0761213 A JP H0761213A
Authority
JP
Japan
Prior art keywords
tire
groove
width
angle
ground contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5209385A
Other languages
Japanese (ja)
Inventor
Hiroshi Nishigata
宏志 西潟
Hiroshige Fukushima
弘薫 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP5209385A priority Critical patent/JPH0761213A/en
Publication of JPH0761213A publication Critical patent/JPH0761213A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PURPOSE:To provide a pneumatic tire which can most effectively carry out drainage irrespective of the ground shape. CONSTITUTION:A tread 12 is provided with an oblique groove 14 extending from the side of a tire equator face toward a tire lateral outside as an angle thetaformed with a tire peripheral direction is enlarged. The angle theta is prescribed by the expression of theta(x)=1(x/W)<2>+K2(x/W), here x: a distance from the tire equator face to an optional position on the center line of the oblique groove, theta: the angle, which is measured at an optional position, of the center line of the oblique groove to the tire peripheral direction, W: the maximum ground width, K1=10.8Xalpha-981 K2=-5.29Xalpha+703, L1: a peripheral ground length at a position separating as far as a distance being 40% of the maximum ground width from the tire equator face to the tire lateral outside, and L2 : a peripheral ground length on the tire equator face, and alpha=L1/L2X100. On the consideration of a grounding shape, draining efficiency becomes highest irrespective of the ground shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気入りタイヤに係り、
特に排水性を向上させた空気入りタイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire,
In particular, it relates to a pneumatic tire having improved drainage.

【0002】[0002]

【従来の技術】乗用車、トラック等の車両に装着される
空気入りタイヤのトレッドには、ウエット路面での排水
性を向上させるために種々の溝が設けられている(特開
昭63−305008号公報等)。
2. Description of the Related Art Treads of pneumatic tires mounted on vehicles such as passenger cars and trucks are provided with various grooves for improving drainage on a wet road surface (Japanese Patent Laid-Open No. 63-305008). Gazette).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
空気入りタイヤでは、溝の断面形状やタイヤ周方向に対
する溝の傾斜角度にのみに注目して設計されており、接
地形状を考慮していないため効率良く排水されていない
のが現状である。
However, the conventional pneumatic tire is designed by paying attention only to the sectional shape of the groove and the inclination angle of the groove with respect to the tire circumferential direction, and does not consider the ground contact shape. At present, it is not drained efficiently.

【0004】例えば、矩形の接地形状のタイヤと、丸形
の接地形状のタイヤとに、それぞれ平面形状V字状とさ
れた同一形状の溝を設けても、同じような高い排水性は
得られない。
For example, even if a rectangular ground-shaped tire and a round ground-shaped tire are provided with grooves having the same V-shaped planar shape, the same high drainage performance can be obtained. Absent.

【0005】本発明は上記事実を考慮し、接地形状を考
慮することにより、接地形状に関わらず最も効率良く排
水を行うことができる空気入りタイヤを提供することが
目的である。
An object of the present invention is to provide a pneumatic tire capable of discharging water most efficiently regardless of the ground contact shape by taking the above facts into consideration.

【0006】[0006]

【課題を解決するための手段】発明者らが種々の実験検
討を行った結果、トレッドのタイヤ赤道面側からタイヤ
幅方向外側へ向けてタイヤ周方向となす角度θを大きく
しながら延びる傾斜溝を設けたタイヤにおいて、接地形
状を考慮して傾斜溝の角度θを決めることによって、排
水効率を向上できることが見出された。そして、種々の
実験検討の結果、接地形状を考慮し、何れの接地形状で
あっても最も効率良く排水を行なえることのできる傾斜
溝の角度θを算出できる計算式を導き出した。
As a result of various experiments conducted by the inventors, an inclined groove extending from the tire equatorial plane side of the tread toward the tire width direction outer side while increasing the angle θ formed with the tire circumferential direction. It was found that the drainage efficiency can be improved by determining the angle θ of the inclined groove in the tire provided with the above in consideration of the ground contact shape. Then, as a result of various experimental studies, a calculation formula was derived in which the angle θ of the inclined groove that can drain water most efficiently can be calculated in consideration of the ground contact shape.

【0007】請求項1に記載の空気入りタイヤは、トレ
ッドのタイヤ赤道面側からタイヤ幅方向外側へ向けて、
タイヤ周方向となす角度θを大きくしながら延びる傾斜
溝を備え、該傾斜溝は、前記角度θが以下の1式によっ
て決定されるラインに実質沿っていることを特徴として
いる。
In the pneumatic tire according to claim 1, the tread extends from the tire equatorial plane side toward the tire width direction outer side,
An inclined groove extending while increasing an angle θ with the tire circumferential direction is provided, and the inclined groove is characterized in that the angle θ is substantially along a line determined by the following equation.

【0008】 θ(x)=K1(x/W)2 +K2(x/W)・・・・・・(1) x:タイヤ赤道面を基点としてタイヤ幅方向に沿って測
定されるタイヤ赤道面から傾斜溝の中心線上の任意の位
置までの距離 θ:傾斜溝の中心線上の前記任意の位置において計測さ
れるタイヤ周方向に対する傾斜溝の中心線の角度。
Θ (x) = K1 (x / W) 2 + K2 (x / W) (1) x: Tire equatorial plane measured along the tire width direction from the tire equatorial plane as a base point To the arbitrary position on the center line of the inclined groove θ: The angle of the center line of the inclined groove with respect to the tire circumferential direction measured at the arbitrary position on the center line of the inclined groove.

