JPH0755703A - Density measuring device and imaging device - Google Patents

Density measuring device and imaging device

Info

Publication number
JPH0755703A
JPH0755703A JP5225038A JP22503893A JPH0755703A JP H0755703 A JPH0755703 A JP H0755703A JP 5225038 A JP5225038 A JP 5225038A JP 22503893 A JP22503893 A JP 22503893A JP H0755703 A JPH0755703 A JP H0755703A
Authority
JP
Japan
Prior art keywords
density
image
measurement
detection
amplification factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5225038A
Other languages
Japanese (ja)
Inventor
Tatsuya Kobayashi
達也 小林
Akihiko Uchiyama
明彦 内山
Masuaki Saito
益朗 斎藤
Yoichiro Maehashi
洋一郎 前橋
Naoki Enomoto
直樹 榎本
Tatsuhiko Hayakawa
竜彦 早川
Hiroshi Sasame
裕志 笹目
Tetsuya Kobayashi
哲也 小林
Haruo Fujii
春夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5225038A priority Critical patent/JPH0755703A/en
Publication of JPH0755703A publication Critical patent/JPH0755703A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Dry Development In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PURPOSE:To measure density highly accurately without inability for measuring the density of an image for detecting density. CONSTITUTION:Light is cast on a density measuring image 104 formed on an image carrier 111. The reflected light is received. The received light is converted into the density signal. The converted density signal is amplified with an amplifying means 16, and the density of the density measuring image 104 is measured. In this density measuring device, the amplifying means 16 is constituted so that the amplification factor can be changed in a plurality of stages. Control is performed so that the amplification factor for measuring real density in the amplifying means 16 is selected based on the value, which is obtained by amplifying the density signal at the temporaly density measurement of the density measuring image 104 with the amplification factor for the temporaly density measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濃度測定装置及び画像
形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a density measuring device and an image forming apparatus.

【0002】[0002]

【従来の技術】図5は、従来の画像形成装置における濃
度測定装置である。濃度検知センサー100は、ホルダ
ー101内に発光素子としてのLED102、受光素子
としてのフォトダイオード103を有する。像担持体1
11上の検知用画像104にLED102からの光が照
射され、照射された光は画像濃度に応じた反射光がフォ
トダイオード103に入射する。フォトダイオード10
3は入射光量に比例して電流が流れ、この電流をオペア
ンプ105により電圧に変換し出力とする。
2. Description of the Related Art FIG. 5 shows a density measuring apparatus in a conventional image forming apparatus. The density detection sensor 100 has an LED 102 as a light emitting element and a photodiode 103 as a light receiving element in a holder 101. Image carrier 1
The detection image 104 on 11 is irradiated with light from the LED 102, and the irradiated light is reflected by the photodiode 103 according to the image density. Photodiode 10
At 3, a current flows in proportion to the amount of incident light, and this current is converted into a voltage by the operational amplifier 105 and is output.

【0003】このときの、画像濃度と反射光量の関係の
一例を図6に示す。ここでは、発光素子として、波長9
50nmのLEDを用い、画像はこの光を吸収する黒色
のトナーを用いた。なお、グラフの横軸は画像をマクベ
ス社の反射濃度計で測定した値であり、反射光量は、白
紙の反射光量を100としたときの各画像の反射光量の
出力である。このようにして得られた出力は不図示のD
Aコンバーターでデジタル信号化され、その後の処理が
行われる。
FIG. 6 shows an example of the relationship between the image density and the amount of reflected light at this time. Here, as the light emitting element, a wavelength of 9
A 50 nm LED was used, and a black toner that absorbs this light was used for the image. The horizontal axis of the graph is a value obtained by measuring an image with a reflection densitometer manufactured by Macbeth, and the reflected light amount is an output of the reflected light amount of each image when the reflected light amount of a white paper is 100. The output thus obtained is D (not shown).
It is converted into a digital signal by the A converter, and the subsequent processing is performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
濃度測定では低濃度から高濃度までの画像を1つのレン
ジで測定・判断している為、特に高濃度画像の測定精度
が悪いという欠点があった。
However, in the conventional density measurement, since images from low density to high density are measured and judged in one range, there is a drawback that the measurement accuracy of high density images is particularly poor. It was

