JPH0754155A - Production of ultralow core loss grain-oriented silicon steel sheet - Google Patents

Production of ultralow core loss grain-oriented silicon steel sheet

Info

Publication number
JPH0754155A
JPH0754155A JP32305993A JP32305993A JPH0754155A JP H0754155 A JPH0754155 A JP H0754155A JP 32305993 A JP32305993 A JP 32305993A JP 32305993 A JP32305993 A JP 32305993A JP H0754155 A JPH0754155 A JP H0754155A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
bismuth
iron loss
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32305993A
Other languages
Japanese (ja)
Other versions
JP2664333B2 (en
Inventor
Yoshio Nakamura
吉男 中村
Takeo Nagashima
武雄 長島
Kunihide Takashima
邦秀 高嶋
Kenichi Murakami
建一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32305993A priority Critical patent/JP2664333B2/en
Publication of JPH0754155A publication Critical patent/JPH0754155A/en
Application granted granted Critical
Publication of JP2664333B2 publication Critical patent/JP2664333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet extremely low in core loss, at the time of producing a grain-oriented silicon steel sheet from a silicon steel slab congt. a specified amt. of Si, by incorporating a specified amt. of Bi chloride into a separation agent for annealing. CONSTITUTION:A silicon steel slab contg, by weight, 2-7% Si is subjected to hot rolling, is subjected to annealing at need and is thereafter subjected to cold rolling for one time or >= two times including process annealing. Next, it is subjected to decarburizing annealing, is thereafter coated with a separation agent for annealing (such as MgO and Al2O3), is dried and is subjected to finish annealing. At that time, the chloride (such as BiCl3) of bismuth is incorporated by 0.2-15 pts. by the chlorine pts.wt. into 100 pts.wt. separation agent for annealing. Thus, the surface is smoothened in the process of high temp. annealing, by which the ultralow core loss grain-oriented silicon steel sheet can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄損が極めて低い方向
性電磁鋼板の製造法に関するものである。特にその表面
にフォルステライト(以下、グラスという)被膜を形成
させずに二次再結晶工程(仕上焼鈍工程)を完了させ、
その後、磁区細分化、張力コーティング等の処理を行
い、鉄損特性の改善を図る方向性電磁鋼板の製造法であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having extremely low iron loss. In particular, complete the secondary recrystallization process (finish annealing process) without forming a forsterite (hereinafter referred to as glass) film on the surface,
After that, magnetic domain subdivision, tension coating, and other treatments are performed to produce a grain-oriented electrical steel sheet for improving iron loss characteristics.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、電気機器の磁気鉄芯
として多用され、エネルギーロスを少なくすべく、改善
が繰り返されてきた。方向性電磁鋼板の鉄損を低減する
手段として、仕上焼鈍後の材料表面にレーザービームを
照射し局部歪を与え、それによって磁区を細分化して鉄
損を低下させる方法が例えば特開昭58−26405号
公報に開示されている。また、応力除去焼鈍しても磁区
細分化効果が消失しない手段が、例えば特開昭62−8
617号公報に開示されている。これらの技術により鉄
損レベルは極めて良好なものとなってきたが、さらに鉄
損値の低減を図るためには鋼板表面近傍の磁区の動きを
阻害する地鉄表面の凹凸を取り除くこと(平滑化)が重
要であるとの認識が生まれてきた。しかしながら、珪素
鋼板を通常の製造工程で処理した場合、仕上焼鈍後の鋼
板表面にはグラス被膜が生成されており、表面平滑化の
ためにはグラス被膜を除去する必要がある。
2. Description of the Related Art Grain-oriented electrical steel sheets are frequently used as magnetic iron cores for electric equipment and have been repeatedly improved in order to reduce energy loss. As a means for reducing the iron loss of grain-oriented electrical steel sheets, there is a method of irradiating a laser beam on the surface of the material after finish annealing to give local strain, thereby subdividing magnetic domains to reduce the iron loss. It is disclosed in Japanese Patent No. 26405. Further, means for preventing the magnetic domain refining effect from disappearing even when stress-relief annealing is disclosed in, for example, JP-A-62-8.
No. 617 is disclosed. These technologies have made the iron loss level extremely good, but in order to further reduce the iron loss value, the irregularities on the surface of the base metal that obstruct the movement of magnetic domains near the surface of the steel sheet should be removed (smoothing). ) Has come to be recognized as important. However, when a silicon steel sheet is processed in a normal manufacturing process, a glass coating film is formed on the surface of the steel sheet after finish annealing, and it is necessary to remove the glass coating film for surface smoothing.

【0003】グラス被膜を除去する方法としては酸洗等
の技術が古くからあり、その後表面平滑化する方法とし
て特開昭64−83620号公報に開示されている化学
研磨、電解研磨等がある。平滑な表面を得るために、一
度生成されたグラス被膜を除去しさらに化学研磨・機械
研磨等を行うことは種々の困難を伴う。グラス被膜は地
鉄中にその根を深くおろしているため、酸洗によって除
去しなければならない量は鋼板板厚で1μm以上もあり
生産性が極めて悪い。さらに酸洗設備設置に伴い例えば
薬剤濃度管理、排水処理等の環境問題等もある。
Techniques such as pickling have long been known as methods for removing the glass coating, and chemical polishing, electrolytic polishing, etc. disclosed in Japanese Patent Laid-Open No. 64-83620 are known as methods for smoothing the surface thereafter. In order to obtain a smooth surface, it is accompanied by various difficulties to remove the glass film once formed and further carry out chemical polishing, mechanical polishing and the like. Since the roots of the glass coating are deeply laid in the ground iron, the amount that must be removed by pickling is 1 μm or more in plate thickness of the steel plate, and productivity is extremely poor. Furthermore, with the installation of pickling equipment, there are environmental problems such as chemical concentration control and wastewater treatment.

