JPH0755021A - Coolant flow control device - Google Patents

Coolant flow control device

Info

Publication number
JPH0755021A
JPH0755021A JP5201591A JP20159193A JPH0755021A JP H0755021 A JPH0755021 A JP H0755021A JP 5201591 A JP5201591 A JP 5201591A JP 20159193 A JP20159193 A JP 20159193A JP H0755021 A JPH0755021 A JP H0755021A
Authority
JP
Japan
Prior art keywords
valve body
fluid passage
refrigerant
control fluid
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5201591A
Other languages
Japanese (ja)
Inventor
Masanao Tanaka
正直 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP5201591A priority Critical patent/JPH0755021A/en
Publication of JPH0755021A publication Critical patent/JPH0755021A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)

Abstract

PURPOSE:To accurately carry out the flow control of a coolant at the initial stage of operation of a refrigerating system without providing a bleed hole, and also to fulfil automatic defrosting function, in a coolant flow control device to be used for the refrigerating system. CONSTITUTION:A coolant flow control device is provided with a fluid control passage 5 in the division wall 4 between a coolant inflow passage 2 and a coolant outflow passage 3, and a valve body 6 having an outside diameter smaller than the inside diameter of the flow control passage 5 is provided so as to be insertable inside the flow control passage 5, and the flow rate of a coolant is controlled by vertically moving a driving bar 12 that has been connected to the valve body 6 for inserting or withdrawing the valve body 6 into or from the fluid control passage 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍系統に用いる冷媒
の流量制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate control device for a refrigerant used in a refrigeration system.

【0002】[0002]

【従来の技術】従来、冷凍系統における冷媒の流量制御
は、一般に蒸発器の入口と出口の温度差(以下スーパー
ヒートと言う)を検知して、蒸発器の入口の冷媒管に設
けられた膨張弁の開度を調節することによって行われて
いる。スーパーヒートが大なる場合は、膨張弁を大きく
開き、スーパーヒートが小なる場合は、膨張弁を小さく
開いて、外気温度と冷凍系統の能力が均衡する状態で膨
張弁の開度がほぼ一定となって大きく変化しない状態に
保持されるようにしている。そのため、圧縮機の運転開
始時においては、スーパーヒートは零であり、膨張弁は
閉じている。したがって、運転を開始直後は、膨張弁が
閉じているため圧縮機を運転しても冷媒を吸引すること
ができず、スーパーヒートが零のままで圧縮機は空運転
の状態となる。
2. Description of the Related Art Conventionally, in controlling the flow rate of a refrigerant in a refrigeration system, a temperature difference between an inlet and an outlet of an evaporator (hereinafter referred to as "superheat") is generally detected and an expansion provided in a refrigerant pipe at the inlet of the evaporator is detected. This is done by adjusting the opening of the valve. When the superheat is large, the expansion valve is opened wide, and when the superheat is small, the expansion valve is opened small, and the opening of the expansion valve is kept almost constant while the outside air temperature and the capacity of the refrigeration system are balanced. Therefore, it is kept so that it does not change significantly. Therefore, at the start of operation of the compressor, the superheat is zero and the expansion valve is closed. Therefore, immediately after the operation is started, the expansion valve is closed, so that the refrigerant cannot be sucked even when the compressor is operated, and the superheat remains zero and the compressor is in the idle operation state.

【0003】そこで、たとえば実開昭58−5161号
公報には、膨張弁が閉じた状態でも僅かな冷媒の流れが
生じるようにするため、図6に示すように、弁本体aの
絞り孔bと弁体cと並列にブリード孔dを開設した膨張
弁Eが記載されている。ブリード孔dがあれば、弁体c
が閉じた状態でも、ブリード孔dを通じて少量の冷媒が
断熱膨張して流れるので、圧縮機の運転開始に伴い蒸発
器の入口部分の温度が下がり出口は殆ど下がらないた
め、スーパーヒートが大きくなって膨張弁が開き正常運
転が開始される。
Therefore, for example, in Japanese Utility Model Laid-Open No. 58-5161, in order to cause a slight flow of the refrigerant even when the expansion valve is closed, as shown in FIG. And an expansion valve E in which a bleed hole d is opened in parallel with the valve body c. If there is a bleed hole d, valve body c
Even when is closed, a small amount of the refrigerant adiabatically expands and flows through the bleed hole d, so that the temperature of the inlet part of the evaporator decreases and the outlet hardly decreases with the start of operation of the compressor, so that the superheat becomes large. The expansion valve opens and normal operation starts.