【0009】W:最大接地幅(単位mm) K1=10.8×α−981 K2=−5.29×α+703 L1:タイヤ赤道面からタイヤ幅方向外側へ最大接地幅
の40%の距離離れた位置における周方向接地長さ(単
位mm)。
W: Maximum contact width (unit: mm) K1 = 10.8 × α−981 K2 = −5.29 × α + 703 L1: 40% of the maximum contact width away from the tire equatorial plane toward the outside in the tire width direction Circumferential ground contact length at the position (unit: mm).

【0010】L2:タイヤ赤道面上における周方向接地
長さ(単位mm)。 α=L1/L2×100 但し、L1及びL2は、正規内圧を充填し、JATMA
の正規荷重の85%の荷重を負荷させた時の計測値。
L2: Length of ground contact in the circumferential direction on the equatorial plane of the tire (unit: mm). α = L1 / L2 × 100 However, L1 and L2 are filled with normal internal pressure, and JATMA
Measured value when 85% of normal load is applied.

【0011】また、請求項2に記載の空気入りタイヤ
は、請求項1に記載の空気入りタイヤにおいて、前記ト
レッドに実質的に周方向に沿って延びる周方向溝を複数
本配置し、前記溝間に形成される陸部の幅を最大接地幅
の10%〜17%としたことを特徴としている。
A pneumatic tire according to a second aspect is the pneumatic tire according to the first aspect, wherein a plurality of circumferential grooves extending substantially in the circumferential direction are arranged on the tread, and the grooves are provided. The feature is that the width of the land portion formed between them is 10% to 17% of the maximum ground contact width.

【0012】[0012]

【作用】請求項1に記載の空気入りタイヤでは、トレッ
ドに設けられた傾斜溝のタイヤ周方向となす角度θを、
接地形状を考慮した前記式1に規定される角度としたの
で、排水性能はそれぞれの接地形状に合った最も効率の
高いものとなる。
In the pneumatic tire according to claim 1, the angle θ formed by the inclined groove formed in the tread and the tire circumferential direction is
Since the angle is defined by the above formula 1 in consideration of the ground contact shape, the drainage performance is the most efficient in accordance with each ground contact shape.

【0013】また、請求項2に記載の空気入りタイヤで
は、傾斜溝と周方向溝とをトレッドに設ける構成とした
ので、特に、接地長さに比較して接地幅の大きい幅広タ
イヤ(例えばタイヤサイズ205以上の幅広タイヤ)に
おいて、踏込み部分前側の水をタイヤの進行方向に沿っ
た最短距離でタイヤ後方へ排出することができると共
に、周方向溝配置の最適化によって踏込み部分の前側の
水の滞留を小さくし、排水性をさらに向上させることが
できる。
Further, in the pneumatic tire according to the second aspect of the invention, since the inclined groove and the circumferential groove are provided in the tread, in particular, a wide tire having a larger ground contact width than the ground contact length (for example, a tire In a wide tire of size 205 or more), water on the front side of the stepped portion can be discharged to the rear of the tire at the shortest distance along the traveling direction of the tire, and water on the front side of the stepped portion can be optimized by optimizing the circumferential groove arrangement. It is possible to reduce the retention and further improve the drainage property.

【0014】ここで、傾斜溝のタイヤ赤道面側の端部
と、周方向溝とを連結することが好ましい。これによっ
て、踏込み部分前方の水を、ある程度傾斜溝によってタ
イヤ側面側へ排出させて、周方向溝の後方排水効率を上
げることができる。また、水の流れが干渉するため、傾
斜溝と周方向溝とは十字状に交差させないことが好まし
い。
Here, it is preferable to connect the end portion of the inclined groove on the equatorial plane side of the tire and the circumferential groove. As a result, the water in front of the stepped portion can be discharged to the tire side surface side to some extent by the inclined groove, and the rear drainage efficiency of the circumferential groove can be improved. Further, since the flow of water interferes with each other, it is preferable that the inclined groove and the circumferential groove do not cross each other in a cross shape.

【0015】なお、溝間に形成されたにトレッド陸部の
幅が、最大接地幅の10%よりも小さい場合には、陸部
の剛性が低くなり過ぎて、周方向溝が接地面内で潰れ易
くなるため好ましくない。また、陸部の幅が、最大接地
幅の17%よりも大きい場合には、踏込み部分前方の水
や陸部と路面との間にある水が周方向溝へ入り難くな
り、周方向溝を設けた効果が低下するため好ましくな
い。
When the width of the land portion of the tread formed between the grooves is smaller than 10% of the maximum ground contact width, the rigidity of the land portion becomes too low, and the circumferential groove is in the ground contact surface. It is not preferable because it easily collapses. Also, if the width of the land portion is larger than 17% of the maximum ground contact width, it is difficult for water in front of the stepped portion or water between the land portion and the road surface to enter the circumferential groove, and It is not preferable because the effect provided is reduced.

【0016】[0016]

【実施例】以下に本発明の空気入りタイヤの一実施例を
説明する。
EXAMPLES An example of the pneumatic tire of the present invention will be described below.

【0017】図1に示すように、本発明の適用された空
気入りタイヤ10のトレッド12には、タイヤ赤道面C
Lからタイヤ幅方向(矢印B方向)外側へ向けて、タイ
ヤ周方向(矢印A方向及び矢印A方向とは反対方向)と
なす角度θを大きくしながら延びる傾斜溝14が形成さ
れている。
As shown in FIG. 1, the tread 12 of the pneumatic tire 10 to which the present invention is applied has a tire equatorial plane C.
An inclined groove 14 is formed extending from L toward the outer side in the tire width direction (arrow B direction) while increasing the angle θ formed with the tire circumferential direction (arrow A direction and the direction opposite to the arrow A direction).