【0004】一方、一度生成されたグラス被膜を除去す
るのでなく、仕上焼鈍時にグラス被膜を生成させない方
法として、U.S.Patent 3785882に開
示されるAl、特公昭56−3414号公報に開
示される含水珪酸塩鉱物粉末等、SiOと反応しない
焼鈍分離剤を用いる方法がある。この方法は、生成した
グラス被膜を酸洗除去する方法よりも優れている。しか
しながら、この方法においても脱炭焼鈍時に形成された
SiO等の酸化物が表面に残存するため、表面を平滑
化するために化学研磨・機械研磨等の処理が必要であ
る。化学的方法においては、前述の酸洗と同じく薬剤濃
度管理、排水処理等の環境問題があり、また機械研磨等
物理的方法においては工業的に大きな面積を持つ表面を
同一基準で平滑化することに困難がある。さらに特開昭
64−62417号、特開平2−228481号公報に
開示される、塩化物を焼鈍分離剤中に添加し仕上焼鈍時
にMgOとSiOとの反応を抑制する方法がある。こ
の方法は現在のところ最も工業的に優れているが、薄い
酸化膜が残存する点、得られる表面粗度が化学研磨を用
いた場合よりも粗い点が鉄損低減の妨げとなっていた。
On the other hand, as a method of not forming a glass coating film once formed, but not forming a glass coating film during finish annealing, U.S. Pat. S. There is a method of using an annealing separator which does not react with SiO 2 , such as Al 2 O 3 disclosed in Patent 3785882 and hydrous silicate mineral powder disclosed in Japanese Patent Publication No. 56-3414. This method is superior to the method of pickling and removing the produced glass film. However, even in this method, since oxides such as SiO 2 formed during decarburization annealing remain on the surface, it is necessary to carry out treatments such as chemical polishing and mechanical polishing in order to smooth the surface. In the chemical method, there are environmental problems such as chemical concentration control and wastewater treatment as in the above pickling. In the physical method such as mechanical polishing, the surface having an industrially large area should be smoothed by the same standard. Have difficulty. Further JP 64-62417, is disclosed in JP-A-2-228481, there is a method of suppressing the reaction between MgO and SiO 2 upon addition to finish annealing chloride in annealing separator. This method is currently the most industrially excellent, but the point that a thin oxide film remains and the obtained surface roughness is rougher than that when chemical polishing is used has been an obstacle to iron loss reduction.

【0005】[0005]

【発明が解決しようとする課題】本発明は従来法におけ
る上記問題を解消した、電磁鋼板の表面を平滑化し低鉄
損を得るための工業的手段を提供することを目的とす
る。本発明は、珪素鋼の仕上焼鈍において脱炭焼鈍時に
形成された酸化被膜を除去し、かつ鋼板表面を平滑化し
た後に張力被膜付与あるいは磁区細分化を施すことによ
り鉄損を極限まで低減した超低鉄損方向性電磁鋼板の製
造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an industrial means for smoothing the surface of an electromagnetic steel sheet to obtain a low iron loss, which solves the above problems in the conventional method. The present invention removes the oxide film formed during decarburization annealing in finish annealing of silicon steel, and smoothes the surface of the steel sheet, and then imparts a tension film or subdivides the magnetic domain to reduce the iron loss to the maximum. A method for manufacturing a low iron loss grain-oriented electrical steel sheet is provided.

【0006】[0006]

【課題を解決するための手段】本発明者等は、種々の塩
素を含む化合物を焼鈍分離剤中に添加し、仕上焼鈍中の
鋼板表面の酸化膜が除去される過程を詳細に調査した。
その結果、添加される塩化物がBi(ビスマス)の塩化
物である場合に限って、かつ添加量が塩素重量部で0.
2部以上の場合に仕上焼鈍後の鋼板表面が鏡面のように
平滑化されることを見いだした。さらに発明者等は検討
を加えたところ、Biを含む化合物と金属の塩化物を焼
鈍分離剤に添加すれば同様の効果が得られることが分か
った。これらの方向性電磁鋼板の鉄損特性は酸洗してグ
ラス被膜を除去したもの、特開昭64−62417号、
特開平2−228481号公報に開示される塩化物を用
いて酸化膜を除去したものに比べて低くなることを見い
だし本発明を完成させた。
Means for Solving the Problems The present inventors have investigated in detail the process of adding various chlorine-containing compounds to the annealing separator to remove the oxide film on the surface of the steel sheet during finish annealing.
As a result, only when the chloride to be added is Bi (bismuth) chloride, and the addition amount is 0.
It has been found that the steel sheet surface after finish annealing is smoothed like a mirror surface in the case of 2 parts or more. Further, the inventors have made further studies and found that the same effect can be obtained by adding a compound containing Bi and a metal chloride to the annealing separator. The iron loss characteristics of these grain-oriented electrical steel sheets are those obtained by pickling to remove the glass coating, JP-A-64-62417,
The present invention has been completed by discovering that it is lower than that obtained by removing the oxide film using chloride disclosed in JP-A-2-228481.

【0007】本発明の要旨とするところは、重量%で、
2〜7%のSiを含有する珪素鋼スラブを熱延し、必要
に応じて焼鈍を施し、1回の冷延または中間焼鈍を挟む
2回以上の冷延を行い、脱炭焼鈍後焼鈍分離剤を塗布、
乾燥し仕上焼鈍を行う方向性電磁鋼板の製造方法におい
て、ビスマスの塩化物を焼鈍分離剤100重量部に対し
て、塩素重量部で0.2重量部以上15重量部以下を含
む焼鈍分離剤を用いて仕上焼鈍する、またはビスマス単
体あるいはビスマスの化合物及び金属の塩素化合物を含
む焼鈍分離剤を用いて仕上焼鈍するところにある。ビス
マスの化合物としては、酸化ビスマス、水酸化ビスマ
ス、硫化ビスマス、硫酸ビスマス、リン酸ビスマス、炭
酸ビスマス、硝酸ビスマス、有機酸ビスマス、ハロゲン
化ビスマスの1種あるいは2種以上の混合物が有効であ
る。
The gist of the present invention is that, by weight%,
A silicon steel slab containing 2 to 7% of Si is hot-rolled, annealed as required, and cold-rolled once or two or more times with intermediate annealing sandwiched between them, followed by decarburization-annealing-annealing separation Apply the agent,
In a method for producing a grain-oriented electrical steel sheet which is dried and finish-annealed, an annealing separator containing bismuth chloride in an amount of 0.2 parts by weight or more and 15 parts by weight or less in terms of chlorine parts is used with respect to 100 parts by weight of the annealing separator. Finish annealing is carried out by using it, or finish annealing is carried out by using an annealing separating agent containing bismuth alone or a compound of bismuth and a chlorine compound of metal. As the bismuth compound, one or a mixture of bismuth oxide, bismuth hydroxide, bismuth sulfide, bismuth sulfate, bismuth phosphate, bismuth carbonate, bismuth nitrate, organic acid bismuth, and bismuth halide is effective.