【0005】これにたいし、濃度検知センサー100か
らの出力を増幅器で増幅しAD変換する方法があるが、
この方法では、高濃度の画像も精度良く測定できるが、
検知できるレンジが狭くなってしまい、測定する画像の
濃度がこの測定レンジからずれてしまうと、測定できな
くなり、この場合、上記増幅器の増幅率を変え再び測定
を行うと濃度制御に要する時間が長くなり、さらには無
用のトナーを消費してしまう問題点があった。
On the other hand, there is a method of amplifying the output from the concentration detecting sensor 100 with an amplifier and performing AD conversion.
This method can measure high density images with high accuracy,
If the range that can be detected becomes narrow and the density of the image to be measured deviates from this measurement range, it will not be possible to measure. In this case, if the amplification factor of the amplifier is changed and measurement is performed again, the time required for density control will be long. In addition, there is a problem that unnecessary toner is consumed.

【0006】本発明は上記課題を解決するためになされ
たもので、その目的とするところは、濃度検出用画像の
濃度の測定が不能となることがなく、且つ同濃度を高精
度に測定することができる濃度測定装置及び画像形成装
置を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to measure the density of an image for density detection without being disabled and to measure the density with high accuracy. An object of the present invention is to provide a density measuring device and an image forming apparatus capable of performing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明にあっては、像担持体上に形成された濃度測定
用画像に光を照射し、反射された光を受光し、受光した
光を濃度信号に変換し、変換された濃度信号を増幅手段
にて増幅して前記濃度測定用画像の濃度を測定する濃度
測定装置において、前記増幅手段は、増幅率が複数段階
に可変に構成され、前記濃度測定用画像の仮濃度測定時
における濃度信号を仮濃度測定用の増幅率で増幅した値
に基づいて、前記増幅手段の本濃度測定用の増幅率を選
択するよう制御することを特徴とする。
In order to achieve the above object, in the present invention, an image for density measurement formed on an image carrier is irradiated with light, the reflected light is received, and the received light is received. In the density measuring device for converting the converted light into a density signal and amplifying the converted density signal with an amplifying means to measure the density of the density measuring image, the amplifying means can change the amplification factor in a plurality of steps. And controlling to select the amplification factor for the main concentration measurement of the amplification means based on the value obtained by amplifying the concentration signal at the time of the temporary concentration measurement of the concentration measurement image by the amplification factor for the temporary concentration measurement. Is characterized by.

【0008】また、濃度測定用画像が像担持体上に一つ
形成され、該一つの濃度測定用画像の先端部にて仮濃度
測定を行い、該後半部にて本濃度測定を行うのが好まし
い。
Further, one density measurement image is formed on the image carrier, and the temporary density measurement is performed at the leading end portion of the one density measurement image, and the main density measurement is performed at the latter half portion. preferable.

【0009】また、前記濃度測定装置の測定結果に基づ
いて画像形成条件が設定される。
Further, the image forming condition is set based on the measurement result of the density measuring device.

【0010】[0010]

【作用】上記構成の本発明にあっては、像担持体上に形
成された濃度測定用画像に光を照射し、反射された光を
受光し、受光した光を濃度信号に変換し、変換された濃
度信号を増幅手段にて増幅して前記濃度測定用画像の濃
度が測定される。
According to the present invention having the above-mentioned structure, the image for density measurement formed on the image carrier is irradiated with light, the reflected light is received, and the received light is converted into a density signal, which is converted. The density signal thus obtained is amplified by the amplification means, and the density of the density measurement image is measured.

【0011】ここで増幅手段は、増幅率が複数段階に可
変に構成され、前記濃度測定用画像の仮濃度測定時にお
ける濃度信号を仮濃度測定用の増幅率で増幅した値に基
づいて、前記増幅手段の本濃度測定用の増幅率を選択す
るように制御される。
Here, the amplification means is configured such that the amplification factor is variable in a plurality of stages, and based on a value obtained by amplifying the density signal at the time of temporary density measurement of the density measurement image by the amplification ratio for temporary density measurement, It is controlled so as to select the amplification factor for the main concentration measurement of the amplification means.

【0012】そして、仮濃度測定時には仮濃度測定用の
増幅率で増幅されるので、濃度測定用画像の濃度が測定
レンジからずれて測定できなくなるということを防止す
ることができる。
Further, during the temporary density measurement, the density of the image for density measurement is prevented from being unable to be measured because it is amplified by the amplification factor for temporary density measurement.