【0018】本実施例では、タイヤ赤道面CLを対称軸
としてタイヤ赤道面CLのタイヤ幅方向両側に傾斜溝1
4が設けられている。傾斜溝14は、タイヤ赤道面CL
側の端部同士が互いに連結し、タイヤ幅方向外側の端部
がショルダー部13に至っており、平面視で略V字状を
呈している。また、これらの傾斜溝14は、トレッド1
2のタイヤ周方向に所定のピッチで配置されている。
In the present embodiment, the inclined grooves 1 are formed on both sides of the tire equatorial plane CL in the tire width direction with the tire equatorial plane CL as the axis of symmetry.
4 are provided. The inclined groove 14 is the tire equatorial plane CL
The end portions on the side are connected to each other, the end portion on the outer side in the tire width direction reaches the shoulder portion 13, and has a substantially V shape in a plan view. Further, these inclined grooves 14 are formed in the tread 1
The two tires are arranged at a predetermined pitch in the circumferential direction.

【0019】ここで、傾斜溝14がタイヤ周方向となす
角度θは、ほぼ以下の1式によって決定されている。
The angle θ formed by the inclined groove 14 and the tire circumferential direction is determined by the following equation.

【0020】 θ(x)=K1(x/W)2 +K2(x/W)・・・・・・(1) x:タイヤ赤道面を基点としてタイヤ幅方向に沿って測
定される傾斜溝の中心線上の任意の位置の距離。
Θ (x) = K1 (x / W) 2 + K2 (x / W) (1) x: of the inclined groove measured along the tire width direction from the tire equatorial plane as a base point The distance of any position on the centerline.

【0021】θ:傾斜溝の中心線上の任意の位置におい
て計測されるタイヤ周方向に対する傾斜溝の中心線の角
度。
Θ: The angle of the center line of the inclined groove with respect to the tire circumferential direction measured at any position on the center line of the inclined groove.

【0022】W:最大接地幅(単位mm) K1=10.8×α−981 K2=−5.29×α+703 α=L1/L2×100 L1:タイヤ赤道面からタイヤ幅方向外側へ最大接地幅
の40%離れた位置での周方向接地長さ(単位mm)。
W: Maximum contact width (unit: mm) K1 = 10.8 × α−981 K2 = −5.29 × α + 703 α = L1 / L2 × 100 L1: Maximum contact width from the tire equatorial plane to the outside in the tire width direction Circumferential ground contact length at a position 40% apart (unit: mm).

【0023】L2:タイヤ赤道面上の周方向接地長さ
(単位mm)。 但し、L1及びL2は、使用内圧を充填し、JATMA
の空気圧−負荷能力対応表の中で使用内圧に対応する負
荷の85%の荷重を負荷させた時の計測値である。
L2: Length of ground contact in the circumferential direction on the equatorial plane of the tire (unit: mm). However, L1 and L2 are filled with working internal pressure, and JATMA
It is a measured value when a load of 85% of the load corresponding to the working internal pressure is applied in the air pressure-load capacity correspondence table.

【0024】なお、傾斜溝14がタイヤ周方向となす角
度θは、上記の1式によって決定されることが最も好ま
しいが、プラスマイナス10%以内の角度のずれであれ
ば、ほぼ同じ性能を得ることができる。 (試験例1)本発明の空気入りタイヤの効果を調べる為
に、本発明の適用された空気入りタイヤ2種(実施例タ
イヤ1及び実施例タイヤ2)と比較タイヤ2種(比較例
タイヤ1及び比較例タイヤ2)の合計4種の試験タイヤ
を用意し、それぞれをFF車の前輪に装着して水深10
mmのアスファルト路面を走行させ、ハイドロプレーニン
グの発生し始める速度を調べた。試験結果は以下の表1
に示す。試験タイヤは全てタイヤサイズ205/65R
15、リムサイズ6.5JJ、内圧2.0kg/cm2であ
る。
The angle θ formed by the inclined groove 14 and the tire circumferential direction is most preferably determined by the above equation 1, but if the angle deviation is within ± 10%, almost the same performance is obtained. be able to. (Test Example 1) In order to investigate the effect of the pneumatic tire of the present invention, two pneumatic tires (Example tire 1 and Example tire 2) to which the present invention was applied and two comparative tires (Comparative tire 1) And a total of 4 types of test tires (comparative example tire 2) were prepared, and each of them was mounted on the front wheel of an FF vehicle and the water depth was 10
The speed at which hydroplaning started to occur was investigated by traveling on an asphalt road surface of mm. The test results are shown in Table 1 below.
Shown in. All test tires are tire size 205 / 65R
15, rim size 6.5JJ, internal pressure 2.0kg / cm 2 .