【0008】また、金属の塩素化合物としては沸点ある
いは昇華点が183℃以上である塩素化合物を用いる、
特に塩化鉄、塩化コバルト、塩化ニッケル等が有効であ
る。添加量は焼鈍分離剤100重量部に対して、塩素重
量部で0.2部以上15部以下含めることが必要であ
る。仕上焼鈍後、焼鈍分離剤を除去し、磁区細分化処理
及び張力被膜を付与することにより、鉄損は極小とな
る。この技術による仕上焼鈍後の鋼板表面は、グラス被
膜を酸洗除去しさらに化学研磨を行った鋼板表面と同等
の平滑度を示す。磁壁の移動に対して障害となるような
表面の凹凸がない、磁気的に理想的な表面になる。
As the metal chlorine compound, a chlorine compound having a boiling point or sublimation point of 183 ° C. or higher is used.
In particular, iron chloride, cobalt chloride, nickel chloride and the like are effective. It is necessary to add 0.2 parts by weight or more and 15 parts or less by weight of chlorine to 100 parts by weight of the annealing separator. After the finish annealing, the annealing separator is removed, and the magnetic domain refinement treatment and the tension coating are applied to minimize the iron loss. The surface of the steel sheet after finish annealing by this technique shows the same smoothness as the surface of the steel sheet after the glass film is pickled and removed and chemical polishing is performed. The surface is magnetically ideal without any surface irregularities that hinder the movement of the domain wall.

【0009】ここでいう焼鈍分離剤とは、1200℃ま
での温度域で凝結せずかつ鉄とも焼き付かない公知の高
融点化合物、例えば酸化物、窒化物等を指す。中でもB
aO,CaO,MgO,SrO等アルカリ土類金属の酸
化物及びAlは、工業的に利用価値が高い。ま
た、ビスマスの塩化物とはBiCl,BiOCl,Bi
Cl等を指す。
The term "annealing separating agent" as used herein refers to a known high melting point compound which does not condense in the temperature range up to 1200 ° C. and does not seize with iron, such as oxides and nitrides. Above all, B
aO-, CaO, MgO, SrO or the like oxide and Al 2 O 3 of the alkaline earth metal is industrially high utility value. Bismuth chloride means BiCl, BiOCl, Bi
Refers to Cl 3, etc.

【0010】以下、本発明について詳細に説明する。珪
素鋼中の珪素は極めて酸化されやすく、通常の仕上焼鈍
では鋼板表面にグラス被膜が形成される。発明者らは、
仕上焼鈍中にグラス被膜を形成させない方法の中でまず
特開昭64−62417号、特開平2−228481号
公報に開示される塩化物を焼鈍分離剤中に添加し仕上焼
鈍時にMgOとSiOとの反応を抑制する方法を検討
した。しかしながらこの技術は、鋼板表面のグラス被膜
除去による打抜性改善を目的としていたため、充分な表
面平滑度・鉄損が得られるものではなかった。
The present invention will be described in detail below. Silicon in silicon steel is extremely susceptible to oxidation, and a glass film is formed on the surface of the steel sheet by ordinary finish annealing. The inventors
Among the methods in which the glass film is not formed during the finish annealing, first, the chlorides disclosed in JP-A-64-62417 and JP-A-2-228481 are added to the annealing separator, and MgO and SiO 2 are added during the finish annealing. The method of suppressing the reaction with was investigated. However, since this technique aims at improving the punching property by removing the glass coating on the surface of the steel sheet, sufficient surface smoothness and iron loss cannot be obtained.

【0011】本発明者等は、種々の金属塩化物を焼鈍分
離剤中に添加し、仕上焼鈍中の鋼板表面を詳細に調査し
た。その結果、添加される物質がビスマスの塩化物で
ある場合、及びA群:ビスマス単体あるいはビスマス
の化合物及びB群:金属の塩素化合物とするときA群及
びB群両方を含む場合に限って、かつ添加量が塩素重量
部で0.2部以上の場合に、酸化膜はその根ごと除去さ
れること、引き続く高温焼鈍中に表面が平滑化されるこ
とを見いだした。
The present inventors have added various metal chlorides to the annealing separator and investigated the surface of the steel sheet during finish annealing in detail. As a result, only when the added substance is a chloride of bismuth, and when the group A: a bismuth simple substance or a compound of bismuth and a group B: a chlorine compound of a metal, both groups A and B are included, It was also found that when the added amount was 0.2 parts by weight or more by weight of chlorine, the oxide film was removed together with its roots, and the surface was smoothed during the subsequent high temperature annealing.