【0004】しかしながら、膨張弁Eにおいては、弁本
体aに対し、絞り孔bとは別にブリード孔dを開設する
ため、構造が複雑となって製造コストが上昇し、また弁
本体の形状も大型化し、機器に装着する収容空間を広く
必要とする欠点がある。また、自動霜取り機能を行うた
めには膨張弁をバイパスして霜取り用電磁弁を併設する
必要があるなどの問題点を有している。
However, in the expansion valve E, since the bleed hole d is formed in the valve body a in addition to the throttle hole b, the structure becomes complicated and the manufacturing cost increases, and the shape of the valve body is large. However, there is a drawback in that it requires a wide accommodation space for mounting on equipment. In addition, there is a problem that it is necessary to bypass the expansion valve and additionally install a defrosting solenoid valve in order to perform the automatic defrosting function.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
点に着目してなされたもので、弁体と冷媒流路の構造を
改良することにより、ブリード孔を開設することなく冷
凍系統の運転初期における冷媒の流量制御が的確に実施
でき、ほとんど減圧せずに高温冷媒を流すことにより、
自動霜取り機能も有する冷媒流量制御装置を提供するこ
とを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and by improving the structure of the valve body and the refrigerant flow path, the refrigeration system of the refrigeration system can be formed without opening a bleed hole. The flow rate of the refrigerant in the initial stage of operation can be accurately controlled, and by flowing the high temperature refrigerant with almost no pressure reduction,
An object is to provide a refrigerant flow rate control device that also has an automatic defrosting function.

【0006】[0006]

【課題を解決するための手段】前記の課題を達成するた
め、本発明は、冷媒流入口と冷媒出口との間に制御用流
体通路を設け、該制御用流体通路内に該制御用流体通路
の内径より小なる外径を有する弁体を出入自在に設け、
該制御用流体通路に対して該弁体を出入させることによ
り冷媒の流量を制御することを特徴とする。制御用流体
通路には、冷媒出口側に拡開するテーパー部を形成する
ことが好適である(請求項2)。弁体は球形であること
が好ましい(請求項3)。弁体は、弁体の移動軸に対し
垂直な面で球を裁断した形状に形成することも好結果が
得られる(請求項4)。
In order to achieve the above object, the present invention provides a control fluid passage between a refrigerant inlet and a refrigerant outlet, and the control fluid passage is provided in the control fluid passage. A valve body with an outer diameter smaller than the inner diameter of
The flow rate of the refrigerant is controlled by moving the valve body in and out of the control fluid passage. It is preferable that the control fluid passage is formed with a tapered portion that widens toward the refrigerant outlet side (claim 2). The valve body is preferably spherical (claim 3). It is also possible to obtain a good result by forming the valve body in a shape in which a sphere is cut by a plane perpendicular to the moving axis of the valve body (claim 4).

【0007】[0007]

【作用】本発明の冷媒流量制御装置は、制御用流体通路
内に該制御用流体通路の内径より小なる外径を有する弁
体を出入自在に設けているため、制御用流体通路が完全
に閉止されることがなく、いわゆるブリード孔の機能を
有しているので、冷凍系統の初期運転が円滑に実施で
き、別にブリード孔を設ける必要がなくなる。また、制
御用流体通路にテーパー部を設けるなど制御用流体通路
と弁体の形状およびそれらの組み合わせを変えることに
より、弁体リフトと流通有効面積の関係を任意に変化さ
せることが可能であり、冷媒の流量制御および霜取りの
ための流量制御機能をもたせることができる。
In the refrigerant flow rate control device of the present invention, since the valve body having the outer diameter smaller than the inner diameter of the control fluid passage is provided in the control fluid passage so that the control fluid passage is completely closed. Since it is not closed and has a so-called bleed hole function, the initial operation of the refrigeration system can be smoothly performed, and it is not necessary to provide a separate bleed hole. Further, by changing the shape of the control fluid passage and the valve body and the combination thereof such as providing a tapered portion in the control fluid passage, it is possible to arbitrarily change the relationship between the valve body lift and the effective circulation area, A flow rate control function for the refrigerant and a flow rate control for defrosting can be provided.