【0013】しかも、本濃度測定時には仮濃度測定時の
測定結果に基づいて増幅率が設定されるので、高精度の
濃度測定が可能となる。
Moreover, since the amplification factor is set in the actual concentration measurement based on the measurement result in the temporary concentration measurement, it is possible to perform the highly accurate concentration measurement.

【0014】[0014]

【実施例】【Example】

(第1の実施例)図1は本発明の第1の実施例である。
以下図に沿って説明するが従来例と同様な構成・作用を
するものは同一の番号を付し説明は略す。発光素子とし
てのLED102から像担持111上の濃度測定用画像
としての検知用画像104に光が照射される。ここでL
ED102はその照射光が一定になるように制御され
る。検知用画像104は小さすぎると正確な検知が行え
ず、大きすぎると無駄なトナー等の像形成剤の消費を招
くため、5mm×5mmから20mm×200mm程度
が好ましい。検知用画像104に照射された光は画像濃
度に応じて反射し受光素子であるフォトダイオード10
3に入射する。ここでフォトダイオード103は入射光
量に比例して電流が流れこの電流をオペアンプ105に
より電圧に変換する。電圧に変換された信号は装置本体
に設けられたCPU15によりその増幅率が2段階に可
変できる増幅手段としての増幅器16により増幅され
る。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
The following description will be given with reference to the drawings, but those having the same configurations and operations as those of the conventional example are designated by the same reference numerals and the description thereof will be omitted. Light is emitted from the LED 102 as the light emitting element to the detection image 104 as the density measurement image on the image carrier 111. Where L
The ED 102 is controlled so that the irradiation light becomes constant. If the detection image 104 is too small, accurate detection cannot be performed, and if it is too large, useless consumption of the image forming agent such as toner is caused, so that it is preferably about 5 mm × 5 mm to 20 mm × 200 mm. The light applied to the detection image 104 is reflected according to the image density, and the photodiode 10 as a light receiving element is reflected.
It is incident on 3. A current flows through the photodiode 103 in proportion to the amount of incident light, and the operational amplifier 105 converts this current into a voltage. The signal converted into the voltage is amplified by the amplifier 16 as an amplifying means whose amplification factor can be changed in two steps by the CPU 15 provided in the main body of the apparatus.

【0015】図2にそれぞれの増幅率における検知用画
像104の濃度とその反射光量(白紙を100としたと
きの相対値)を示す。
FIG. 2 shows the density of the detection image 104 at each amplification factor and the amount of reflected light (relative value when the white paper is 100).

【0016】図中Aで示したグラフは濃度が0〜1.6
までの検知用画像104が検知できるように増幅器16
の増幅率を設定してある。また図中Bで示したグラフは
Aに対し10倍の増幅率で設定してあり、濃度が1.0
〜1.6までの検知用画像104が検知できる。図を見
れば分かるようにAの場合はすべての濃度が検知できる
が、高濃度になると反射量の変化率が減少し正確な検知
ができない。
In the graph shown by A in the figure, the concentration is 0 to 1.6.
Amplifier 16 so that the detection image 104 up to
The amplification factor of is set. The graph shown by B in the figure is set at an amplification factor 10 times that of A, and the density is 1.0
The detection images 104 up to 1.6 can be detected. As can be seen from the figure, in the case of A, all the densities can be detected, but when the density becomes high, the change rate of the reflection amount decreases and accurate detection cannot be performed.

【0017】そこで本発明によれば2つの検知用画像1
04a,104bを形成し、本濃度測定としての最終検
知に先立ち測定レンジを決定するための低濃度測定とし
ての低検知を検知用画像104aで行う。その出力結果
により最適の検知状態で、検知用画像104bの濃度を
検知する事により高精度で、検知の失敗を防ぐことがで
きる。すなわち、仮検知では図中Aで示した高濃度の検
知精度は悪いがすべての濃度が検知できるレンジで検知
を行い、検知用画像104aの濃度が1.0以下の場合
はそのままのレンジで検知を続け、濃度が1.0以上の
場合は図中Bの高濃度が正確に測定できるレンジに変
え、検知用画像104bの濃度を測定すれば良い。
Therefore, according to the present invention, two detection images 1 are provided.
04a and 104b are formed, and low detection as low density measurement for determining the measurement range is performed on the detection image 104a prior to final detection as main density measurement. By detecting the density of the detection image 104b in the optimum detection state based on the output result, it is possible to prevent the detection failure with high accuracy. That is, in the tentative detection, the detection accuracy of the high density shown by A in the figure is poor, but the detection is performed in the range in which all the densities can be detected. If the density is 1.0 or more, the density of the detection image 104b may be measured by changing to a range in which the high density of B in the figure can be accurately measured.