【0012】酸化膜が除去され、表面が鏡面状態になる
機構についてはまだ明らかではないが、我々は次のよう
に考えている。A群:ビスマス単体あるいはビスマスの
化合物及びB群:金属の塩素化合物とするときA群及び
B群両方を含む焼鈍分離剤では少なくとも183℃以上
でBiの塩化物:BiOClを形成する。このBiOC
lは仕上焼鈍の昇温中にBiClの蒸気を発生しつつ
分解する。BiClは平衡解離塩素分圧が高いので、
コイル板間で容易にClガスを発生する。Clガスは鋼
板表面の酸化層を拡散し、地鉄に達するとFe+2Cl
→FeClの反応に従ってFeClの蒸気を発生す
る。
The mechanism by which the oxide film is removed and the surface becomes a mirror surface is not yet clear, but we consider it as follows. Group A: Bismuth simple substance or bismuth compound and Group B: metal chlorine compound, the annealing separator containing both Group A and Group B forms Bi chloride: BiOCl at 183 ° C. or higher. This BiOC
1 decomposes while generating vapor of BiCl 3 during the temperature rise of finish annealing. Since BiCl 3 has a high equilibrium dissociation chlorine partial pressure,
Cl gas is easily generated between the coil plates. Cl gas diffuses in the oxide layer on the surface of the steel sheet and reaches Fe + 2Cl when it reaches the base iron.
→ FeCl 2 vapor is generated according to the reaction of FeCl 2 .

【0013】酸化膜/地鉄界面である体積のFeCl
ガスが生成されると、酸化層と地鉄が剥離する。地鉄表
面は酸化層と分離するため、表面Fe原子の移動が容易
になり1000℃以上の高温で鏡面状態になるものと推
測している。Biの塩化物を用いるときも同様で、Bi
の塩化物を水と混合させ、乾燥するとBiOClを形成
する。以下、前記同様の反応により鏡面化すると推測し
ている。
Volume of FeCl 2 at the oxide film / base iron interface
When the gas is generated, the oxide layer and the base iron are separated. Since the surface of the base iron is separated from the oxide layer, it is presumed that the surface Fe atoms are easily moved and become a mirror surface state at a high temperature of 1000 ° C. or higher. The same applies when using Bi chloride.
Of the chloride is mixed with water and dried to form BiOCl. Hereafter, it is speculated that the same reaction as described above will give a mirror finish.

【0014】B群:金属の塩素化合物に用いる金属の塩
化物は、沸点あるいは昇華点が183℃以上あることが
必要である。これは塩化第2スズ(SnCl)のよう
に低い沸点(114℃)ではA群と反応する以前にガス
化して体積が増大し消失してしまうからである。有効な
塩化物としては塩化鉄(FeCl,FeCl)、塩
化コバルト(CoCl,CoCl)、塩化ニッケル
(NiCl)、塩化アンチモン等があり、これらは混
合して用いても良い。なお、塩化アルミニウム(AlC
)昇華点:183℃、三塩化アンチモン(SbCl
)沸点:221℃、塩化ニッケル(NiCl)沸
点:993℃、塩化鉄(FeCl)沸点:1024
℃、塩化コバルト(CoCl)沸点:1049℃であ
り、鏡面化に有効である。
Group B: The metal chloride used as the metal chlorine compound must have a boiling point or sublimation point of 183 ° C. or higher. This is because at a low boiling point (114 ° C.) such as stannic chloride (SnCl 4 ), it is gasified and increases in volume before it reacts with the group A and disappears. Examples of effective chlorides include iron chloride (FeCl 2 , FeCl 3 ), cobalt chloride (CoCl 2 , CoCl 3 ), nickel chloride (NiCl 2 ), antimony chloride and the like, and these may be mixed and used. Aluminum chloride (AlC
l 3 ) Sublimation point: 183 ° C., antimony trichloride (SbCl
3 ) Boiling point: 221 ° C., nickel chloride (NiCl 2 ) boiling point: 993 ° C., iron chloride (FeCl 2 ) boiling point: 1024
C, boiling point of cobalt chloride (CoCl 2 ): 1049 ° C., which is effective for mirroring.

【0015】A群:ビスマス単体あるいはビスマスの化
合物は、Bi元素が含まれれば良く、特にビスマスの化
合物が、Bi粉末、酸化ビスマス、水酸化ビスマス、硫
化ビスマス、硫酸ビスマス、リン酸ビスマス、炭酸ビス
マス、硝酸ビスマス、有機酸ビスマス、ハロゲン化ビス
マスの1種あるいは2種以上の混合物が有効である。
Group A: Bismuth simple substance or bismuth compound may contain Bi element, and especially bismuth compound is Bi powder, bismuth oxide, bismuth hydroxide, bismuth sulfide, bismuth sulfate, bismuth phosphate, bismuth carbonate. , Bismuth nitrate, bismuth organic acid, bismuth halide, or a mixture of two or more thereof is effective.

【0016】添加物が塩素重量部で0.2部よりも少な
い場合には、コイル幅方向全域に渡って酸化膜を除去す
ることができない。添加量を多くしても板間に存在し得
るClガスの体積は一定であるので、余分に添加された
BiClはコイル板間より流出し、効果を持たない。
また、仕上焼鈍中に鋼板焼き付きが発生しないために
は、ビスマス塩化物が蒸発した後に分離剤がある程度残
存していることも必要である。従って、Bi塩化物の添
加量の上限は、塩素重量部で15部とした。
When the amount of the additive is less than 0.2 parts by weight of chlorine, the oxide film cannot be removed over the entire width direction of the coil. Since the volume of Cl gas that can exist between the plates is constant even if the added amount is increased, the excessively added BiCl 3 flows out from between the coil plates and has no effect.
Further, in order to prevent seizure of the steel sheet during the finish annealing, it is necessary that the separating agent remains to some extent after the bismuth chloride is evaporated. Therefore, the upper limit of the amount of Bi chloride added is 15 parts by weight of chlorine.

【0017】本発明により得られる鋼板表面は鏡のよう
な光沢を保ち、従来のアルカリ金属及びアルカリ土類金
属の塩化物を利用する技術に比べて、鋼板表面の平滑度
が良くなり鉄損が低減される。本発明は低鉄損を得るこ
とを目的とするものであるが、それ以外の目的で、例え
ば二次再結晶を安定化する等の目的でビスマスの塩化物
以外の化合物すなわち窒化物、硫化物等を添加しても良
い。分離剤の塗布方法は公知の方法で良く、特に限定し
ない。水へ添加・撹拌して塗っても、静電塗布しても良
い。
The surface of the steel sheet obtained by the present invention retains a mirror-like luster, and the surface of the steel sheet has better smoothness and less iron loss than the conventional technique using chlorides of alkali metals and alkaline earth metals. Will be reduced. The present invention is intended to obtain a low iron loss, but for other purposes, for example, compounds other than chloride of bismuth for the purpose of stabilizing secondary recrystallization, that is, nitrides, sulfides Etc. may be added. The method of applying the separating agent may be a known method and is not particularly limited. It may be added to water with stirring and applied, or electrostatically applied.