【0008】[0008]

【実施例】本発明に係わる冷媒流量制御装置は、その一
実施例を図1に示すように、制御部Lとステッピングモ
ータ部Mから構成されている。制御部Lは、制御部本体
1の冷媒流入口2と冷媒流出口3間の隔壁4に円筒状の
制御用流体通路5が設けられ、この制御用流体通路5内
に対して出入自在に設けた球形の弁体6によって冷媒流
量を調節するようにしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerant flow rate control device according to the present invention comprises a control section L and a stepping motor section M as shown in FIG. The control unit L is provided with a cylindrical control fluid passage 5 in a partition wall 4 between the refrigerant inlet port 2 and the refrigerant outlet port 3 of the control unit body 1, and is provided so as to be able to move in and out of the control fluid passage 5. The flow rate of the refrigerant is adjusted by the spherical valve body 6.

【0009】制御部本体1の上部にはステッピングモー
タ部Mのケース7が結合されており、ケース7内には、
外周部にステータを構成するコイル8が収容され、中心
部にはロータ9がケース7に対して回動自在に支持され
ている。ケース7内のコイル8に通電するとロータ9が
回転し、ロータ9の回転に応じてスライダー10が螺旋
状案内リング11に沿って上下動し、スライダー10に
連結された駆動桿12を上下に動かし、駆動桿12の先
端にろう付けなどで結合された制御部Lの弁体6を制御
用流体通路4内に出入させて制御するようにしている。
A case 7 of the stepping motor section M is coupled to the upper part of the control section body 1, and inside the case 7,
A coil 8 forming a stator is housed in the outer peripheral portion, and a rotor 9 is rotatably supported with respect to the case 7 in the central portion. When the coil 8 in the case 7 is energized, the rotor 9 rotates, the slider 10 moves up and down along the spiral guide ring 11 according to the rotation of the rotor 9, and the drive rod 12 connected to the slider 10 moves up and down. The valve body 6 of the control unit L, which is connected to the tip of the drive rod 12 by brazing or the like, is controlled to move in and out of the control fluid passage 4.

【0010】図2は、制御用流体通路4と弁体6の構造
を拡大して示した断面図であり、この制御部をL1 とす
る。球形の弁体6の直径sは、制御用流体通路5の内径
tよりも小さく設定してあるので、弁体6の最大径部
(直径s)が制御用流体通路5内にあるときも、弁体5
と制御用流体通路5の内壁5aとの間に空隙13が生じ
る。この空隙13を通じて若干の冷媒が流れ、空隙13
がブリード孔の機能を果たすので、隔壁4に対して別に
ブリード孔を設ける必要はない。
FIG. 2 is an enlarged sectional view showing the structures of the control fluid passage 4 and the valve body 6, and this control portion is designated as L 1 . Since the diameter s of the spherical valve body 6 is set smaller than the inner diameter t of the control fluid passage 5, even when the maximum diameter portion (diameter s) of the valve body 6 is in the control fluid passage 5, Disc 5
A space 13 is formed between the control fluid passage 5 and the inner wall 5a of the control fluid passage 5. A small amount of the refrigerant flows through the voids 13,
Does not have to be provided separately for the partition wall 4.

【0011】弁体6を矢印方向に上昇させると、弁体6
の最大径部が制御用流体通路5から離れるため、空隙1
3が拡大して冷媒の流量は増大する。弁体のリフトによ
る制御用流体通路の流通有効面積は、弁体の形状と制御
用流体通路の形状によって変化するので、以下本発明の
他の実施例と併せて流通有効面積の変化について説明す
る。
When the valve body 6 is raised in the direction of the arrow, the valve body 6
Since the maximum diameter part of is separated from the control fluid passage 5,
3 expands and the flow rate of the refrigerant increases. Since the effective circulation area of the control fluid passage due to the lift of the valve body changes depending on the shape of the valve body and the shape of the control fluid passage, the change of the effective circulation area will be described below together with other embodiments of the present invention. .

