JPH0756867B2 - Ultra-thin metal film and manufacturing method thereof - Google Patents

Ultra-thin metal film and manufacturing method thereof

Info

Publication number
JPH0756867B2
JPH0756867B2 JP63243008A JP24300888A JPH0756867B2 JP H0756867 B2 JPH0756867 B2 JP H0756867B2 JP 63243008 A JP63243008 A JP 63243008A JP 24300888 A JP24300888 A JP 24300888A JP H0756867 B2 JPH0756867 B2 JP H0756867B2
Authority
JP
Japan
Prior art keywords
metal
film
thin film
acetylene group
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63243008A
Other languages
Japanese (ja)
Other versions
JPH0290679A (en
Inventor
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63243008A priority Critical patent/JPH0756867B2/en
Priority to EP88312156A priority patent/EP0322233B1/en
Priority to DE3855073T priority patent/DE3855073T2/en
Priority to US07/287,090 priority patent/US4996075A/en
Publication of JPH0290679A publication Critical patent/JPH0290679A/en
Publication of JPH0756867B2 publication Critical patent/JPH0756867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基板上へ化学反応を利用した金属の超薄膜、
特に基板上に特定パターンの金属膜形成を可能とした金
属超薄膜の製造法に関するものであり、半導体素子や薄
膜導電材料等の製造に利用できるものである。
Description: TECHNICAL FIELD The present invention relates to an ultrathin metal film using a chemical reaction on a substrate,
In particular, the present invention relates to a method for producing an ultrathin metal film capable of forming a metal film having a specific pattern on a substrate, and can be used for producing a semiconductor element, a thin film conductive material and the like.

従来の技術 従来、半導体装置等における配線パターンは、金属薄膜
を蒸着等により形成した基板上に、光照射により重合ま
たは分解する樹脂膜(レジスト)を形成し、光をパター
ン状に照射した後現像して特定のレジストパターンを形
成したのち、金属薄膜をエッチングする方法により製造
するのが一般に用いられて来た。
2. Description of the Related Art Conventionally, a wiring pattern in a semiconductor device or the like is formed by forming a resin film (resist) which is polymerized or decomposed by light irradiation on a substrate formed by vapor deposition of a metal thin film and then developed by irradiating light with a pattern. It has been generally used to form a specific resist pattern and then to manufacture a metal thin film by etching.

ところが、これら金属パターンは、半導体素子の高密度
化や印刷物の高品質化のため、ますます微細化が要望さ
れるようになって来ている。特にVLSIの製造において
は、サブミクロンの金属パターンを精度良く作成する必
要が生じてきた。このような場合、レジスト樹脂そのも
のの物性にも大きく作用されるが、一般に微細なパター
ンを望む程、すなわち解像度を上げるためにはレジスト
塗布厚を薄くする必要がある。一方、サブミクロンパタ
ーンともなると湿式エッチングは利用でかずイオンエッ
チ,プラズマエッチやスパッタエッチ等のドライエッチ
ングを用いなければならないが、レジストパターンの耐
ドライエッチング性を向上させるためには、レジスト材
料にもよるが、一般にレジスト塗膜を厚くしておく必要
がある。
However, these metal patterns are required to be further miniaturized in order to increase the density of semiconductor elements and the quality of printed matter. Particularly in the manufacture of VLSI, it has become necessary to accurately form a submicron metal pattern. In such a case, the physical properties of the resist resin itself are greatly affected, but in general, it is necessary to reduce the resist coating thickness to obtain a fine pattern, that is, in order to improve the resolution. On the other hand, when it comes to submicron patterns, wet etching cannot be used, but dry etching such as ion etching, plasma etching, and sputter etching must be used. However, in order to improve the dry etching resistance of the resist pattern, the resist material is also used. However, it is generally necessary to make the resist coating film thick.

発明が解決しようとする課題 従って、上記2つの要求を満足させるためには、塗膜が
厚くても解像度が良いもの、あるいは塗膜が薄くても耐
ドライエッチング性が良いホトレジストを開発すれば良
いのであるが、今のところこのような材料は得られてい
ない。
Therefore, in order to satisfy the above-mentioned two requirements, it is sufficient to develop a photoresist having a good coating film thickness and good resolution, or a photoresist having a good dry etching resistance even if the coating film is thin. However, such materials have not been obtained so far.