【0018】本発明に供される方向性電磁鋼板は、公知
の方法によって鋳造、熱延、冷延、焼鈍を施される電磁
鋼板である。低鉄損を得る目的でSiを2%以上7%以
下添加したスラブを用いる。上限は工業的に圧延が可能
なSi量であり、下限は鏡面化を生じさせ得る高温仕上
焼鈍で変態を生じさせないSi量である。仕上焼鈍まま
の状態では、鋼板表面は金属面が露出しているため、板
と板を積層したときの板間の絶縁を保つために公知の方
法により絶縁張力被膜を付与する。占積率を高めるため
にPVD,CVD,イオンプレーティング等の薄手高張
力被膜を形成する技術を用いても良い。
The grain-oriented electrical steel sheet used in the present invention is an electrical steel sheet which is cast, hot rolled, cold rolled or annealed by a known method. A slab containing 2% or more and 7% or less of Si is used for the purpose of obtaining a low iron loss. The upper limit is the amount of Si that can be industrially rolled, and the lower limit is the amount of Si that does not cause transformation in high-temperature finishing annealing that can cause mirror finish. Since the metal surface is exposed on the surface of the steel sheet in the state of finish annealing, an insulating tension film is applied by a known method to maintain insulation between the sheets when the sheets are laminated. A technique for forming a thin high-strength coating film such as PVD, CVD, or ion plating may be used to increase the space factor.

【0019】さらに鉄損を低減するために、張力被膜を
形成した後に公知の磁区細分化技術を併用する。この組
み合わせ技術により極めて低い鉄損を得ることができ
る。図1の(a)は従来法で酸洗した鋼板表面と、
(b)は本発明により得られる鋼板表面の写真(倍率×
1)である。本発明材の表面が黒く見えるのは、表面が
鏡のように平滑で光の反射率が高いためである。一方、
従来の酸洗では表面が荒れるため光が散乱し白く見えて
いる。本発明により得られる鋼板表面が、従来の酸洗技
術により得られる表面と全く異なることがわかる。
In order to further reduce the iron loss, a known magnetic domain refining technique is used together after forming the tension film. With this combination technique, extremely low iron loss can be obtained. FIG. 1A shows a steel sheet surface pickled by a conventional method,
(B) is a photograph of the surface of the steel sheet obtained by the present invention (magnification ×
1). The surface of the material of the present invention looks black because the surface is smooth like a mirror and has a high light reflectance. on the other hand,
In conventional pickling, the surface is rough, so light is scattered and it looks white. It can be seen that the steel sheet surface obtained by the present invention is completely different from the surface obtained by the conventional pickling technique.

【0020】[0020]

【実施例】【Example】

(実施例1) C:0.04%、Si:3.25%、Mn:0.15
%、S:0.007%、Al:0.027%、N:0.
007%を含むスラブを、1150℃で加熱後熱延し、
1.8mmの熱延板とした。1120℃で熱延板を焼鈍
後0.16mmまで冷延し、830℃で脱炭焼鈍を行っ
た。表1に示す組成の焼鈍分離剤をスラリー状で塗布
し、1200℃で20時間の仕上焼鈍を行った。塩素化
合物の添加は、塩素重量部で、すべて1.5重量部であ
る。
(Example 1) C: 0.04%, Si: 3.25%, Mn: 0.15
%, S: 0.007%, Al: 0.027%, N: 0.
A slab containing 007% is heated at 1150 ° C. and then hot rolled,
It was a hot rolled sheet of 1.8 mm. The hot-rolled sheet was annealed at 1120 ° C, cold-rolled to 0.16 mm, and decarburized at 830 ° C. The annealing separator having the composition shown in Table 1 was applied in a slurry form, and finish annealing was performed at 1200 ° C. for 20 hours. Chlorine compounds are added by 1.5 parts by weight of chlorine, all by weight.

【0021】焼鈍後鋼板表面を水洗し、グラス被膜が形
成されたものは硝酸によりこれを除去し歪取焼鈍後、単
板で磁気測定を行った。結果を表1に示す。本発明技術
によれば、仕上焼鈍後酸洗で酸化膜を除去するよりも低
い鉄損が得られることがわかる。これは前述したように
表面が平滑になったことによって、磁壁移動が容易にな
ったためと考えている。
After the annealing, the surface of the steel sheet was washed with water, and the glass film was removed by nitric acid. After strain relief annealing, magnetic measurement was performed on the single plate. The results are shown in Table 1. According to the technique of the present invention, it can be seen that a lower iron loss can be obtained as compared with removing the oxide film by pickling after finish annealing. This is considered to be because the domain wall movement was facilitated by the smooth surface as described above.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例2)実施例1の素材に、リン酸ア
ルミニウムとコロイダルシリカを主成分とする溶液を塗
布・乾燥し、張力被膜を形成した。単板で磁気測定を行
った結果を表2に示す。張力被膜形成により鉄損が改善
されるが、本発明ではその到達鉄損値が最も低い。表面
が平滑化され磁壁移動が容易になった効果は、張力被膜
形成後も残っている。
Example 2 The material of Example 1 was coated with a solution containing aluminum phosphate and colloidal silica as main components and dried to form a tension film. Table 2 shows the results of magnetic measurement performed on a single plate. Although iron loss is improved by forming a tension film, the achieved iron loss value is the lowest in the present invention. The effect of smoothing the surface and facilitating domain wall movement remains after the tension film is formed.