【0012】図3は、本発明の他の実施例として制御部
2 の構成を示すもので、制御用流体通路14の冷媒流
出口3側の開口部にテーパ部15を設けた例である。図
4は、さらに他の実施例として制御部L3 の構成を示す
もので、制御用流体通路14の冷媒流出口3側の開口部
にテーパ部15を設けると共に、弁体の出入軸に対して
垂直な面で端部を裁断して端面16aを形成してなる弁
体16と組み合わせた例を示すものである。
FIG. 3 shows the structure of the control portion L 2 as another embodiment of the present invention, and is an example in which a taper portion 15 is provided at the opening of the control fluid passage 14 on the refrigerant outlet 3 side. . FIG. 4 shows a configuration of a control unit L 3 as still another embodiment, in which a taper portion 15 is provided at the opening of the control fluid passage 14 on the refrigerant outlet 3 side, and at the same time, with respect to the inlet / outlet shaft of the valve body. 2 shows an example in which the end portion 16a is cut by a vertical surface to form an end surface 16a in combination with the valve element 16.

【0013】制御部L1 において、 弁体6の直径: s=3.175mm 制御用流体通路5の内径: t=3.20mm に設定し、弁体6の中心6aが制御用流体通路5の冷媒
流出口3側の開口部5aと一致した位置をリフト0とし
て、弁体のリフトと制御用流体通路の流通有効面積との
関係は、図5のグラフのL1 に示すようになる。
In the control section L 1 , the diameter of the valve body 6 is set to s = 3.175 mm, the inner diameter of the control fluid passage 5 is set to t = 3.20 mm, and the center 6 a of the valve body 6 is set to the control fluid passage 5. The lift 0 is set at the position corresponding to the opening 5a on the refrigerant outlet 3 side, and the relationship between the lift of the valve body and the effective flow area of the control fluid passage is as shown by L 1 in the graph of FIG.

【0014】制御部L2 において、 弁体6の直径: s=3.175mm 制御用流体通路14の内径: t=3.20mm テーパー部15の開口端の内径: u=3.28mm テーパー部15の高さ: f=0.6mm に設定し、弁体6の中心6aが制御用流体通路14のテ
ーパー部15の起点14aと一致した位置をリフト0と
して、弁体のリフトと制御用流体通路の流通有効面積と
の関係は、図5のグラフのL2 に示すようになる。
In the control unit L 2 , the diameter of the valve body 6 is s = 3.175 mm, the inner diameter of the control fluid passage 14 is t = 3.20 mm, the inner diameter of the opening end of the taper portion 15 is u = 3.28 mm, and the taper portion 15 is shown. Height: f = 0.6 mm, the position where the center 6a of the valve body 6 coincides with the starting point 14a of the tapered portion 15 of the control fluid passage 14 is set as the lift 0, and the lift of the valve body and the control fluid passage The relationship with the effective distribution area is as shown by L 2 in the graph of FIG.

【0015】制御部L3 において、 弁体16の直径: s=3.175
mm 弁体16の中心から端面までの長さ: h=1.112
5mm 制御用流体通路14の内径: t=3.20m
m テーパー部15の開口端の内径: u=3.28m
m テーパー部15の高さ: f=0.6mm に設定し、弁体16の中心16aが制御用流体通路14
のテーパー部15の起点14aと一致した位置をリフト
0として、弁体のリフトと制御用流体通路の流通有効面
積との関係は、図5のグラフのL3 に示すようになる。
In the control section L 3 , the diameter of the valve body 16: s = 3.175
mm Length from center of valve body 16 to end face: h = 1.112
5 mm Inner diameter of control fluid passage 14: t = 3.20 m
m Inner diameter of open end of tapered portion 15: u = 3.28 m
m Height of taper part 15: f = 0.6 mm is set, and the center 16a of the valve body 16 is the control fluid passage 14
The lift 0 is set at a position that coincides with the starting point 14a of the tapered portion 15 and the relationship between the lift of the valve body and the effective flow area of the control fluid passage is as shown by L 3 in the graph of FIG.