【0018】以上増幅器16の増幅率を2段階に変化さ
せる場合について述べたがこれに限らず3段階もしくは
それ以上変化させても良い。
Although the case where the amplification factor of the amplifier 16 is changed in two steps has been described above, the present invention is not limited to this and may be changed in three steps or more.

【0019】また、濃度検知の方法について光源の光量
を一定にして、反射光量を測定する場合を述べたが、こ
の他、反射光量が一定になるように光源の光量を変化さ
せこの時の光源光量を測定し、濃度データとしてもよ
い。この場合、一定になるよう制御する反射光量の値
を、2またはそれ以上可変とし測定する濃度のレンジを
変化させればよい。
Further, regarding the method of density detection, the case where the light amount of the light source is made constant and the reflected light amount is measured has been described. In addition to this, the light amount of the light source is changed so that the reflected light amount becomes constant and the light source at this time is changed. The light amount may be measured and used as the density data. In this case, the value of the amount of reflected light that is controlled to be constant may be varied by 2 or more, and the range of density to be measured may be changed.

【0020】(第2の実施例)図3は本発明の第2の実
施例である。本発明によれば、1つの検知用画像104
を用いて測定レンジを決定するための仮検知と、濃度を
検知するための最終検知を行うため、検知の失敗を防ぐ
ほかに、トナーの消費を極力抑えられる効果がある。以
下図に沿って説明するが前実施例と同等な構成・作用を
するものは同一の番号を付し説明は略す。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention. According to the present invention, one detection image 104
Since the provisional detection for determining the measurement range and the final detection for detecting the density are performed by using, there is an effect that the detection failure is prevented and the toner consumption is suppressed as much as possible. The following description will be given with reference to the drawings, but those having the same configurations and operations as those of the previous embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0021】104は、検知用画像であり、後述するよ
うにその先端部分で仮検知、それ以降で最終検知を行う
ため像担持体の移動方向に長い形状が好ましい。具体的
には5mm×10mmから20mm×30mm程度が良
い。また、濃度センサー100からの出力は前実施例同
様、増幅器16により2段階に出力が切り替えられ、図
3中のAで示したように増幅率が低く、濃度が0〜1.
6までの検知用画像が検知できる状態と、図中Bで示し
たようにAに対し10倍の増幅率に設定してあり、濃度
が1.0〜1.6まで検知できる状態がある。
Reference numeral 104 denotes a detection image, which is preferably long in the moving direction of the image bearing member for performing temporary detection at its tip and final detection thereafter, as will be described later. Specifically, about 5 mm × 10 mm to 20 mm × 30 mm is preferable. Also, the output from the concentration sensor 100 is switched in two stages by the amplifier 16 as in the previous embodiment, the amplification factor is low as shown by A in FIG. 3, and the concentration is 0 to 1.
There are a state in which the detection images up to 6 can be detected, and a state in which the amplification factor is set to 10 times that in A as shown in B in the figure and the density can be detected from 1.0 to 1.6.

【0022】図3で示した検知用画像104が濃度セン
サー100に達したとき、増幅器16の増幅率は低いA
のレンジであり、濃度0〜1.6までの画像濃度が検知
できる。このレンジで濃度検知用画像104の先端部
(図中104cで示した部分)の濃度を測定する。測定
された濃度が1.0以下の場合はそのままレンジで検知
を続け、濃度が1.0以上の場合は図中Bの高濃度が正
確に測定できるレンジに変え、検知用画像104の後半
部104dの濃度を測定すれば良い。本発明によれば、
高精度で、検知の失敗を防ぐことができる他、1つの検
知用画像104で検知が行えるためトナーの消費を抑え
ることが出来る。
When the detection image 104 shown in FIG. 3 reaches the density sensor 100, the amplification factor of the amplifier 16 is low.
The image density from 0 to 1.6 can be detected. In this range, the density of the front end portion (the portion indicated by 104c in the drawing) of the density detection image 104 is measured. When the measured density is 1.0 or less, detection is continued in the range as it is, and when the density is 1.0 or more, the high density of B in the figure is changed to a range that can be accurately measured. The density of 104d may be measured. According to the invention,
It is possible to prevent detection failure with high accuracy, and it is possible to suppress toner consumption because detection can be performed with one detection image 104.