【0024】[0024]

【表2】 [Table 2]

【0025】(実施例3)実施例2の素材の圧延方向と
直角方向に、5mmの間隔でレーザー照射した。単板で
磁気測定を行った結果を表3に示す。張力被膜形成後の
レーザー照射により鉄損がさらに改善されるが、本発明
ではその到達鉄損値が最も低い。表面が平滑化され磁壁
移動が容易になった効果は、張力被膜形成・レーザー照
射による磁区細分化後も残っている。
(Example 3) The material of Example 2 was irradiated with laser light at a distance of 5 mm in the direction perpendicular to the rolling direction. Table 3 shows the results of magnetic measurement performed on a single plate. Although the iron loss is further improved by the laser irradiation after forming the tension film, the reached iron loss value is the lowest in the present invention. The effect of smoothing the surface and facilitating domain wall movement remains after the magnetic domain subdivision by forming the tension film and irradiating the laser.

【0026】[0026]

【表3】 [Table 3]

【0027】(実施例4)実施例1中No.1と6につ
いて分離剤を水洗除去した後、エッチングにより鋼板圧
延方向と直角方向に4mm間隔で深さ7μmの溝を形成
した。引き続きリン酸アルミニウムとコロイダルシリカ
を主成分とする溶液を塗布・乾燥し、張力被膜を形成し
た素材について単板で磁気測定を行った。結果を表4に
示す。溝形成による磁区細分化後も、表面が平滑化され
磁壁移動が容易になった効果が残ることがわかる。
(Embodiment 4) No. 1 in Embodiment 1. After removing the separating agent with respect to 1 and 6 with water, grooves having a depth of 7 μm were formed at intervals of 4 mm in the direction perpendicular to the steel plate rolling direction by etching. Subsequently, a solution containing aluminum phosphate and colloidal silica as main components was applied and dried, and the tension-coated material was subjected to magnetic measurement with a single plate. The results are shown in Table 4. It can be seen that the effect that the surface is smoothed and the domain wall movement is facilitated remains after the magnetic domain is subdivided by the groove formation.

【0028】[0028]

【表4】 [Table 4]

【0029】(実施例5)実施例1中No.1と6につ
いて分離剤を水洗除去した後、歯車型ロールにより板表
面に圧延方向と直角方向に破線状の凹部を形成した。引
き続きリン酸アルミニウムとコロイダルシリカを主成分
とする溶液を塗布・焼鈍した。焼鈍温度は800℃であ
る。単板磁気測定結果を表5に示す。凹部形成後の焼鈍
で導入された異方位微小粒による磁区細分化後も、表面
が平滑化され磁壁移動が容易になった効果が残ることが
わかる。
(Embodiment 5) No. 1 in Embodiment 1. After removing the separating agent with respect to Nos. 1 and 6 by water, a gear-shaped roll was used to form a broken line-shaped recess on the surface of the plate in a direction perpendicular to the rolling direction. Subsequently, a solution containing aluminum phosphate and colloidal silica as main components was applied and annealed. The annealing temperature is 800 ° C. Table 5 shows the results of the single plate magnetic measurement. It can be seen that the effect of facilitating the domain wall movement by smoothing the surface remains even after the domain refinement by the differently oriented fine grains introduced by the annealing after forming the recesses.

【0030】[0030]

【表5】 (実施例6)C:0.05%、Si:3.3%、Mn:
0.14%、S:0.007%、Al:0.028%、
N:0.008%を含むスラブを、1150℃で加熱後
熱延し、1.8mmの熱延板とした。1120℃で熱延
板を焼鈍後0.16mmまで冷延し、830℃で脱炭焼
鈍を行った。表6に示す組成の焼鈍分離剤をスラリー状
で塗布し、1200℃で20時間の仕上焼鈍を行った。
焼鈍分離剤はマグネシア(MgO):100重量部に対
して、Biの化合物:5重量部、金属の塩素化合物:5
重量部である。仕上焼鈍後の素材に、リン酸アルミニウ
ムとコロイダルシリカを主成分とする溶液を塗布・乾燥
し、張力被膜を形成した。
[Table 5] (Example 6) C: 0.05%, Si: 3.3%, Mn:
0.14%, S: 0.007%, Al: 0.028%,
A slab containing N: 0.008% was heated at 1150 ° C. and then hot-rolled to obtain a 1.8 mm hot-rolled sheet. The hot-rolled sheet was annealed at 1120 ° C, cold-rolled to 0.16 mm, and decarburized at 830 ° C. The annealing separator having the composition shown in Table 6 was applied in a slurry form, and finish annealing was performed at 1200 ° C. for 20 hours.
The annealing separator is magnesia (MgO): 100 parts by weight, Bi compound: 5 parts by weight, metal chlorine compound: 5
Parts by weight. A solution containing aluminum phosphate and colloidal silica as a main component was applied to the material after the finish annealing and dried to form a tension film.

【0031】さらに圧延方向と直角方向に、5mmの間
隔でレーザー照射した。単板で磁気測定を行った結果を
表6に示す。本発明例ではその到達鉄損値が低い。表面
が平滑化され磁壁移動が容易になった効果は、張力被膜
形成・レーザー照射による磁区細分化後も残っている。
Further, laser irradiation was performed in the direction perpendicular to the rolling direction at intervals of 5 mm. Table 6 shows the results of magnetic measurement performed on a single plate. In the example of the present invention, the achieved iron loss value is low. The effect of smoothing the surface and facilitating domain wall movement remains after the magnetic domain subdivision by forming the tension film and irradiating the laser.