【0016】制御用流体通路の上部に設けるテーパー部
の角度を小さくすれば、弁体のリフトによる流通有効面
積の変化は少なくなり、逆にテーパー部の角度を大きく
すれば、弁体のリフトによる流通有効面積の変化は多く
なる。また、テーパー部の高さ(前記f)を小さくすれ
ば、リフトの低い部分における流通有効面積の変化が大
きくなり、テーパー部の高さを大きくすれば、リフトの
低い部分における流通有効面積の変化は少なくなる。図
3および図4に示した制御部L2 、L3 は、弁体リフト
の低い部分では、冷媒は減圧し断熱膨張して膨張弁とし
ての制御が行われ、弁体リフトの高い部分では急激に流
通有効面積が大きくなるため、冷媒はほとんど減圧され
ず高温で流れるので霜取り機能を果たす。
If the angle of the tapered portion provided in the upper part of the control fluid passage is made small, the change of the effective flow area due to the lift of the valve body is reduced, and conversely, if the angle of the tapered portion is made large, it is caused by the lift of the valve body. The effective distribution area will change significantly. Further, if the height of the tapered portion (f) is reduced, the change of the effective circulation area in the low lift portion is increased, and if the height of the tapered portion is increased, the effective circulation area of the low lift portion is changed. Will be less. In the control units L 2 and L 3 shown in FIGS. 3 and 4, the refrigerant is decompressed and adiabatically expanded to perform control as an expansion valve in a portion where the valve body lift is low, and is abruptly performed in a portion where the valve body lift is high. Since the effective distribution area becomes large, the refrigerant is decompressed and flows at high temperature, so that the refrigerant has a defrosting function.

【0017】上述のように、弁体と制御用流体通路との
構成を変えることによって、弁体のリフトに対し流通有
効面積を任意に変更することが可能であり、冷凍系統の
種類および所望の動作に合わせて適切な形状を選択する
ようにすればよい。なお、上記の実施例においては、ス
テッピングモータを用いて制御部Lの弁体を駆動するよ
うにしているが、制御部の弁体を駆動するにはステッピ
ングモータに限らず、機械的あるいは流体を使用した駆
動源によって制御するようにしてもよい。
As described above, by changing the configurations of the valve body and the control fluid passage, it is possible to arbitrarily change the effective circulation area with respect to the lift of the valve body. An appropriate shape may be selected according to the operation. In the above embodiment, the valve body of the control unit L is driven by using the stepping motor, but the valve body of the control unit is not limited to being driven by the stepping motor, and mechanical or fluid may be used. You may make it control by the drive source used.

【0018】[0018]

【発明の効果】本発明の冷媒流量制御装置は、制御用流
体通路の内径より小なる外径を有する弁体を用いている
ため、制御用流体通路が完全に閉止されることがなく、
ブリード孔の機能を有してているので、別にブリード孔
を設けることなく冷凍系統の初期運転が円滑に実施でき
る。また、制御用流体通路にテーパー部を設けるなど制
御用流体通路と弁体の形状およびそれらの組み合わせを
変えることにより、弁体のリフトと流通有効面積との関
係を任意に変化させることが可能であり、冷媒の流量制
御および自動霜取りのための流量制御機能をもたせるこ
とができるなどの利点を有する。
Since the refrigerant flow rate control device of the present invention uses the valve body having the outer diameter smaller than the inner diameter of the control fluid passage, the control fluid passage is not completely closed.
Since it has the function of a bleed hole, the initial operation of the refrigeration system can be smoothly performed without providing a separate bleed hole. Further, by changing the shape of the control fluid passage and the valve body and the combination thereof such as providing a tapered portion in the control fluid passage, it is possible to arbitrarily change the relationship between the lift of the valve body and the effective circulation area. There is an advantage that the flow rate control of the refrigerant and the flow rate control function for automatic defrosting can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す冷媒流体制御装置の断面
図である。
FIG. 1 is a cross-sectional view of a refrigerant fluid control device showing an embodiment of the present invention.

【図2】図1の制御部を拡大して示した断面図である。FIG. 2 is an enlarged cross-sectional view of a control unit of FIG.

【図3】本発明の他の実施例に係わる制御部の断面図で
ある。
FIG. 3 is a sectional view of a controller according to another embodiment of the present invention.

【図4】本発明のさらに他の実施例に係わる制御部の断
面図である。
FIG. 4 is a sectional view of a control unit according to still another embodiment of the present invention.

【図5】本発明の各実施例における弁体のリフトと流通
有効面積の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the valve body lift and the effective flow area in each example of the present invention.

【図6】従来の膨張弁の断面図である。FIG. 6 is a sectional view of a conventional expansion valve.