【0023】(第3の実施例)図4は、本発明の第3の
実施例であり、本発明に係る濃度検知を行うカラー画像
形成装置である。以下図に沿って説明する。
(Third Embodiment) FIG. 4 shows a third embodiment of the present invention, which is a color image forming apparatus for density detection according to the present invention. Description will be given below with reference to the drawings.

【0024】アミルシリンダーの外周面に有機感光体
(OPC)又はA−Si、CdS、Se、等から成る光
導電体を塗布して構成される感光ドラム1は、不図示の
駆動手段によって図示矢印方向に駆動され後述するロー
ラー帯電器2により所定の電位に均一に帯電される。次
いで、露光装置3にはイエローの画像模様に従った信号
が入力され感光ドラム1に照射され、感光ドラム1上に
潜像が形成される。更に感光ドラム1が矢印方向に進む
と支持体5に支持された現像装置4a,b,c,dのう
ち、イエロートナーが入った現像装置4aが感光ドラム
1に対向するよう支持体5は回転し、選択された現像装
置4aによって可視化される。現像されたトナー像は転
写紙上に転写される。
The photosensitive drum 1 constituted by applying an organic photoconductor (OPC) or a photoconductor made of A-Si, CdS, Se or the like on the outer peripheral surface of an amyl cylinder is shown by an arrow mark by a driving means (not shown). It is driven in the same direction and is uniformly charged to a predetermined potential by a roller charger 2 described later. Then, a signal according to a yellow image pattern is input to the exposure device 3 and is irradiated on the photosensitive drum 1, so that a latent image is formed on the photosensitive drum 1. When the photosensitive drum 1 further advances in the direction of the arrow, the support 5 rotates so that the developing device 4a containing yellow toner among the developing devices 4a, b, c, d supported by the support 5 faces the photosensitive drum 1. Then, it is visualized by the selected developing device 4a. The developed toner image is transferred onto the transfer paper.

【0025】転写行程を詳述すると、感光ドラム1の画
像と同期して転写紙カセット10内からピックアップロ
ーラー9によって転写紙が給紙される。この像担持体と
しての転写ドラム6は、導電性の支持体61上に弾性層
62、誘電体層63を設けてなり、感光ドラム1と略同
速で矢印方向に回転する。この転写ドラム6へ前述転写
紙が供給されると支持体の一部に設けられたグリッパー
66によって、転写紙(不図示)が保持され、吸着ロー
ラ67により吸着される。次に、感光ドラム1上のトナ
ー像は、支持体61にバイアスが印加されることの転写
紙(不図示)上に転写される。
The transfer process will be described in detail. The transfer paper is fed from the transfer paper cassette 10 by the pickup roller 9 in synchronization with the image on the photosensitive drum 1. The transfer drum 6 as the image bearing member includes an elastic layer 62 and a dielectric layer 63 provided on a conductive support 61, and rotates in the arrow direction at substantially the same speed as the photosensitive drum 1. When the above-mentioned transfer paper is supplied to the transfer drum 6, the transfer paper (not shown) is held by the gripper 66 provided in a part of the support and sucked by the suction roller 67. Next, the toner image on the photosensitive drum 1 is transferred onto a transfer paper (not shown) in which a bias is applied to the support 61.

【0026】以上の行程をマゼンタ色、シアン色、黒色
を行うことによって転写紙上に複数色のトナー像が形成
される。この記録紙は、分離帯電器64を経て、分離爪
65によって転写ドラム6から剥され、搬送手段により
搬送され、更に転写紙は、従来公知の加熱、加圧の定着
装置8によって溶融固着されカラー画像が得られる。
By performing the above steps for magenta, cyan, and black, toner images of a plurality of colors are formed on the transfer paper. This recording paper is separated from the transfer drum 6 by the separating claw 65 via the separating charger 64 and is conveyed by the conveying means. Further, the transfer paper is melted and fixed by a conventionally known fixing device 8 for heating and pressurizing color. An image is obtained.