【0025】次に試験タイヤの詳細を説明する。実施例
タイヤ1は図1(A)に示す(式1に規定された角度で
傾斜した傾斜溝14)空気入りタイヤであり、傾斜溝1
4の周方向ピッチPが72mm、傾斜溝14の溝深さHが
8mm、傾斜溝14の開口部の幅wが9mm、傾斜溝14の
壁面の傾斜角度θ1 が12°である。また、実施例タイ
ヤ1の接地形状20(点線で囲まれた部分)は略円形形
状であり、最大接地幅Wが140mm、αの値が70.5
である(図1(A)及び(B)参照。αの計測時の荷重
は480kgとした)。
Next, details of the test tire will be described. Example tire 1 is a pneumatic tire shown in FIG. 1 (A) (inclined groove 14 inclined at an angle defined in Formula 1), and the inclined groove 1
4 has a pitch P in the circumferential direction of 72 mm, the groove depth H of the inclined groove 14 is 8 mm, the width w of the opening of the inclined groove 14 is 9 mm, and the inclination angle θ 1 of the wall surface of the inclined groove 14 is 12 °. Further, the ground contact shape 20 (the portion surrounded by the dotted line) of the example tire 1 is a substantially circular shape, the maximum ground contact width W is 140 mm, and the value of α is 70.5.
(See FIGS. 1A and 1B. The load at the time of measuring α was 480 kg).

【0026】実施例タイヤ2は図2に示す空気入りタイ
ヤ(式1に規定された角度で傾斜した傾斜溝14)であ
り、傾斜溝14の周方向ピッチPが95mmである。な
お、実施例タイヤ2の傾斜溝14の溝深さH、開口部の
幅w及び壁面の傾斜角度θ1 は実施例タイヤ1のそれと
同一である。また、実施例タイヤ2の接地形状22(点
線で囲まれた部分)は略矩形形状であり、最大接地幅W
が140mm、αの値が101.5である。
The example tire 2 is a pneumatic tire shown in FIG. 2 (inclined groove 14 inclined at an angle defined by the formula 1), and the pitch P in the circumferential direction of the inclined groove 14 is 95 mm. The groove depth H of the inclined groove 14 of the example tire 2, the width w of the opening, and the inclination angle θ 1 of the wall surface are the same as those of the example tire 1. In addition, the ground contact shape 22 (the portion surrounded by the dotted line) of the example tire 2 has a substantially rectangular shape, and the maximum ground contact width W
Is 140 mm and the value of α is 101.5.

【0027】一方、比較例タイヤ1には、図3に示すよ
うにタイヤ赤道面CLに対して一定の角度(45°)で
傾斜するV字形状を呈した溝24を有しており、溝24
の周方向ピッチPは63.5mmである。なお、溝24の
溝深さH、開口部の幅w及び壁面の傾斜角度θ1 は実施
例タイヤ1と同一である。また、比較例タイヤ1の接地
形状26(点線で囲まれた部分)は略円形形状であり、
最大接地幅Wが140mm、αの値が70.5である。
On the other hand, the comparative tire 1 has a V-shaped groove 24 which is inclined at a constant angle (45 °) with respect to the tire equatorial plane CL as shown in FIG. 24
The circumferential pitch P is 63.5 mm. The groove depth H of the groove 24, the width w of the opening, and the inclination angle θ 1 of the wall surface are the same as those of the tire 1 of the embodiment. Further, the ground contact shape 26 (the portion surrounded by the dotted line) of the comparative tire 1 is a substantially circular shape,
The maximum contact width W is 140 mm and the value of α is 70.5.

【0028】また、比較例タイヤ2は、図4に示すよう
に、比較例タイヤ1と同一形状、同一寸法の溝24を有
している。比較例タイヤ2の接地形状28(点線で囲ま
れた部分)は略矩形形状であり、最大接地幅Wが140
mm、αの値が101.5である。
As shown in FIG. 4, the comparative tire 2 has a groove 24 having the same shape and size as those of the comparative tire 1. The ground contact shape 28 (the portion surrounded by the dotted line) of the comparative tire 2 has a substantially rectangular shape, and the maximum ground contact width W is 140.
The values of mm and α are 101.5.

【0029】なお、実施例タイヤ1のネガティブ比(陸
部面積に対する溝面積の比率)は19.8%、実施例タ
イヤ2のネガティブ比は20.3、比較例タイヤ1及び
比較例タイヤ2のネガティブ比は19.6%となってお
り、各試験タイヤともほぼ同一のネガティブ比に設定さ
れている。
Incidentally, the negative ratio (ratio of the groove area to the land area) of Example tire 1 was 19.8%, the negative ratio of Example tire 2 was 20.3, and the tires of Comparative example tire 1 and Comparative example tire 2 were The negative ratio is 19.6%, which is set to almost the same negative ratio for each test tire.

【0030】[0030]

【表1】 [Table 1]

【0031】上記表1の結果からも、本発明の適用され
た空気入りタイヤ(実施例タイヤ1及び実施例タイヤ
2)は、丸形、矩形何れの接地形状においてもハイドロ
プレーニングの発生開始速度が高く、接地形状を考慮し
て溝形状を変えていない比較例タイヤよりも排水性に優
れていることは明らかである。
From the results shown in Table 1 above, the pneumatic tire to which the present invention is applied (Example tire 1 and Example tire 2) has a hydroplaning initiation speed in any round or rectangular ground contact shape. It is clear that the drainage is higher than the comparative example tire in which the groove shape is not changed in consideration of the ground contact shape.

【0032】また、本発明の空気入りタイヤでは、転動
時の傾斜溝の端部と路面との打撃がスムーズに行われる
ため、パターンノイズの低減効果もある。
Further, in the pneumatic tire of the present invention, since the end of the inclined groove and the road surface are smoothly hit when rolling, there is also an effect of reducing pattern noise.

【0033】前記実施例では、トレッドに傾斜溝のみを
設けた空気入りタイヤの例を示したが、トレッドには傾
斜溝の他に周方向に連続した溝を設けても良い。
In the above-mentioned embodiment, an example of the pneumatic tire in which only the inclined groove is provided in the tread has been shown, but the tread may be provided with a groove continuous in the circumferential direction in addition to the inclined groove.