本発明は、高解像度で均一性がすぐれしかも導電性がす
ぐれた金属超薄膜及びその製造方法を提供することを目
的とする。
An object of the present invention is to provide an ultrathin metal film having high resolution, excellent uniformity, and excellent conductivity, and a method for producing the same.

課題を解決するための手段 本発明は、基板上に、末満にアセチレン基を有する化合
物の単分子状の薄膜を形成し、次にこの薄膜表面に1価
金属の化合物を反応させることにより、前記アセチレン
基と結合した前記金属の薄膜を形成する。
Means for Solving the Problems The present invention comprises forming a monomolecular thin film of a compound having an acetylene group on a substrate on a substrate, and then reacting a monovalent metal compound on the thin film surface, A thin film of the metal bonded to the acetylene group is formed.

ここにおいて、前記薄膜に対して金属化合物を反応させ
る前に、エネルギー線、例えば電子ビーム,イオンビー
ム,光,X線等を照射して薄膜の特定領域のアセチレン基
を反応させる工程を入れると、金属超薄膜は前記エネル
ギー線の非照射領域に対応する特定のパターンとなる。
Here, before reacting the metal compound to the thin film, if a step of irradiating an energy beam, for example, an electron beam, an ion beam, light, or an X-ray to react the acetylene group in a specific region of the thin film is added, The ultrathin metal film has a specific pattern corresponding to the non-irradiated area of the energy rays.

アセチレン基を有する化合物は、そのアセチレン基が主
鎖又は側鎖の末端にあればよい。そして、この化合物の
単分子状の薄膜を形成する手段として、ラングミュア・
プロジェット法あるいは化学吸着法を用い、アセチレン
基が基板表面に並んで露出されるように単分子膜を累積
形成しておくことにより、感度向上とともに超微細パタ
ーン形成が可能となる。
The compound having an acetylene group may have the acetylene group at the end of the main chain or side chain. And as a means for forming a monomolecular thin film of this compound, Langmuir
By using a jet method or a chemical adsorption method to cumulatively form a monomolecular film so that the acetylene groups are exposed side by side on the substrate surface, it is possible to improve sensitivity and form an ultrafine pattern.

作 用 本発明は、あらかじめ単分子膜あるいは単分子膜の表面
にアセチレン基(−C≡C−H)を形成しておくことに
より、このアセチレン基と金属化合物の反応を利用し
て、水溶性金属化合物より分子状あるいは原子状の金属
膜を、単分子膜に付着形成できる作用を積極的に利用す
るものである。したがって、本発明によれば超微細な金
属パターン形成を容易に行うことが可能となる。
Operation The present invention utilizes a reaction between the acetylene group and a metal compound to form a water-soluble film by forming an acetylene group (-C≡C-H) on the surface of the monolayer or the monolayer in advance. This is to positively utilize the action of forming a molecular or atomic metal film from a metal compound by adhering to a monomolecular film. Therefore, according to the present invention, it becomes possible to easily form an ultrafine metal pattern.

実施例 以下、本発明の方法を第1図を用いて説明する。Example Hereinafter, the method of the present invention will be described with reference to FIG.