【0027】また、感光ドラム1上の転写残トナーは公
知のブレード手段のクリーニング装置7によって清掃さ
れる。また、転写ドラム6上のトナーも必要に応じてフ
ァーブラシ、ウエブ等の転写ドラムクリーニング装置6
8によって清掃することが好ましい。
The transfer residual toner on the photosensitive drum 1 is cleaned by a cleaning device 7 of known blade means. In addition, the toner on the transfer drum 6 may be a transfer brush cleaning device 6 such as a fur brush or a web, if necessary.
Cleaning by 8 is preferred.

【0028】以上説明した画像形成装置装置において、
通常の画像形成に先だって、濃度センサー100により
転写ドラム6上に形成され濃度検知用画像104の濃度
を測定し、その結果を基に、感光ドラム1の帯電電位、
露光装置3の光量、現像バイアス等の種々プロセス条件
を制御する。
In the image forming apparatus described above,
Prior to normal image formation, the density sensor 100 measures the density of the density detection image 104 formed on the transfer drum 6, and based on the result, the charging potential of the photosensitive drum 1,
Various process conditions such as the light amount of the exposure device 3 and the developing bias are controlled.

【0029】ここで、濃度センサー100は、図1に示
したものと同様な構成からなり説明は略す。次に濃度検
知動作の説明をする。帯電ローラー2により帯電された
感光ドラム1上に、露光装置3により濃度検知用画像1
04の画像模様が露光され潜像が形成される。この潜像
は第1色目のマゼンタトナーが入った現像器4aにより
現像されトナー可視像化される。次にこのトナー可視像
は転写ドラム6上に転写される。
Here, the density sensor 100 has the same structure as that shown in FIG. 1 and its explanation is omitted. Next, the density detection operation will be described. On the photosensitive drum 1 charged by the charging roller 2, the density detecting image 1 is formed by the exposure device 3.
The image pattern 04 is exposed to form a latent image. This latent image is developed by the developing device 4a containing the magenta toner of the first color and visualized as a toner image. Next, this toner visible image is transferred onto the transfer drum 6.

【0030】また検知用画像104は、帯電電位、露光
強度、現像バイアス、転写バイアス等のプロセス条件を
種々変え、複数個作成するとそれだけ良好な画像制御が
できて良い。以下同様にして2色目シアン、3色目イエ
ロー、4色目ブラックの検知用トナー像を形成する。濃
度センサー100からの出力は前実施例同様、増幅器1
6により2段階に出力が切り替えられ、図2中Aで示し
たように増幅率が低く、濃度が0〜1.6までの検知用
画像が検知できる状態と、図中Bで示したようにAに対
し10倍の増幅率に設定してあり、濃度が1.0〜1.
6まで検知できる状態がある。
Further, the detection image 104 may have various image processing conditions such as the charging potential, the exposure intensity, the developing bias, and the transfer bias. In the same manner, second-color cyan, third-color yellow, and fourth-color black detection toner images are formed. The output from the concentration sensor 100 is the same as in the previous embodiment.
6, the output is switched in two stages, the amplification factor is low as shown by A in FIG. 2, and the detection image in which the density is 0 to 1.6 can be detected, and as shown by B in FIG. The amplification factor is set to 10 times that of A, and the concentration is 1.0 to 1.
There is a state where up to 6 can be detected.

【0031】図4で示した濃度検知用画像104が濃度
センサー100に達したとき、増幅器16の増幅率は低
いAのレンジであり、濃度0〜1.6までの画像濃度が
検知できる。このレンジで濃度検知用画像104の先端
部の濃度を測定する。測定された濃度が1.0以下の場
合はそのままのレンジで検知を続け、濃度が1.0以上
の場合は図中Bの高濃度が正確に測定できるレンジに変
え、検知用画像104の濃度を測定すれば良い。
When the density detection image 104 shown in FIG. 4 reaches the density sensor 100, the amplification factor of the amplifier 16 is in the low A range, and image densities from 0 to 1.6 can be detected. The density at the tip of the density detection image 104 is measured in this range. When the measured density is 1.0 or less, the detection is continued in the same range, and when the density is 1.0 or more, the high density of B in the figure is changed to a range that can be accurately measured, and the density of the detection image 104 is changed. Should be measured.

【0032】本発明によれば複数色のトナーを用いるた
め、画像濃度制御に有するトナーの消費を抑える効果が
大きい。
According to the present invention, since the toners of a plurality of colors are used, the effect of suppressing the consumption of the toner for controlling the image density is great.