【0034】図5及び図6に、トレッドに傾斜溝と周方
向溝とを設けた空気入りタイヤの例を示す。
FIGS. 5 and 6 show examples of pneumatic tires in which a tread is provided with an inclined groove and a circumferential groove.

【0035】図5及び図6に示すように、トレッド12
に傾斜溝14と周方向溝30とを設ける場合には、周方
向溝30をタイヤ幅方向中央区域に設け、かつタイヤ赤
道面CLの両側に均等配置することが好ましい。
As shown in FIGS. 5 and 6, the tread 12
When the inclined groove 14 and the circumferential groove 30 are provided in the tire, it is preferable that the circumferential groove 30 is provided in the tire width direction central area and is evenly arranged on both sides of the tire equatorial plane CL.

【0036】図5に示すように2本の周方向溝30をト
レッド12に設ける場合には、傾斜溝14のタイヤ赤道
面側の端部を周方向溝30に連結するとが好ましい。
When two circumferential grooves 30 are provided in the tread 12 as shown in FIG. 5, it is preferable to connect the end portion of the inclined groove 14 on the tire equatorial plane side to the circumferential groove 30.

【0037】また、図6に示すように3本の周方向溝3
0をトレッド12に設ける場合には、傾斜溝14の端部
をタイヤ幅方向外側の周方向溝30に連結するとが好ま
しい。なお、周方向溝30をトレッド12に3本設ける
場合には、中央の周方向溝30には傾斜溝14を連結す
ることは好ましくない。その理由は、中央の周方向溝3
0と傾斜溝14とを連結すると、タイヤ赤道面CL両側
の周方向溝30と傾斜溝14とが十字状に交差すること
となり、溝の交差部分で水の流れが干渉し、排水性能が
低下するためである。
Further, as shown in FIG. 6, three circumferential grooves 3 are provided.
When 0 is provided on the tread 12, it is preferable to connect the end of the inclined groove 14 to the circumferential groove 30 on the outer side in the tire width direction. When three circumferential grooves 30 are provided on the tread 12, it is not preferable to connect the inclined groove 14 to the central circumferential groove 30. The reason is that the circumferential groove 3 in the center is
When 0 and the inclined groove 14 are connected, the circumferential groove 30 and the inclined groove 14 on both sides of the tire equatorial plane CL intersect in a cross shape, and the flow of water interferes at the intersection of the grooves, resulting in poor drainage performance. This is because

【0038】さらに、周方向溝30の間に形成される陸
部32の幅(陸部32の数が複数個の場合には、それぞ
れの合計寸法)は、空気入りタイヤ10に使用内圧を充
填し、JATMAの空気圧−負荷能力対応表の中で使用
内圧に対応する負荷の85%の負荷を与えた際の最大接
地幅Wの10%〜17%とすることが好ましい。
Further, the width of the land portion 32 formed between the circumferential grooves 30 (when the number of the land portions 32 is plural, the total size thereof) is such that the pneumatic tire 10 is filled with the working internal pressure. However, in the air pressure-load capacity correspondence table of JATMA, it is preferable to set it to 10% to 17% of the maximum ground contact width W when a load of 85% of the load corresponding to the working internal pressure is applied.

【0039】ここで、周方向溝30の間に形成される陸
部32の幅を測定するに際し、JATMA規格の使用内
圧に対応する負荷の85%の荷重を与えるのは、使用内
圧に対応する負荷の100%の荷重では、実際に使用さ
れている荷重よりも重目であるためであり、85%の負
荷を与えた時の方が、現実(実使用)に沿っているから
である。
Here, in measuring the width of the land portion 32 formed between the circumferential grooves 30, applying 85% of the load corresponding to the JATMA standard working internal pressure corresponds to the working internal pressure. This is because a load of 100% is heavier than a load that is actually used, and a load of 85% is more realistic (actual use).

【0040】図5及び図6に示すように、周方向に延び
る周方向溝30を傾斜溝14と組み合わせることによ
り、特に、接地長さに比較して接地幅の大きい幅広タイ
ヤにおいては接地面中央部分の水をタイヤの進行方向に
沿った最短距離でタイヤ後方へ排出することができるた
め、例えばタイヤサイズ205以上の幅広タイヤの排水
性をさらに向上させることができる。
As shown in FIGS. 5 and 6, by combining the circumferential groove 30 extending in the circumferential direction with the inclined groove 14, particularly in a wide tire having a large ground contact width as compared with the ground contact length, the center of the ground contact surface is obtained. Since part of the water can be discharged to the rear of the tire at the shortest distance along the traveling direction of the tire, for example, the drainability of a wide tire having a tire size of 205 or more can be further improved.

【0041】(試験例2)周方向溝と傾斜溝との組み合
わせにおいて、排水効率が最も良好となる周方向溝の配
設位置を調べた結果を以下の表2に示す。
(Test Example 2) Table 2 below shows the results of examining the positions of the circumferential grooves where the drainage efficiency is the best in the combination of the circumferential grooves and the inclined grooves.

【0042】試験は、周方向溝間の陸部の幅がそれぞれ
異なる9種の試験タイヤ(図6に示す空気入りタイヤに
おいて、陸部の幅が異なるもの)を用意し、試験タイヤ
をFF車の前輪に装着して水深10mmのアスファルトの
試験路を走行させ、ハイドロプレーニングの発生開始速
度を調べた。
In the test, nine kinds of test tires having different widths of the land portions between the circumferential grooves (the pneumatic tires shown in FIG. 6 having different widths of the land portions) were prepared, and the test tires were FF vehicles. It was mounted on the front wheel of the car and run on an asphalt test road with a water depth of 10 mm, and the initiation speed of hydroplaning was investigated.