【0032】[0032]

【表6】 [Table 6]

【0033】[0033]

【発明の効果】本発明によれば、一度生成されたグラス
被膜を酸洗する必要がなくかつグラス被膜を酸洗したも
のよりも優れた鉄損値が得られるので工業的価値は極め
て大きい。
Industrial Applicability According to the present invention, it is not necessary to pickle a glass film once formed, and an iron loss value superior to that obtained by pickling a glass film is obtained, so that the industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は従来法で酸洗した鋼板表面写真(倍率
×1)、(b)は本発明例により得られる鋼板表面の写
真(倍率×1)である。
FIG. 1 (a) is a photograph of a steel sheet surface pickled by a conventional method (magnification × 1), and FIG. 1 (b) is a photograph of a steel sheet surface obtained by an example of the present invention (magnification × 1).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 建一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Murakami 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technical Development Division

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 重量%で2〜7%のSiを含有する珪素
鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷
延または中間焼鈍を挟む2回以上の冷延を行い、脱炭焼
鈍後焼鈍分離剤を塗布、乾燥し仕上焼鈍を行う方向性電
磁鋼板の製造方法において、焼鈍分離剤100重量部に
対して、ビスマスの塩化物を、塩素重量部で0.2部以
上15部以下含めることを特徴とする超低鉄損方向性電
磁鋼板の製造法。
1. A silicon steel slab containing 2 to 7% by weight of Si is hot-rolled, annealed as required, and cold-rolled once or twice or more with intermediate annealing interposed. In the method for producing a grain-oriented electrical steel sheet, which comprises performing decarburization annealing, applying an annealing separator, then drying and performing finish annealing, bismuth chloride is added in an amount of 0.2 parts by weight of chlorine based on 100 parts by weight of the annealing separator. A method for manufacturing an ultra-low iron loss grain-oriented electrical steel sheet, characterized by including not less than 15 parts and not more than 15 parts.
【請求項2】 仕上焼鈍を施した後に、焼鈍分離剤を除
去し、絶縁張力被膜を表面に形成することを特徴とする
請求項1記載の超低鉄損方向性電磁鋼板の製造法。
2. The method for producing an ultra-low iron loss grain-oriented electrical steel sheet according to claim 1, wherein after the finish annealing, the annealing separator is removed and an insulating tension film is formed on the surface.
【請求項3】 絶縁張力被膜形成後、鋼板表面にレーザ
ービーム、電子ビーム、プラズマ放電から選んだ1種ま
たは2種以上のビームを、コイル幅方向に線状または断
続した線状に照射し磁区の細分化することを特徴とする
請求項2記載の超低鉄損方向性電磁鋼板の製造法。
3. After forming the insulating tension film, the surface of the steel sheet is irradiated with one or more kinds of beams selected from a laser beam, an electron beam and a plasma discharge linearly or intermittently in the coil width direction to form magnetic domains. 3. The method for manufacturing an ultra-low iron loss grain-oriented electrical steel sheet according to claim 2, wherein
【請求項4】 仕上焼鈍を施した後に、焼鈍分離剤を除
去し、次いで圧延方向を横切って延びる連続または断続
した線状に鋼板表面の地鉄の一部を除去し、さらに鋼板
表面に張力被膜を形成することを特徴とする請求項2記
載の超低鉄損方向性電磁鋼板の製造法。
4. After finishing annealing, the annealing separating agent is removed, and then a part of the base metal on the surface of the steel sheet is removed in a continuous or intermittent linear shape extending across the rolling direction, and the steel sheet surface is tensioned. The method for producing an ultra-low iron loss grain-oriented electrical steel sheet according to claim 2, wherein a coating film is formed.
【請求項5】 仕上焼鈍を施した後に、焼鈍分離剤を除
去し、次いで鋼板表面に圧延方向を横切って延びる連続
または断続した線状の金属メッキを施した後、さらに鋼
板表面に張力被膜を形成することを特徴とする請求項2
記載の超低鉄損方向性電磁鋼板の製造法。
5. After finishing annealing, the annealing separating agent is removed, and then a continuous or intermittent linear metal plating extending across the rolling direction is applied to the surface of the steel sheet, and then a tension coating is further applied to the surface of the steel sheet. It is formed, It is characterized by the above-mentioned.
A method for producing the described ultra-low iron loss grain-oriented electrical steel sheet.
【請求項6】 仕上焼鈍後焼鈍分離剤を除去し、次いで
鋼板表面に押圧により凹部を形成した後、張力被膜を7
50℃以上の温度で形成することを特徴とする請求項2
記載の超低鉄損方向性電磁鋼板の製造法。
6. After the finish annealing, the annealing separating agent is removed, and then a depression is formed on the surface of the steel sheet by pressing, and then a tension coating is applied to the surface of the steel sheet.
The film is formed at a temperature of 50 ° C. or higher.
A method for producing the described ultra-low iron loss grain-oriented electrical steel sheet.
【請求項7】 Si:2〜7重量%を含む珪素鋼スラブ
を熱延後、必要に応じて焼鈍し、1回の冷延または中間
焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分
離剤を塗布、乾燥して仕上焼鈍を行う方向性電磁鋼板の
製造方法において、ビスマス単体あるいはビスマスの化
合物及び金属の塩素化合物を含む焼鈍分離剤を用いるこ
とを特徴とする超低鉄損方向性電磁鋼板の製造法。
7. A silicon steel slab containing Si: 2 to 7% by weight is hot-rolled and then annealed, if necessary, once cold-rolled or twice or more cold-rolled with an intermediate annealing to decarburize. After annealing, in a method for producing a grain-oriented electrical steel sheet which is applied with an annealing separator and is then dried and finish-annealed, an ultra-low characteristic of using an annealing separator containing bismuth simple substance or a bismuth compound and a chlorine compound of metal Iron loss direction electrical steel sheet manufacturing method.
【請求項8】 ビスマスの化合物としては、酸化ビスマ
ス、水酸化ビスマス、硫化ビスマス、硫酸ビスマス、リ
ン酸ビスマス、炭酸ビスマス、硝酸ビスマス、有機酸ビ
スマス、ハロゲン化ビスマスの1種あるいは2種以上の
混合物を用いることを特徴とする請求項7記載の超低鉄
損方向性電磁鋼板の製造法。
8. The bismuth compound is one or a mixture of bismuth oxide, bismuth hydroxide, bismuth sulfide, bismuth sulfate, bismuth phosphate, bismuth carbonate, bismuth nitrate, bismuth organic acid and bismuth halide. The method for manufacturing an ultra-low iron loss grain-oriented electrical steel sheet according to claim 7, wherein
【請求項9】 沸点あるいは昇華点が183℃以上であ
る金属の塩素化合物を用いることを特徴とする請求項7
または8記載の超低鉄損方向性電磁鋼板の製造法。
9. A metal chlorine compound having a boiling point or sublimation point of 183 ° C. or higher is used.
Alternatively, the method for manufacturing an ultra-low iron loss grain-oriented electrical steel sheet according to 8.
【請求項10】 金属の塩素化合物として塩化鉄、塩化
コバルト、塩化ニッケルの1種あるいは2種以上の混合
物を用いることを特徴とする請求項7または8記載の超
低鉄損方向性電磁鋼板の製造法。
10. The ultra-low iron loss grain oriented electrical steel sheet according to claim 7, wherein one or a mixture of two or more of iron chloride, cobalt chloride and nickel chloride is used as the metal chlorine compound. Manufacturing method.
【請求項11】 仕上焼鈍後、焼鈍分離剤を除去し、張
力被膜を付与することを特徴とする請求項7乃至10の
いずれかに記載の超低鉄損方向性電磁鋼板の製造法。
11. The method for producing an ultra-low iron loss grain oriented electrical steel sheet according to claim 7, wherein the annealing separator is removed after the finish annealing and a tension coating is applied.
【請求項12】 仕上焼鈍後、焼鈍分離剤を除去し、磁
区細分化処理をすることを特徴とする請求項7乃至10
のいずれかに記載の超低鉄損方向性電磁鋼板の製造法。
12. The method according to claim 7, wherein after the finish annealing, the annealing separating agent is removed and the magnetic domain is refined.
The method for producing an ultra-low iron loss grain-oriented electrical steel sheet according to any one of 1.
【請求項13】 仕上焼鈍後、焼鈍分離剤を除去し、磁
区細分化処理及び張力被膜を付与することを特徴とする
請求項7乃至10のいずれかに記載の超低鉄損方向性電
磁鋼板の製造法。
13. The ultra-low iron loss grain-oriented electrical steel sheet according to claim 7, wherein after the finish annealing, the annealing separator is removed, and the magnetic domain refinement treatment and the tension coating are applied. Manufacturing method.
JP32305993A 1993-06-07 1993-11-16 Manufacturing method for ultra-low iron loss grain-oriented electrical steel sheets Expired - Lifetime JP2664333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32305993A JP2664333B2 (en) 1993-06-07 1993-11-16 Manufacturing method for ultra-low iron loss grain-oriented electrical steel sheets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-173556 1993-06-07
JP17355693 1993-06-07
JP32305993A JP2664333B2 (en) 1993-06-07 1993-11-16 Manufacturing method for ultra-low iron loss grain-oriented electrical steel sheets