【0033】また、カラー画像形成装置においては、画
像濃度の他に、中間濃度を制御することに色再現性のよ
い高画質画像を得ることができる。この場合光学濃度
0.2〜1.0程度の各色中間濃度の検知用画像を上述
した方法と同様な方法で形成し、その濃度を濃度センサ
ー100で読み取ればよい。このとき増幅器16は3〜
8段階程度その増幅率を可変とし、検知用画像の濃度に
応じたレンジで検知することにより高精度な検知を行う
ことができる。
Further, in the color image forming apparatus, by controlling the intermediate density in addition to the image density, it is possible to obtain a high quality image with good color reproducibility. In this case, a detection image having an intermediate density of each color having an optical density of about 0.2 to 1.0 may be formed by the same method as described above, and the density may be read by the density sensor 100. At this time, the amplifier 16 is 3 to
Highly accurate detection can be performed by making the amplification factor variable about eight steps and detecting in a range according to the density of the detection image.

【0034】[0034]

【発明の効果】以上説明したように、複数の増幅率を有
する増幅手段を備え、予め最適な測定レンジを決定する
ための仮濃度測定を行った後、最適の測定レンジを選択
し、濃度を測定することで、測定精度の向上と測定不能
の回避を達成することができる。
As described above, the amplification means having a plurality of amplification factors is provided, and after the preliminary concentration measurement for determining the optimum measurement range is performed in advance, the optimum measurement range is selected to change the concentration. By performing the measurement, it is possible to achieve improvement in measurement accuracy and avoidance of non-measurement.

【0035】さらに、上記仮濃度測定を濃度測定用画像
の先端部で行うことにより、上記の効果に加えて、トナ
ーの消費を低減することができた。
Further, by performing the above-mentioned temporary density measurement at the leading end of the density measurement image, it was possible to reduce the toner consumption in addition to the above effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る濃度測定装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a concentration measuring device according to a first embodiment of the present invention.

【図2】同装置に係る濃度測定用画像濃度と反射光量と
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an image density for density measurement and a reflected light amount according to the same apparatus.

【図3】本発明の第2の実施例に係る濃度測定装置の概
略構成図である。
FIG. 3 is a schematic configuration diagram of a concentration measuring device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例に係る濃度測定装置及び
画像形成装置の概略構成図である。
FIG. 4 is a schematic configuration diagram of a density measuring device and an image forming apparatus according to a third embodiment of the present invention.

【図5】従来の濃度測定装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a conventional concentration measuring device.

【図6】同装置に係る濃度測定用画像濃度と反射光量と
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the image density for density measurement and the amount of reflected light according to the same apparatus.

【符号の説明】[Explanation of symbols]

111 像担持体 6 転写ドラム(像担持体) 16 増幅器(増幅手段) 104 検知用画像(濃度測定用画像) 104c 先端部 106d 後半部 111 image carrier 6 transfer drum (image carrier) 16 amplifier (amplifying means) 104 image for detection (image for density measurement) 104c tip part 106d latter half part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前橋 洋一郎 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 榎本 直樹 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 早川 竜彦 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 笹目 裕志 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 小林 哲也 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 藤井 春夫 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoichiro Maebashi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Naoki Enomoto 3-30-2 Shimomaruko, Ota-ku, Tokyo Canonon Incorporated (72) Inventor Tatsuhiko Hayakawa 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Hiroshi Sasame 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. ( 72) Inventor Tetsuya Kobayashi, 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Haruo Fujii, 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 像担持体上に形成された濃度測定用画像
に光を照射し、反射された光を受光し、受光した光を濃
度信号に変換し、変換された濃度信号を増幅手段にて増
幅して前記濃度測定用画像の濃度を測定する濃度測定装
置において、 前記増幅手段は、増幅率が複数段階に可変に構成され、 前記濃度測定用画像の仮濃度測定時における濃度信号を
仮濃度測定用の増幅率で増幅した値に基づいて、前記増
幅手段の本濃度測定用の増幅率を選択するよう制御する
ことを特徴とする濃度測定装置。
1. An image for density measurement formed on an image carrier is irradiated with light, the reflected light is received, the received light is converted into a density signal, and the converted density signal is applied to an amplification means. In the density measuring apparatus that amplifies the density measurement image to measure the density of the density measurement image, the amplification unit is configured such that the amplification factor is variably set in a plurality of stages, and the density signal during the temporary density measurement of the density measurement image is temporarily A concentration measuring apparatus, characterized in that control is performed so as to select the amplification factor for main concentration measurement of the amplifying means based on the value amplified by the amplification factor for concentration measurement.
【請求項2】 濃度測定用画像が像担持体上に一つ形成
され、該一つの濃度測定用画像の先端部にて仮濃度測定
を行い、該後半部にて本濃度測定を行う請求項1記載の
濃度測定装置。
2. An image for density measurement is formed on the image carrier, a temporary density measurement is performed at a leading end of the one density measurement image, and a main density measurement is performed at a latter half of the image. 1. The concentration measuring device according to 1.
【請求項3】 請求項1記載の濃度測定装置の測定結果
に基づいて画像形成条件が設定される画像形成装置。
3. An image forming apparatus in which an image forming condition is set based on a measurement result of the density measuring apparatus according to claim 1.
JP5225038A 1993-08-19 1993-08-19 Density measuring device and imaging device Withdrawn JPH0755703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5225038A JPH0755703A (en) 1993-08-19 1993-08-19 Density measuring device and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5225038A JPH0755703A (en) 1993-08-19 1993-08-19 Density measuring device and imaging device