【0043】なお、試験タイヤは、タイヤサイズ(22
5/50R16)、溝幅(9mm)、溝深さ(8mm)、接
地形状、ネガティブ比の全てが同一であり、異なるのは
周方向溝30に挟まれた陸部32の幅寸法のみである。
The test tire had a tire size (22
5 / 50R16), groove width (9 mm), groove depth (8 mm), ground contact shape, negative ratio are all the same, and only the width dimension of the land portion 32 sandwiched by the circumferential grooves 30 is different. .

【0044】[0044]

【表2】 [Table 2]

【0045】上記表2の試験結果から、周方向溝30に
挟まれた陸部32の幅を最大接地幅Wの10%〜17%
とした場合に、最も排水効果が上がることが分かる。 (試験例3)次に、周方向溝30と傾斜溝14との組み
合わせにおいて、周方向溝30と傾斜溝14とを連結し
た実施例タイヤ3と、周方向溝30と傾斜溝14とを連
結しない実施例タイヤ4とを用意し、それぞれのタイヤ
をFF車の前輪に装着して水深10mmのアスファルトの
試験路を走行させ、ハイドロプレーニングの発生開始速
度を調べた。結果は以下の表3に示す。
From the test results of Table 2 above, the width of the land portion 32 sandwiched by the circumferential grooves 30 is 10% to 17% of the maximum ground contact width W.
It can be seen that the drainage effect is maximized when (Test Example 3) Next, in a combination of the circumferential groove 30 and the inclined groove 14, an example tire 3 in which the circumferential groove 30 and the inclined groove 14 are connected, and the circumferential groove 30 and the inclined groove 14 are connected. Example tires 4 which were not prepared were mounted on the front wheels of an FF vehicle with each tire run on a test road of asphalt with a water depth of 10 mm, and the starting speed of hydroplaning was examined. The results are shown in Table 3 below.

【0046】実施例タイヤ3は、図5に示す溝形状を有
する空気入りタイヤであり、陸部32の幅が25mmのも
のである。一方、実施例タイヤ4は、図7に示すよう
に、実施例タイヤ5において、周方向溝30と傾斜溝1
4とを連結していないものである。
Example tire 3 is a pneumatic tire having the groove shape shown in FIG. 5, and the width of the land portion 32 is 25 mm. On the other hand, the example tire 4 is different from the example tire 5 in the circumferential groove 30 and the inclined groove 1 as shown in FIG.
4 is not connected.

【0047】なお、試験方法は、前述の試験例1と同一
である。試験結果は、実施例タイヤ4を100とする指
数表示としており、数値の大きいほどハイドロプレーニ
ングの発生開始速度が高く、排水性に優れていることを
示す。
The test method is the same as in Test Example 1 described above. The test results are expressed as an index with Example Tire 4 as 100, and the larger the value, the higher the hydroplaning initiation rate and the better the drainage.

【0048】[0048]

【表3】 [Table 3]

【0049】上記表3の試験結果から、周方向溝と傾斜
溝とは連結した方が、排水性の点で好ましいことが分か
る。
From the test results in Table 3 above, it is understood that it is preferable to connect the circumferential groove and the inclined groove in terms of drainage.

【0050】なお、図示はしないが、トレッドのショル
ダー側の陸部に幅方向サイプを設けても良い。これによ
って、空気入りタイヤ10のウエット性能をさらに向上
させることができる。
Although not shown, a widthwise sipe may be provided on the land portion on the shoulder side of the tread. Thereby, the wet performance of the pneumatic tire 10 can be further improved.

【0051】なお、傾斜溝14の配設位置は、前記実施
例に限らず、図8に示すように、タイヤ赤道面CLを境
にして一方の側と他方の側とを半ピッチずらして配設し
ても良い。
The position of the inclined groove 14 is not limited to that in the above-mentioned embodiment, and as shown in FIG. 8, one side and the other side are displaced by a half pitch from the tire equatorial plane CL. You can set it up.

【0052】また、図9に示すように、2本の周方向溝
30の両側にそれぞれ傾斜溝14を設け、一方の側と他
方の側とを反対向きに配設しても良く、図10に示すよ
うに、1本の周方向溝30の両側にそれぞれ傾斜溝14
を設け、一方の側と他方の側とを反対向きに配設し、更
に、傾斜溝14と傾斜溝14との間に周方向溝30に連
結しない補助溝34を設けてもよい。なお、補助溝34
も、傾斜溝14と同様に前述した式1に規定される角度
θで傾斜させることが好ましい。
Further, as shown in FIG. 9, inclined grooves 14 may be provided on both sides of the two circumferential grooves 30, and one side and the other side may be arranged in opposite directions. As shown in FIG.
It is also possible to dispose one side and the other side in opposite directions, and further to provide an auxiliary groove 34 that is not connected to the circumferential groove 30 between the inclined grooves 14 and 14. The auxiliary groove 34
Also, similarly to the inclined groove 14, it is preferable to incline at the angle θ defined by the above-described Expression 1.

【0053】また、トレッド幅TWのタイヤ中央80%
の位置に、式1に規定される角度θで傾斜する傾斜溝1
4を設け、その溝14のタイヤ幅方向外側端にラグ溝3
6を連結してもよい。
Further, the tire center of the tread width TW is 80%.
At the position of, the inclined groove 1 inclined at the angle θ defined by the equation 1
4 is provided, and the lug groove 3 is provided at the tire width direction outer end of the groove 14.
6 may be connected.