Publications (2)

Publication Number Publication Date
JPH0754155A true JPH0754155A (en) 1995-02-28
JP2664333B2 JP2664333B2 (en) 1997-10-15

Family

ID=26495488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32305993A Expired - Lifetime JP2664333B2 (en) 1993-06-07 1993-11-16 Manufacturing method for ultra-low iron loss grain-oriented electrical steel sheets

Country Status (1)

Country Link
JP (1) JP2664333B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082472A (en) * 2001-09-11 2003-03-19 Nippon Steel Corp Separation agent for annealing, and method for producing grain oriented magnetic steel sheet having excellent glass film and magnetic property
EP2940161A4 (en) * 2012-12-28 2016-01-20 Posco Grain-oriented electrical steel sheet, and method for manufacturing same
WO2018074462A1 (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
WO2020149329A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149324A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel
WO2020149345A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082472A (en) * 2001-09-11 2003-03-19 Nippon Steel Corp Separation agent for annealing, and method for producing grain oriented magnetic steel sheet having excellent glass film and magnetic property
US10023932B2 (en) 2012-12-28 2018-07-17 Posco Grain-oriented electrical steel sheet, and method for manufacturing the same
EP2940161A4 (en) * 2012-12-28 2016-01-20 Posco Grain-oriented electrical steel sheet, and method for manufacturing same
RU2706941C1 (en) * 2016-10-18 2019-11-21 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electromagnetic steel sheet and method of fabricated textured electromagnetic steel sheet
JP6350773B1 (en) * 2016-10-18 2018-07-04 Jfeスチール株式会社 Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet
CN109844179A (en) * 2016-10-18 2019-06-04 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
WO2018074462A1 (en) * 2016-10-18 2018-04-26 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
US11091842B2 (en) 2016-10-18 2021-08-17 Jfe Steel Corporation Oriented electromagnetic steel sheet and method for manufacturing oriented electromagnetic steel sheet
WO2020149329A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149324A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel
WO2020149345A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
KR20210111286A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, and a steel sheet serving as the original plate of the grain-oriented electrical steel sheet
KR20210111820A (en) 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210111804A (en) 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
US11993835B2 (en) 2019-01-16 2024-05-28 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP2664333B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
US4875947A (en) Method for producing grain-oriented electrical steel sheet having metallic luster and excellent punching property
US4863531A (en) Method for producing a grain-oriented electrical steel sheet having a low watt loss
JP7265122B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR20000075590A (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
JP4116702B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP2664333B2 (en) Manufacturing method for ultra-low iron loss grain-oriented electrical steel sheets
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2683036B2 (en) Annealing agent
JP2667082B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet without glass coating and method for producing the same
JP3979004B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2667110B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP3276567B2 (en) Insulating coating agent having excellent coating characteristics and method for producing grain-oriented electrical steel sheet using the same
JP2706040B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JPWO2020149324A1 (en) Grain-oriented electrical steel sheet and steel sheet that is the original plate of grain-oriented electrical steel sheet
JP5063862B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JPH02107722A (en) Production of grain-oriented electrical steel easy to punch and having metallic luster
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPH08165525A (en) Production of grain-oriented silicon steel sheet excellent in good glass coating and extremely good in magnetic characteristic
JPH06346247A (en) Separation agent for annealing for silicon steel sheet suitable for smoothing surface and reduction in core loss of steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term