Publications (1)

Publication Number Publication Date
JPH0755703A true JPH0755703A (en) 1995-03-03

Family

ID=16823082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5225038A Withdrawn JPH0755703A (en) 1993-08-19 1993-08-19 Density measuring device and imaging device

Country Status (1)

Country Link
JP (1) JPH0755703A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319409B1 (en) 1998-09-11 2001-11-20 Fuji Jukogyo Kabushiki Kaisha Process for treating waste water containing cutting oil
US7269369B2 (en) 2004-05-07 2007-09-11 Canon Kabushiki Kaisha Image forming apparatus with reduced paper consumption
US7982908B2 (en) 2004-05-07 2011-07-19 Canon Kabushiki Kaisha Color image forming apparatus and control method therefor
US8059318B2 (en) 2004-05-07 2011-11-15 Canon Kabushiki Kaisha Color image forming apparatus and control method therefor
JP2012220625A (en) * 2011-04-06 2012-11-12 Canon Inc Image forming apparatus
US9086651B2 (en) 2011-04-06 2015-07-21 Canon Kabushiki Kaisha Image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319409B1 (en) 1998-09-11 2001-11-20 Fuji Jukogyo Kabushiki Kaisha Process for treating waste water containing cutting oil
US7269369B2 (en) 2004-05-07 2007-09-11 Canon Kabushiki Kaisha Image forming apparatus with reduced paper consumption
US7982908B2 (en) 2004-05-07 2011-07-19 Canon Kabushiki Kaisha Color image forming apparatus and control method therefor
US8059318B2 (en) 2004-05-07 2011-11-15 Canon Kabushiki Kaisha Color image forming apparatus and control method therefor
JP2012220625A (en) * 2011-04-06 2012-11-12 Canon Inc Image forming apparatus
US9086651B2 (en) 2011-04-06 2015-07-21 Canon Kabushiki Kaisha Image forming apparatus

Similar Documents

Publication Publication Date Title
JP3072018B2 (en) Image forming device
JP2001027852A (en) Image forming device
JP3184690B2 (en) Image forming device
JPH0755703A (en) Density measuring device and imaging device
JP3327659B2 (en) Density measuring device and image forming device
US5319433A (en) Electrophotographing apparatus for forming color image
JP3740850B2 (en) Optical detection apparatus and method, and image density control apparatus
JP3315598B2 (en) Image forming device
US5124750A (en) Toner density detecting method, and image forming method and apparatus employing the toner density detecting method
JPH10288880A (en) Image forming device
JPS6057868A (en) Image density controlling method
JP3610216B2 (en) Image forming apparatus
JPS61254961A (en) Color image forming device
JP3309306B2 (en) Digital image forming equipment
JPH05313495A (en) Developer concentration controller and image forming device provided therewith
JP4254101B2 (en) Image forming apparatus
JPH11160930A (en) Image forming device
JP3072806B2 (en) Image forming device
JP3172170B2 (en) Image forming device
JP2670780B2 (en) Image forming method
JPH06148992A (en) Electrophotographic device
JP4084165B2 (en) Rotating body driving device and image forming apparatus
JP2000039747A (en) Image forming device
JPH09284556A (en) Image forming device
JP2709062B2 (en) Image density control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031