【0054】また、図12に示すように、タイヤ赤道面
CLの両側にそれぞれ傾斜溝14を設け、一方の側と他
方の側とを反対向きに配設して両者を連結し、さらに、
トレッド中央に菱形の陸部38を形成するように交差溝
40を設けても良く、図13に示すように溝14を互い
に逆向きに組み合わせて周方向に重ね合わせて、方向性
を有さないように形成してもよい。
Further, as shown in FIG. 12, inclined grooves 14 are provided on both sides of the tire equatorial plane CL, one side and the other side are arranged in opposite directions, and both are connected.
A cross groove 40 may be provided so as to form a diamond-shaped land portion 38 in the center of the tread, and as shown in FIG. 13, the grooves 14 are combined in the opposite directions and are overlapped in the circumferential direction so that there is no directivity. You may form so.

【0055】[0055]

【発明の効果】以上説明したように、請求項1に記載の
空気入りタイヤは上記構成として接地形状を考慮して傾
斜溝の角度を設定したので、接地形状に関わらず最も効
率良く排水を行うことができるという優れた効果を有す
る。
As described above, in the pneumatic tire according to the first aspect of the present invention, the angle of the inclined groove is set in consideration of the ground contact shape as the above configuration, so that the drainage is most efficiently performed regardless of the ground contact shape. It has an excellent effect of being able to.

【0056】また、請求項2に記載の空気入りタイヤ
は、上記構成としたので、特に、幅広の空気入りタイヤ
において、排水性をさらに向上できるという優れた効果
を有する。
Further, since the pneumatic tire according to claim 2 has the above-mentioned constitution, it has an excellent effect that the drainage property can be further improved especially in a wide pneumatic tire.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の一実施例に係る空気入りタイ
ヤのトレッドパターン図であり、(B)は図1(A)に
示す空気入りタイヤの傾斜溝の1B−1B線断面図であ
る。
FIG. 1A is a tread pattern diagram of a pneumatic tire according to an embodiment of the present invention, and FIG. 1B is a sectional view taken along line 1B-1B of the inclined groove of the pneumatic tire shown in FIG. 1A. Is.

【図2】本発明の他の実施例に係る空気入りタイヤのト
レッドパターン図である。
FIG. 2 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【図3】接地形状が丸形とされた比較例に係る空気入り
タイヤのトレッドパターン図である。
FIG. 3 is a tread pattern diagram of a pneumatic tire according to a comparative example in which the ground contact shape is round.

【図4】接地形状が矩形とされた比較例に係る空気入り
タイヤのトレッドパターン図である。
FIG. 4 is a tread pattern diagram of a pneumatic tire according to a comparative example having a rectangular ground contact shape.

【図5】本発明のさらに他の実施例に係り、2本の傾斜
溝と周方向溝とを設けた空気入りタイヤのトレッドパタ
ーン図である。
FIG. 5 is a tread pattern diagram of a pneumatic tire according to still another embodiment of the present invention, which is provided with two inclined grooves and a circumferential groove.

【図6】本発明のさらに他の実施例に係り、3本の傾斜
溝と周方向溝とを設けた空気入りタイヤのトレッドパタ
ーン図である。
FIG. 6 is a tread pattern diagram of a pneumatic tire according to still another embodiment of the present invention, which is provided with three inclined grooves and circumferential grooves.

【図7】傾斜溝と周方向溝とが連結されていない空気入
りタイヤのトレッドパターン図である。
FIG. 7 is a tread pattern diagram of a pneumatic tire in which an inclined groove and a circumferential groove are not connected.