SiO2の形成された半導体Si基板1上へ化学吸着法によ
り、シラン界面活性剤、例えばCH≡C−(CH2)n−SiC
l3(nは整数で、10〜20が良い)を吸着させることによ
り、基板表面のSiO2と反応させ、 の単分子膜2を形成する。ここで、前記のシラン界面活
性剤は重量比で80%のn−ヘキサンと12%の四塩化炭素
と8%のクロロホルムを混合した溶媒に2.0×10-3〜5.0
×10-2モル/の割合で溶解した溶液を用い、これに基
板を浸漬して反応させる(第1図a)。なお、ここで、
分子末端のアセチレン基の安定をはかるため、シラン界
面活性剤として、(CH33Si−C≡C−(CH2)n−SiC
l3を用いて化学吸着を行う方法もあるが、この場合は、
吸着後10%KOH水溶液に浸漬すると、−Si(CH3基が
脱離されて、同様に の単分子膜が形成できる。ここで、シラン界面活性剤の
アセチレン基4は基板表面に並んで成膜され(第1図
b)、しかも、電子ビーム照射により、まわりのアセチ
レン基間で重合反応が生じるので、次に、第1図cに示
すように電子ビーム5を特定領域に照射すると、第1図
dに示すように、電子ビーム照射された部分6のアセチ
ン基の三重結合は、互いに結合し合い選択的に不活性化
(死活)される。
A silane surfactant such as CH≡C- (CH 2 ) n-SiC is formed on the semiconductor Si substrate 1 on which SiO 2 is formed by a chemisorption method.
l 3 (n is an integer, preferably 10 to 20) is adsorbed to react with SiO 2 on the substrate surface, To form the monomolecular film 2. Here, the silane surfactant is 2.0 × 10 −3 to 5.0 in a solvent in which 80% n-hexane, 12% carbon tetrachloride and 8% chloroform are mixed by weight.
Using a solution dissolved at a ratio of × 10 -2 mol / mol, a substrate is immersed in this solution and reacted (Fig. 1a). Here,
In order to stabilize the acetylene group at the molecular end, as a silane surfactant, (CH 3 ) 3 Si-C≡C- (CH 2 ) n-SiC is used.
There is also a method of chemisorption using l 3 , but in this case,
When it is immersed in a 10% KOH aqueous solution after adsorption, —Si (CH 3 ) 3 groups are desorbed, and Can form a monomolecular film. Here, the acetylene group 4 of the silane surfactant is formed side by side on the surface of the substrate (FIG. 1b), and further, the electron beam irradiation causes a polymerization reaction between surrounding acetylene groups. As shown in FIG. 1c, when the electron beam 5 is irradiated to a specific region, as shown in FIG. 1d, the triple bonds of the acetin groups in the electron beam-irradiated portion 6 are bonded to each other and are selectively inactive. Be made alive (live and dead).

次に、1価の金属の化合物、例えば硝酸銀水溶液(AgNO
3)または、水酸化銅アンモニウム水溶液(Cu(NH32O
H)に浸漬する。すると、前記単分子膜2の表面のアセ
チレン基と銀または銀が反応してAg7またはCuが選択的
に単分子膜上に付着形成される(第1図e)。
Next, a monovalent metal compound, such as an aqueous solution of silver nitrate (AgNO
3 ) Or copper ammonium hydroxide solution (Cu (NH 3 ) 2 O
Soak in H). Then, the acetylene group on the surface of the monolayer 2 reacts with silver or silver to selectively deposit Ag7 or Cu on the monolayer (FIG. 1e).

つまり、以上の方法により、サブミクロンあるいはそれ
以上の超微細な単分子状の薄膜上に原子又は分子状の金
属薄膜が選択的に形成された。従って、本実施例の方法
を用いることにより超微細な配線が形成でき、半導体装
置等の電子デバイス製造上効果大なるものである。な
お、このとき、基板全面に金属薄膜を形成したい場合
は、電子ビームの照射工程を省けば良いことは明らかで
ある。
That is, by the above method, the atomic or molecular metal thin film was selectively formed on the submicron or more ultrafine unimolecular thin film. Therefore, by using the method of this embodiment, an ultrafine wiring can be formed, which is very effective in manufacturing an electronic device such as a semiconductor device. At this time, if it is desired to form a metal thin film on the entire surface of the substrate, it is clear that the electron beam irradiation step may be omitted.

なお、上記例では、シラン界面活性剤の−SiCl3と反応
して を生じる基板、すなわち、SiO2の形成されたSi基板を例
にして示したが、その他に無機物では、Al2O3,ガラス
等、有機物ではポリビニルアルコール等が基板として利
用可能である。また、基板表面が撥水性を示す他の物質
で被われている場合には、ラングミュア・ブロジェット
膜を形成して基板表面に全面親水性基を並べるか、酸素
プラズマ処理等で基板表面を親水化しておく方法を用い
ることができる。なお、ラングミュア・ブロジェット膜
では、密着力は劣るが、基板表面物質が撥水性の場合で
も、累積を撥水面が基板側になるように形成したところ
で止めれば、表面を完全に親水性化することが可能であ
る。
In the above example, the reaction with -SiCl 3 of the silane surfactant Although a substrate that causes the above, that is, a Si substrate on which SiO 2 is formed is shown as an example, other inorganic materials such as Al 2 O 3 and glass, and organic materials such as polyvinyl alcohol can be used as the substrate. If the substrate surface is covered with another substance that exhibits water repellency, a Langmuir-Blodgett film is formed to arrange hydrophilic groups on the entire surface of the substrate, or the substrate surface is made hydrophilic by oxygen plasma treatment or the like. It is possible to use a method of making it into Although the Langmuir-Blodgett film has poor adhesion, even if the substrate surface material is water-repellent, if the accumulation is stopped when the water-repellent surface is formed on the substrate side, the surface becomes completely hydrophilic. It is possible.