【符号の説明】 2 冷媒流入口 3 冷媒流出口 5 制御用流体通路 6 弁体 15 テーパー部 16 弁体[Explanation of Codes] 2 Refrigerant inflow port 3 Refrigerant outflow port 5 Control fluid passage 6 Valve body 15 Tapered portion 16 Valve body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒流入口と冷媒出口との間に制御用流
体通路を設け、該制御用流体通路内に該制御用流体通路
の内径より小なる外径を有する弁体を出入自在に設け、
該制御用流体通路に対して該弁体を出入させることによ
り冷媒の流量を制御することを特徴とする冷媒流量制御
装置。
1. A control fluid passage is provided between a refrigerant inlet and a refrigerant outlet, and a valve body having an outer diameter smaller than an inner diameter of the control fluid passage is provided in and out of the control fluid passage. ,
A refrigerant flow rate control device, wherein the flow rate of the refrigerant is controlled by moving the valve body in and out of the control fluid passage.
【請求項2】 制御用流体通路が冷媒出口側に拡開する
テーパー部を有する請求項1記載の冷媒流量制御装置。
2. The refrigerant flow rate control device according to claim 1, wherein the control fluid passage has a tapered portion that expands toward the refrigerant outlet side.
【請求項3】 弁体が球形である請求項1または請求項
2記載の冷媒流量制御装置。
3. The refrigerant flow rate control device according to claim 1, wherein the valve element is spherical.
【請求項4】 弁体が弁体の移動軸に対し垂直な面で球
を裁断した形状である請求項1または請求項2記載の冷
媒流量制御装置。
4. The refrigerant flow rate control device according to claim 1 or 2, wherein the valve body has a shape in which a sphere is cut in a plane perpendicular to the movement axis of the valve body.
JP5201591A 1993-08-13 1993-08-13 Coolant flow control device Withdrawn JPH0755021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5201591A JPH0755021A (en) 1993-08-13 1993-08-13 Coolant flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5201591A JPH0755021A (en) 1993-08-13 1993-08-13 Coolant flow control device

Publications (1)

Publication Number Publication Date
JPH0755021A true JPH0755021A (en) 1995-03-03

Family

ID=16443601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5201591A Withdrawn JPH0755021A (en) 1993-08-13 1993-08-13 Coolant flow control device

Country Status (1)

Country Link
JP (1) JPH0755021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824120B2 (en) 2001-11-09 2004-11-30 Denso Corporation Flow amount control device
WO2015103047A1 (en) * 2013-12-31 2015-07-09 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824120B2 (en) 2001-11-09 2004-11-30 Denso Corporation Flow amount control device
WO2015103047A1 (en) * 2013-12-31 2015-07-09 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution
US9520315B2 (en) 2013-12-31 2016-12-13 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution

Similar Documents

Publication Publication Date Title
EP2000757B1 (en) Refrigerating cycle apparatus
US7854390B2 (en) Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
US6230743B1 (en) Channel-switching valve and method of controlling the same, and refrigerating cycle and method of controlling the same
JPH05312421A (en) Freezer device
JPS63163751A (en) Operation control method of heat pump type air conditioner
JP6929806B2 (en) Flow control valve and refrigeration cycle system
JP3955361B2 (en) Air conditioner
JPH11278045A (en) Refrigerating cycle device
JP6938401B2 (en) Flow control valve and refrigeration cycle system
JPH0755021A (en) Coolant flow control device
JPS60231079A (en) Control method of expansion valve
JP2001153492A (en) Motor operated selector valve, refrigerating cycle equipment, and refrogerating cycle equipment for freezer-refrigerator
CN206175674U (en) Flow control valve and heat pump system
JPH0689741B2 (en) Capacity control valve
JP4265347B2 (en) Electric expansion valve and refrigeration system
JPH11325299A (en) Flow control valve
JP2000193101A (en) Flow control valve
CN106481822A (en) Flow control valve, heat pump and its control method
JPS63243648A (en) Heat pump type air-conditioning machine
JP4070736B2 (en) Motorized valve for refrigerator and refrigeration cycle
JP2001091131A (en) Refrigerator and motor-operated valve for refrigeration cycle
CN113217640B (en) Electric valve and refrigeration cycle system
JPH0136026B2 (en)
JP3908843B2 (en) Refrigeration / refrigeration cycle equipment and differential pressure regulating valve
JP2848812B2 (en) Electric expansion valve

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031