【図8】本発明の他の実施例に係る空気入りタイヤのト
レッドパターン図である。
FIG. 8 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【図9】本発明の他の実施例に係る空気入りタイヤのト
レッドパターン図である。
FIG. 9 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【図10】本発明の他の実施例に係る空気入りタイヤの
トレッドパターン図である。
FIG. 10 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【図11】本発明の他の実施例に係る空気入りタイヤの
トレッドパターン図である。
FIG. 11 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【図12】本発明の他の実施例に係る空気入りタイヤの
トレッドパターン図である。
FIG. 12 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【図13】本発明の他の実施例に係る空気入りタイヤの
トレッドパターン図である。
FIG. 13 is a tread pattern diagram of a pneumatic tire according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 空気入りタイヤ 12 トレッド 14 傾斜溝 30 周方向溝 32 陸部 CL タイヤ赤道面 10 pneumatic tire 12 tread 14 inclined groove 30 circumferential groove 32 land CL tire equatorial plane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トレッドのタイヤ赤道面側からタイヤ幅
方向外側へ向けて、タイヤ周方向となす角度θを大きく
しながら延びる傾斜溝を備え、 該傾斜溝は、前記角度θが以下の1式によって決定され
るラインに実質沿っていることを特徴とする空気入りタ
イヤ。 θ(x)=K1(x/W)2 +K2(x/W)・・・・・・(1) x:タイヤ赤道面を基点としてタイヤ幅方向に沿って測
定されるタイヤ赤道面から傾斜溝の中心線上の任意の位
置までの距離 θ:傾斜溝の中心線上の前記任意の位置において計測さ
れるタイヤ周方向に対する傾斜溝の中心線の角度。 W:最大接地幅(単位mm) K1=10.8×α−981 K2=−5.29×α+703 L1:タイヤ赤道面からタイヤ幅方向外側へ最大接地幅
の40%の距離離れた位置における周方向接地長さ(単
位mm)。 L2:タイヤ赤道面上における周方向接地長さ(単位m
m)。 α=L1/L2×100 但し、L1及びL2は、使用内圧を充填し、JATMA
の空気圧−負荷能力対応表の中で使用内圧に対応する負
荷の85%の荷重を負荷させた時の計測値。
1. An inclined groove extending from the tire equatorial plane side of the tread toward the outer side in the tire width direction while increasing an angle θ with the tire circumferential direction, wherein the angle θ is one of the following formulas. A pneumatic tire characterized by being substantially along a line determined by. θ (x) = K1 (x / W) 2 + K2 (x / W) (1) x: A slant groove from the tire equatorial plane measured along the tire width direction from the tire equatorial plane as a base point To the arbitrary position on the center line of the angle θ: The angle of the center line of the inclined groove with respect to the tire circumferential direction measured at the arbitrary position on the center line of the inclined groove. W: Maximum ground contact width (unit: mm) K1 = 10.8 × α−981 K2 = −5.29 × α + 703 L1: Circumference at a position separated by 40% of the maximum ground contact width from the tire equatorial plane to the outside in the tire width direction. Direction ground contact length (unit: mm). L2: circumferential contact length on tire equatorial plane (unit: m
m). α = L1 / L2 × 100 However, L1 and L2 are filled with the working internal pressure, and JATMA
The measured value when 85% of the load corresponding to the working internal pressure is applied in the air pressure-load capacity correspondence table.
【請求項2】 前記トレッドに実質的に周方向に沿って
延びる周方向溝を複数本配置し、前記溝間に形成される
陸部の幅を最大接地幅の10%〜17%としたことを特
徴とする請求項1に記載の空気入りタイヤ。
2. A plurality of circumferential grooves extending substantially along the circumferential direction are arranged on the tread, and a width of a land portion formed between the grooves is set to 10% to 17% of a maximum ground contact width. The pneumatic tire according to claim 1, wherein:
JP5209385A 1993-08-24 1993-08-24 Pneumatic tire Pending JPH0761213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5209385A JPH0761213A (en) 1993-08-24 1993-08-24 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5209385A JPH0761213A (en) 1993-08-24 1993-08-24 Pneumatic tire

Publications (1)

Publication Number Publication Date
JPH0761213A true JPH0761213A (en) 1995-03-07

Family

ID=16572039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5209385A Pending JPH0761213A (en) 1993-08-24 1993-08-24 Pneumatic tire

Country Status (1)

Country Link
JP (1) JPH0761213A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114010A (en) * 2000-10-10 2002-04-16 Bridgestone Corp Pneumatic tire
JP2004224249A (en) * 2003-01-24 2004-08-12 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2005022530A (en) * 2003-07-02 2005-01-27 Bridgestone Corp Pneumatic tire
JP2010285104A (en) * 2009-06-12 2010-12-24 Sumitomo Rubber Ind Ltd Run flat tire assembly and support ring used for the same
JP2013028289A (en) * 2011-07-28 2013-02-07 Bridgestone Corp Pneumatic radial tire for passenger vehicle and method of using the same
JP2013028288A (en) * 2011-07-28 2013-02-07 Bridgestone Corp Pneumatic radial tire for passenger vehicle and method of using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114010A (en) * 2000-10-10 2002-04-16 Bridgestone Corp Pneumatic tire
JP4563567B2 (en) * 2000-10-10 2010-10-13 株式会社ブリヂストン Pneumatic tire
JP2004224249A (en) * 2003-01-24 2004-08-12 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2005022530A (en) * 2003-07-02 2005-01-27 Bridgestone Corp Pneumatic tire
JP2010285104A (en) * 2009-06-12 2010-12-24 Sumitomo Rubber Ind Ltd Run flat tire assembly and support ring used for the same
JP2013028289A (en) * 2011-07-28 2013-02-07 Bridgestone Corp Pneumatic radial tire for passenger vehicle and method of using the same
JP2013028288A (en) * 2011-07-28 2013-02-07 Bridgestone Corp Pneumatic radial tire for passenger vehicle and method of using the same

Similar Documents

Publication Publication Date Title
JP3380605B2 (en) Pneumatic tire
US9555669B2 (en) Pneumatic tire
JP3378789B2 (en) Pneumatic tire
JP4274317B2 (en) Pneumatic tire
US10118445B2 (en) Pneumatic tire
JP5391231B2 (en) Pneumatic tire
JP2002172916A (en) Pneumatic tire
JP2002114009A (en) Pneumatic tire
JP3383405B2 (en) Pneumatic tire with straight grooves
JPWO2012133334A1 (en) Pneumatic tire
JPH05330313A (en) Pneumatic tire
JP4462667B2 (en) Pneumatic tire
JP4122179B2 (en) Pneumatic tire
JP3447367B2 (en) Pneumatic tire having a directional inclined groove
JP3205395B2 (en) Pneumatic tire
US9056530B2 (en) Pneumatic tire
JPH06199109A (en) Pneumatic tire
JP5923125B2 (en) Pneumatic tire
JP2000247111A (en) Pneumatic tire
JPH0761213A (en) Pneumatic tire
JP4505417B2 (en) Pneumatic tire
JP3590137B2 (en) High performance pneumatic tire with directional tilt block
JP4147284B2 (en) Pneumatic tire
JP2000142031A (en) Pneumatic tire
JPH0714004Y2 (en) Pneumatic radial tire with flatness of 0.65 or less