また、酸素プラズマ処理を行った場合には、基板表面が
酸化され、親水性を示すようになる。
Further, when the oxygen plasma treatment is performed, the substrate surface is oxidized and becomes hydrophilic.

なお、上記の実施例においては、アセチレン基を有する
化合物の薄膜として、シリコン界面活性剤を吸着反応さ
せる方法を示したが、あらかじめ−Clを−OH基に置換し
た試薬(CH≡C−(CH2)n−Si(OH)等)を用いれ
ば、ラングミュア・ブロジェット法でも、薄膜を形成で
きる。
In the above examples, as a thin film of a compound having an acetylene group, a method of adsorbing a silicon surfactant was shown, but a reagent (CH≡C- (CH 2 ) If n-Si (OH) 3 etc. is used, a thin film can be formed even by the Langmuir-Blodgett method.

なお、本発明の方法は、上記実施例に示したシラン界面
活性剤分子内のアセチレン基の代りにジアセチレン基
(−C≡C−C≡CH)を用いたり、さらに直鎖状CH2
合の間又は側鎖として機能性分子例えば、−C≡C−C
≡C−,−C6H4−−C4NH3−,−C4SH2−,−C6H4−CH=
CH−,−C6H4−S−,−C6H4−O−等のπ共役ポリマー
を形成する分子を含めた試薬を用いることにより、今後
分子デバイス製造技術としても応用できるものである。
In the method of the present invention, a diacetylene group (-C≡C-C≡CH) is used in place of the acetylene group in the silane surfactant molecule shown in the above-mentioned examples, or a linear CH 2 bond is used. Functional molecule between or as a side chain, for example, -C≡C-C
≡ C−, −C 6 H 4 − −C 4 NH 3 −, −C 4 SH 2 −, −C 6 H 4 −CH =
By using a reagent containing a molecule forming a π-conjugated polymer such as CH-, -C 6 H 4 -S-, and -C 6 H 4 -O-, it can be applied as a molecular device manufacturing technology in the future. .

発明の効果 以上述べたように、本発明の方法を用いれば、パターン
形成時のエネルギー線に感応する薄膜は単層ないし数層
の単分子累積膜で形成しておくため、超微細金属パター
ンの形成が可能である。さらに選択膜成長反応を−SiCl
3と−OH基,−C≡CH基とAgまたはCu等の反応で行うこ
とにより、導電性が高いパターンが得られる。従って、
本発明の方法は超微細配線パターン形成時にVLSI製造時
における配線の形成に大なる効果をもたらすものであ
る。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, a thin film sensitive to energy rays during pattern formation is formed of a monolayer or several layers of monomolecular cumulative film, so that the ultrafine metal pattern It can be formed. Furthermore, selective film growth reaction
By conducting the reaction of 3 and -OH group, or -C≡CH group and Ag or Cu, a pattern having high conductivity can be obtained. Therefore,
The method of the present invention has a great effect on the formation of wiring during VLSI manufacturing when forming an ultrafine wiring pattern.

また薄膜形成に用いるLB法および吸着法は、基板表面と
の界面反応で進行するため、基板段差にそれほど影響を
受けず、VLSI素子上のような段差が多い基板に利用する
場合大きな効果がある。
In addition, the LB method and adsorption method used for thin film formation proceed with interfacial reaction with the substrate surface, so they are not significantly affected by the substrate step, and have a great effect when used on a substrate with many steps such as VLSI elements. .

なお、以上の実施例では、−SiCl3と−OH,AgまたはCuイ
オンと−C≡CHの界面反応を例に示したが、同様な反応
機構を示す物質であれば、これらに限定されるものでは
ない。従って、本発明の方法は、超微細配線パターン形
成、特にVLSI製造時における配線工程の改良に効果大な
るものである。
In the above examples, the interfacial reaction between —SiCl 3 and —OH, Ag or Cu ions and —C≡CH is shown as an example, but any substance having a similar reaction mechanism may be used. Not a thing. Therefore, the method of the present invention is very effective for forming an ultrafine wiring pattern, particularly for improving the wiring process during VLSI manufacturing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を説明するための一実施例の工程
を示し、同図a,cは基板断面図、同図b,d,eはそれぞれ同
図a,cの丸印A,B部の分子レベルでの拡大図である。 1……基板、2……薄膜、5……エネルギー線、7……
Ag超薄膜パターン。
FIG. 1 shows a process of one embodiment for explaining the method of the present invention, in which a and c are sectional views of the substrate and b, d and e are circles A and c in FIGS. It is an enlarged view of the B part in the molecular level. 1 ... Substrate, 2 ... Thin film, 5 ... Energy ray, 7 ...
Ultra thin Ag pattern.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】末端にアセチレン基を有する化合物の単分
子状の薄膜上に、前記アセチレン基と結合した原子状又
は分子状の金属を有する金属超薄膜。
1. A metal ultrathin film having an atomic or molecular metal bonded to the acetylene group on a unimolecular thin film of a compound having an acetylene group at the terminal.
【請求項2】前記金属が銀または銅であり、前記薄膜が
その一端にシリコンを含む請求項1記載の金属超薄膜。
2. The ultrathin metal film according to claim 1, wherein the metal is silver or copper, and the thin film contains silicon at one end thereof.
【請求項3】基板上に、末端にアセチレン基を持つ化合
物の単分子状の薄膜を形成する工程と、前記薄膜表面に
1価金属の化合物を反応させて前記アセチレン基と前記
金属とを結合する金属超薄膜の製造法。
3. A step of forming a monomolecular thin film of a compound having an acetylene group at a terminal on a substrate, and reacting a compound of a monovalent metal on the surface of the thin film to bond the acetylene group and the metal. Method for manufacturing ultra thin metal film.
【請求項4】前記薄膜を形成する工程が、ラングミュア
・ブロジェット法または吸着法である請求項3記載の金
属超薄膜の製造法。
4. The method for producing an ultra-thin metal film according to claim 3, wherein the step of forming the thin film is a Langmuir-Blodgett method or an adsorption method.
【請求項5】基板上に、末端にアセチレン基を有する化
合物の単分子状の薄膜を形成する工程と、前記薄膜の特
定領域にエネルギー線を照射して特定領域のアセチレン
基を反応させる工程と、前記薄膜のアセチレン基が残存
した部分に1価金属の化合物を反応させて前記エネルギ
ー線非照射領域のアセチレン基と前記金属とを結合して
特定のパターンの金属超薄膜を形成する工程とを有する
ことを特徴とした金属超薄膜の製造法。
5. A step of forming a monomolecular thin film of a compound having an acetylene group at a terminal on a substrate, and a step of irradiating a specific region of the thin film with an energy beam to react the acetylene group in the specific region. And a step of reacting a monovalent metal compound on a portion of the thin film where the acetylene group remains to bond the acetylene group in the energy ray non-irradiated region and the metal to form a metal ultrathin film having a specific pattern. A method for producing an ultra-thin metal film characterized by having.
【請求項6】前記アセチレン基がジアセチレン基である
請求項5記載の金属超薄膜の製造法。
6. The method for producing an ultrathin metal film according to claim 5, wherein the acetylene group is a diacetylene group.
JP63243008A 1987-12-21 1988-09-28 Ultra-thin metal film and manufacturing method thereof Expired - Fee Related JPH0756867B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63243008A JPH0756867B2 (en) 1988-09-28 1988-09-28 Ultra-thin metal film and manufacturing method thereof
EP88312156A EP0322233B1 (en) 1987-12-21 1988-12-21 Method for producing ultrathin metal film and ultrathin-thin metal pattern
DE3855073T DE3855073T2 (en) 1987-12-21 1988-12-21 Process for the production of the finest metal films and finest metal images
US07/287,090 US4996075A (en) 1987-12-21 1988-12-21 Method for producing ultrathin metal film and ultrathin-thin metal pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243008A JPH0756867B2 (en) 1988-09-28 1988-09-28 Ultra-thin metal film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0290679A JPH0290679A (en) 1990-03-30
JPH0756867B2 true JPH0756867B2 (en) 1995-06-14

Family

ID=17097518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243008A Expired - Fee Related JPH0756867B2 (en) 1987-12-21 1988-09-28 Ultra-thin metal film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0756867B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957130A1 (en) * 1999-11-26 2001-05-31 Infineon Technologies Ag Metallizing dielectric materials comprises applying a photosensitive dielectric to a substrate, irradiating the dielectric through a mask, growing a metal, subjecting to high temperatures and chemically metallizing
JP2007161913A (en) * 2005-12-15 2007-06-28 Kagawa Univ Adhesion method and biochemical chip produced by the method and optical part
JP5572802B2 (en) * 2007-05-30 2014-08-20 国立大学法人 香川大学 Adhesion method and biochemical chip and optical component produced using the same
US20110168430A1 (en) * 2008-09-11 2011-07-14 Takuya Hata Method of forming metal wiring and electronic part including metal wiring
JP7195239B2 (en) * 2019-09-24 2022-12-23 東京エレクトロン株式会社 Film forming method and film forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744637A (en) * 1980-08-30 1982-03-13 Matsushita Electric Works Ltd Molding material for metallized product
JPS593951A (en) * 1982-06-29 1984-01-10 Fujitsu Ltd Semiconductor device
JPS616892A (en) * 1984-06-20 1986-01-13 キヤノン株式会社 Method of producing printed circuit
JPS62156282A (en) * 1985-12-27 1987-07-11 Hitachi Chem Co Ltd Pretreating solution for electroless plating

Also Published As

Publication number Publication date
JPH0290679A (en) 1990-03-30

Similar Documents

Publication Publication Date Title
US6348240B1 (en) Methods for and products of modification and metallization of oxidizable surfaces, including diamond surfaces, by plasma oxidation
US4908299A (en) Pattern forming method
US5512328A (en) Method for forming a pattern and forming a thin film used in pattern formation
JP3600546B2 (en) Method for forming patterned indium zinc oxide film and indium tin oxide film by microcontact printing
US5077085A (en) High resolution metal patterning of ultra-thin films on solid substrates
US6492096B1 (en) Patterned molecular self-assembly
US6436615B1 (en) Methods and materials for selective modification of photopatterned polymer films
US4996075A (en) Method for producing ultrathin metal film and ultrathin-thin metal pattern
US5696207A (en) Fluroropolymeric substrates with metallized surfaces and methods for producing the same
US6582767B1 (en) Metal pattern forming method
US20040203256A1 (en) Irradiation-assisted immobilization and patterning of nanostructured materials on substrates for device fabrication
JP2013530512A (en) Selective nanoparticle assembly system and method
Perkins et al. Proximal probe study of self‐assembled monolayer resist materials
JP3486864B2 (en) Method for forming copper wiring on substrate and substrate on which copper wiring is formed
Dressick et al. Proximity x-ray lithography of siloxane and polymer films containing benzyl chloride functional groups
JP4742327B2 (en) Spatial precision placement technology for materials
JPH0756867B2 (en) Ultra-thin metal film and manufacturing method thereof
JPH0626706B2 (en) Method for producing monomolecular cumulative film
US6866791B1 (en) Method of forming patterned nickel and doped nickel films via microcontact printing and uses thereof
JPH0781189B2 (en) Ultra-thin metal film manufacturing method and pattern forming method
JP3572056B2 (en) Optical patterning of organic monolayer on silicon wafer
Leu et al. Improved performance of nanocrystal memory for aminosilane-mediated Au–SiO 2 embedded core–shell nanoparticles
JPH04326719A (en) Method of forming high-resolution pattern to solid substrate
Hedlund et al. Using Surface Chemistry to Direct the Deposition of Nano-objects for Electronics
JP3952455B2 (en) Nano-patterning method using organic monomolecular film as resist

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees