JPH0754018A - Production of spherical particle of metal - Google Patents

Production of spherical particle of metal

Info

Publication number
JPH0754018A
JPH0754018A JP20063193A JP20063193A JPH0754018A JP H0754018 A JPH0754018 A JP H0754018A JP 20063193 A JP20063193 A JP 20063193A JP 20063193 A JP20063193 A JP 20063193A JP H0754018 A JPH0754018 A JP H0754018A
Authority
JP
Japan
Prior art keywords
molten metal
metal
spherical particles
rotary disk
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20063193A
Other languages
Japanese (ja)
Inventor
Masayuki Koide
正幸 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP20063193A priority Critical patent/JPH0754018A/en
Publication of JPH0754018A publication Critical patent/JPH0754018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily and efficiently produce the spherical particles of metal having micrograin sizes at a high yield by supplying molten metal onto one point on a disk deviated from the center of a rotary disk rotating at a high speed and centrifugally spraying the molten metal, then cooling the metal. CONSTITUTION:The melt of the metal or alloy is supplied from a molten metal nozzle 2 onto the rotary disk rotating at a high speed and a molten metal film 3 spread on the disk by centrifugal force is splashed from the circumferential end of the disk in a tangent direction. The splashed liquid drops of the molten metal are cooled and solidified by cooling gases flowing in counter current or in parallel. The molten metal downflow point 5 on the rotary disk is set at the point deviated from the center 4 of the rotary disk 1 in the centrifugal spraying method described above. This offset length L is preferably about 0.9 times the radius of the rotary disk. As a result, nonuniformity is produced in the film thickness of the molten metal film 3 at the circumferential end of the rotary disk. The spherical particles of the metal, alloy or metal oxide having the micrograin sizes of about <=90mum are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気冷凍機用蓄冷材、粉
末冶金用球状粉末等に有用とされる金属、合金または金
属酸化物の球状粒子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical particles of a metal, an alloy or a metal oxide, which are useful as a regenerator material for a magnetic refrigerator, a spherical powder for powder metallurgy and the like.

【0002】[0002]

【従来の技術】金属、または合金を球状粉末化する方法
として、回転消耗電極法、ガスアトマイズ法、水アトマ
イズ法、遠心噴霧法等が知られている。しかし、これら
の方法では粒径 500〜90μm程度の粒度範囲の球状粒子
は容易に作製可能であるが、90μm以下の微小粒径の球
状粒子を効率良く得ることは困難であった。
2. Description of the Related Art Rotating consumable electrode method, gas atomizing method, water atomizing method, centrifugal atomizing method and the like are known as a method for spherically powdering a metal or an alloy. However, although spherical particles having a particle size range of about 500 to 90 μm can be easily produced by these methods, it is difficult to efficiently obtain spherical particles having a fine particle size of 90 μm or less.

【0003】[0003]

【発明が解決しようとする課題】本発明は、かかる課題
を解決するために遠心噴霧法に着目し、微小粒径の金
属、合金または金属酸化物の球状粒子を作製する方法を
提供しようとするものである。
In order to solve the above problems, the present invention focuses on centrifugal atomization and provides a method for producing spherical particles of a metal, alloy or metal oxide having a minute particle size. It is a thing.

【0004】[0004]

【課題を解決するための手段】本発明者は遠心噴霧法の
垂直溶湯ノズルの中心と回転円盤の中心軸をずらせばこ
れらの課題を解決し得ることを見出し、諸条件を検討し
て本発明を完成したもので、その要旨は、金属または合
金の溶湯を溶湯ノズルから、高速回転する回転円盤の中
心から外れた円盤上の一点に供給して遠心噴霧し、冷却
することを特徴とする金属、合金または金属酸化物の球
状粒子の製造方法にある。
Means for Solving the Problems The present inventors have found that these problems can be solved by shifting the center of the vertical molten metal nozzle of the centrifugal atomization method and the central axis of the rotating disk, and studied various conditions to study the present invention. The feature is that the molten metal or alloy is supplied from a molten metal nozzle to a point on a disc that is off the center of a rotating disc rotating at high speed, centrifugally sprayed, and cooled. , A method for producing spherical particles of an alloy or a metal oxide.

【0005】以下本発明を詳細に説明する。通常の遠心
噴霧法では金属または合金の溶湯を連続的に耐熱性回転
円盤の中心に滴下し、高速回転する円盤の遠心力によ
り、円盤上に一様に広がった溶湯膜が円盤の円周端で液
滴となって切線方向に噴霧飛散し、交流または並流する
冷却用ガスにより固化して球状粉末を生成するが、この
方法では液滴は一種の懸垂液滴として噴霧されるため得
られる液滴の大きさはノズル径、回転円盤径、回転円盤
回転数により変化するが、通常90μm以下の液滴の割合
は10重量%以下であった。そこで本発明では90μm以下
の微小粒径の球状粒子を得るためには溶湯を回転円盤の
円周に近い部分に供給すれば良いことを見出した。
The present invention will be described in detail below. In the normal centrifugal atomization method, a molten metal or alloy is continuously dripped at the center of a heat-resistant rotating disk, and the centrifugal force of the disk rotating at high speed causes the molten metal film to spread evenly on the disk. The particles become droplets and are scattered in the cutting line direction, and are solidified by the alternating or co-current cooling gas to produce spherical powder. In this method, the droplets are sprayed as a kind of suspended droplets and are obtained. The size of the liquid droplets varies depending on the nozzle diameter, the diameter of the rotating disk, and the number of rotations of the rotating disk, but the ratio of the liquid droplets of 90 μm or less is usually 10% by weight or less. Therefore, in the present invention, it has been found that in order to obtain spherical particles having a fine particle diameter of 90 μm or less, the molten metal may be supplied to a portion near the circumference of the rotating disk.

【0006】これを図1(a)について説明すると、垂
直溶湯ノズルの中心を回転円盤1の中心軸からはずれた
位置に設置し、該ノズルから金属または合金の溶湯を回
転円盤上の溶湯流下点5に流下すれば、遠心力により円
盤上に広がった溶湯膜は液滴となって円盤円周端から切
線方向に向かって飛散する。これを交流または並流する
冷却用ガスによって冷却すれば固化した金属または合金
の球状粒子が、また酸化され易い金属または合金で空気
等の酸化性雰囲気の場合には金属酸化物の球状粒子が得
られる。この際、溶湯を流下した溶湯流下点5から円盤
円周端までの距離の違いによって円周端における溶湯膜
の膜圧に不均一を生じ、その結果、本法で得られる球状
粒子の粒径範囲は溶湯を円盤中心に流下した場合に比べ
細かい方に広がり90μm以下の粒子の割合が増加する。
This will be explained with reference to FIG. 1 (a). The center of the vertical molten metal nozzle is set at a position deviated from the central axis of the rotating disk 1, and the molten metal or alloy is flown from the nozzle to the downflow point on the rotating disk. When it flows down to 5, the molten metal film spread on the disk by centrifugal force becomes droplets and scatters from the circumferential edge of the disk toward the cutting line direction. If this is cooled by an alternating or co-current cooling gas, solidified metal or alloy spherical particles are obtained, and in the case of an easily oxidizable metal or alloy in the oxidizing atmosphere such as air, spherical particles of metal oxide are obtained. To be At this time, due to the difference in the distance from the molten metal flow-down point 5 at which the molten metal has flowed down to the circumferential edge of the disk, the film pressure of the molten metal film at the circumferential edge becomes uneven, and as a result, the particle diameter of the spherical particles obtained by this method is increased. The range spreads in a finer direction as compared with the case where the molten metal flows down to the center of the disk, and the proportion of particles of 90 μm or less increases.

【0007】本発明の最大の特徴は回転円盤の中心4と
溶湯ノズルの中心5をずらしたことにある。このずれL
を以下オフセット長と呼ぶ。これは処理する金属、合金
の種類、目的とする粒度分布によって調整する必要があ
るが、流下した溶湯が円周端で安定した溶湯膜を作るよ
うにするためにはオフセット長は回転円盤半径の0.9倍
程度以下が良い。冷却用ガスには、通常Ar、He、N2等の不
活性ガスを使用するが、酸素含有ガスを用いることによ
り金属酸化物球状粒子を得ることができる。
The greatest feature of the present invention is that the center 4 of the rotating disk and the center 5 of the molten metal nozzle are offset from each other. This deviation L
Will be referred to as an offset length hereinafter. This needs to be adjusted according to the type of metal to be treated, the type of alloy, and the desired particle size distribution, but in order to make the molten metal that has flowed down form a stable molten metal film at the circumferential edge, the offset length is 0.9 times or less is good. As the cooling gas, an inert gas such as Ar, He, or N 2 is usually used, but the metal oxide spherical particles can be obtained by using the oxygen-containing gas.

【0008】本発明が適用される金属は、希土類金属と
してYを含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,YbおよびLu、遷移金属等としてFe,Co,Ni,Al,Si,Cr,M
n,Zn,Zr,Nb,Rh,Ag,Sn,Sb,Au,Pb の内から選ばれる金属
であり、これらの内、一種もしくは二種以上を原料とし
て供給することによりこれら金属、およびこれらの内二
種以上から成る合金、並びにそれらの酸化物の球状粒子
が得られる。上記の内、希土類金属また遷移金属が用途
が広く、製造の容易さ等の点で好ましい。
The metal to which the present invention is applied is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T containing Y as a rare earth metal.
Fe, Co, Ni, Al, Si, Cr, M as m, Yb and Lu, transition metals, etc.
n, Zn, Zr, Nb, Rh, Ag, Sn, Sb, Au, Pb is a metal selected from among these, by supplying one or more of these as a raw material, these metals, and these Alloys consisting of two or more of them, and spherical particles of their oxides are obtained. Of the above, rare earth metals and transition metals are widely used and preferred in terms of ease of production.

【0009】[0009]

【実施例】以下、本発明の実施態様を実施例により具体
的に説明するが、本発明はこれらに限定されるものでは
ない。 (実施例1)窒化ほう素(BN)製るつぼにTb 金属インゴ
ットを1,000g仕込んで遠心噴霧室内の真空到達度を1×
10-4Torr以下とした後、Ar ガスを導入し、高純度Ar
ガス雰囲気下で溶解し、溶湯温度約 1,400℃で遠心噴霧
を行った。回転円盤1はBN製で36mmφ×10mmT 、オフセ
ット長:16mm、溶湯ノズル径:3mmφ、回転円盤回転
数:20,000rpm の条件下に行った結果、粒径範囲 500μ
m以下の球状粒子を930g得た。この内90μm以下の微小
球状粒子は20重量%であった。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these. (Example 1) A boron nitride (BN) crucible was charged with 1,000 g of a Tb metal ingot, and the degree of vacuum reached in the centrifugal spray chamber was 1 ×.
After adjusting to 10 -4 Torr or less, Ar gas is introduced to obtain high purity Ar.
It was melted in a gas atmosphere and centrifugally sprayed at a molten metal temperature of about 1,400 ° C. The rotating disk 1 is made of BN and is 36 mmφ × 10 mmT, offset length: 16 mm, melt nozzle diameter: 3 mmφ, rotating disk rotation speed: 20,000 rpm.
930 g of spherical particles of m or less were obtained. Among them, the fine spherical particles having a particle size of 90 μm or less was 20% by weight.

【0010】(実施例2)窒化ほう素(BN)製るつぼにT
b80-Fe20 重量%合金インゴットを1,000g仕込んで遠心
噴霧室内の真空到達度を1×10-4Torr以下とした後、A
r ガスを導入し、高純度Ar ガス雰囲気下で溶解し、溶
湯温度約 1,200℃で遠心噴霧を行った。回転円盤1はBN
製で36mmφ×10mmT 、オフセット長:16mm、溶湯ノズル
径:3mmφ、回転円盤回転数:20,000rpm の条件下に行
った結果、粒径範囲 500μm以下の球状粒子を800g得
た。この内90μm以下の微小球状粒子は30重量%であっ
た。
Example 2 A boron nitride (BN) crucible with T
After charging 1,000 g of b80-Fe20 wt% alloy ingot and setting the vacuum attainment in the centrifugal atomizing chamber to 1 × 10 -4 Torr or less, A
Introducing r gas, melting under a high-purity Ar gas atmosphere, and performing centrifugal atomization at a melt temperature of about 1,200 ° C. Rotating disk 1 is BN
The product was manufactured under the conditions of 36 mmφ × 10 mmT, offset length: 16 mm, melt nozzle diameter: 3 mmφ, and rotating disk rotation speed: 20,000 rpm, and as a result, 800 g of spherical particles having a particle size range of 500 μm or less was obtained. The fine spherical particles of 90 μm or less were 30% by weight.

【0011】(実施例3)窒化ほう素(BN)製るつぼにT
b80-Fe20 重量%合金インゴットを1,000g仕込んで遠心
噴霧室内の真空到達度を1×10-4Torr以下とした後、A
r ガスを導入し、高純度Ar ガス雰囲気下で溶解し、溶
湯温度約 1,200℃で遠心噴霧を行った。回転円盤1はBN
製で36mmφ×10mmT 、オフセット長:14mm、溶湯ノズル
径:3mmφ、回転円盤回転数:20,000rpm の条件下に行
った結果、粒径範囲 500μm以下の球状粒子を900g得
た。この内90μm以下の微小球状粒子は27重量%であっ
た。
Example 3 A boron nitride (BN) crucible with T
After charging 1,000 g of b80-Fe20 wt% alloy ingot and setting the vacuum attainment in the centrifugal atomizing chamber to 1 × 10 -4 Torr or less, A
Introducing r gas, melting under a high-purity Ar gas atmosphere, and performing centrifugal atomization at a melt temperature of about 1,200 ° C. Rotating disk 1 is BN
The product was manufactured under the conditions of 36 mmφ × 10 mmT, offset length: 14 mm, melt nozzle diameter: 3 mmφ, and rotating disk rotation speed: 20,000 rpm, and as a result, 900 g of spherical particles having a particle size range of 500 μm or less was obtained. The fine spherical particles of 90 μm or less were 27% by weight.

【0012】(実施例4)窒化ほう素(BN)製るつぼにT
b80-Fe20 重量%合金インゴットを1,000g仕込んで遠心
噴霧室内の真空到達度を1×10-4Torr以下とした後、A
r ガスを導入し、高純度Ar ガス雰囲気下で溶解し、溶
湯温度約 1,200℃で遠心噴霧を行った。回転円盤1はBN
製で36mmφ×10mmT 、オフセット長:8mm、溶湯ノズル
径:3mmφ、回転円盤回転数:20,000rpm の条件下に行
った結果、粒径範囲 500μm以下の球状粒子を920g得
た。この内90μm以下の微小球状粒子は18重量%であっ
た。
EXAMPLE 4 A boron nitride (BN) crucible with T
After charging 1,000 g of b80-Fe20 wt% alloy ingot and setting the vacuum attainment in the centrifugal atomizing chamber to 1 × 10 -4 Torr or less, A
Introducing r gas, melting under a high-purity Ar gas atmosphere, and performing centrifugal atomization at a melt temperature of about 1,200 ° C. Rotating disk 1 is BN
The product was manufactured under the conditions of 36 mmφ × 10 mmT, offset length: 8 mm, melt nozzle diameter: 3 mmφ, and rotating disk rotation speed: 20,000 rpm, and as a result, 920 g of spherical particles having a particle size range of 500 μm or less was obtained. The fine spherical particles of 90 μm or less were 18% by weight.

【0013】(実施例5)窒化ほう素(BN)製るつぼにT
b50-Fe35-Co10-Cr 5重量%合金インゴットを1,000g
を仕込んで遠心噴霧室内の真空到達度を1×10-4Torr以
下とした後、Arガスを導入し、高純度Ar ガス雰囲気
下で溶解し、溶湯温度約 1,350℃で遠心噴霧を行った。
回転円盤1はBN製で36mmφ×10mmT 、オフセット長:16
mm、溶湯ノズル径:3mmφ、回転円盤回転数:20,000rp
m の条件下に行った結果、粒径範囲500μm以下の球状
粒子を960g得た。この内90μm以下の微小球状粒子は40
重量%であった。
Example 5 A boron nitride (BN) crucible with T
b50-Fe35-Co10-Cr 5 wt% alloy ingot 1,000 g
Was charged to bring the degree of vacuum in the centrifugal spraying chamber to 1 × 10 −4 Torr or less, Ar gas was introduced, and the solution was dissolved in a high-purity Ar gas atmosphere, and centrifugal spraying was performed at a molten metal temperature of about 1,350 ° C.
The rotating disk 1 is made of BN and has a size of 36 mmφ × 10 mmT and an offset length of 16
mm, Molten Nozzle Diameter: 3 mmφ, Rotating Disk Rotation Speed: 20,000 rp
As a result of carrying out under the condition of m 2, 960 g of spherical particles having a particle size range of 500 μm or less was obtained. 40 of them are fine spherical particles of 90 μm or less
% By weight.

【0014】(実施例6)窒化ほう素(BN)製るつぼにD
y15-Fe85 重量%合金インゴットを1,000g仕込んで遠心
噴霧室内の真空到達度を1×10-4Torr以下とした後、A
r ガスを導入し、高純度Ar ガス雰囲気下で溶解し、溶
湯温度約 950℃で遠心噴霧を行った。回転円盤1はBN製
で36mmφ×10mmT 、オフセット長:14mm、溶湯ノズル
径:3mmφ、回転円盤回転数:20,000rpm の条件下に行
った結果、粒径範囲 500μm以下の球状粒子を900g得
た。この内90μm以下の微小球状粒子は20重量%であっ
た。
(Example 6) D was added to a crucible made of boron nitride (BN).
After charging 1,000 g of y15-Fe85 wt% alloy ingot and setting the vacuum attainment in the centrifugal atomizing chamber to 1 × 10 -4 Torr or less, A
r gas was introduced, the mixture was melted in a high-purity Ar gas atmosphere, and centrifugal spraying was performed at a melt temperature of about 950 ° C. The rotating disk 1 was made of BN and was subjected to the conditions of 36 mmφ × 10 mmT, offset length: 14 mm, melt nozzle diameter: 3 mmφ, and rotating disk rotation speed: 20,000 rpm, and as a result, 900 g of spherical particles having a particle size range of 500 μm or less was obtained. Among them, the fine spherical particles having a particle size of 90 μm or less was 20% by weight.

【0015】(実施例7)窒化ほう素(BN)製るつぼにA
l インゴットを1,000g仕込んで遠心噴霧室内の真空到達
度を1×10-4Torr以下とした後、真空雰囲気下で溶解
し、金属溶解後、溶湯温度約 700℃で(Ar +10容量%
2 )ガスを導入し、酸化ガス雰囲気下で遠心噴霧を行
った。回転円盤1はBN製で36mmφ×10mmT 、オフセット
長:16mm、溶湯ノズル径:3mmφ、回転円盤回転数:2
0,000rpm の条件下に行った結果、粒径範囲 500μm以
下の球状粒子を1,800g得た。この内90μm以下の微小球
状粒子は20重量%であった。
(Example 7) A crucible made of boron nitride (BN) was used.
l After charging 1,000 g of ingot and making the degree of vacuum in the centrifugal spraying chamber 1 × 10 -4 Torr or less, melt it in a vacuum atmosphere, melt the metal, and then melt at about 700 ° C (Ar + 10% by volume).
O 2 ) gas was introduced and centrifugal atomization was performed in an oxidizing gas atmosphere. The rotating disk 1 is made of BN and has a size of 36 mmφ × 10 mmT, offset length: 16 mm, melt nozzle diameter: 3 mmφ, rotating disk rotation speed: 2
As a result of carrying out under the condition of 0,000 rpm, 1,800 g of spherical particles having a particle size range of 500 µm or less was obtained. Among them, the fine spherical particles having a particle size of 90 μm or less was 20% by weight.

【0016】(比較例1)回転円盤の中心に溶湯を流下
した以外は実施例1と同様の条件で遠心噴霧した結果、
粒径90μm以下の微小球状粒子は5重量%しか得られな
かった。
(Comparative Example 1) As a result of centrifugal spraying under the same conditions as in Example 1 except that the molten metal was flown down to the center of the rotating disk,
Only 5% by weight of fine spherical particles having a particle size of 90 μm or less was obtained.

【0017】(比較例2)回転円盤の中心に溶湯を流下
した以外は実施例2と同様の条件で遠心噴霧した結果、
粒径90μm以下の微小球状粒子は10重量%しか得られな
かった。
(Comparative Example 2) As a result of centrifugal spraying under the same conditions as in Example 2 except that the molten metal was flown down to the center of the rotating disk,
Only 10% by weight of fine spherical particles having a particle size of 90 μm or less was obtained.

【0018】(比較例3)回転円盤の中心に溶湯を流下
した以外は実施例5と同様の条件で遠心噴霧した結果、
粒径90μm以下の微小球状粒子は8重量%しか得られな
かった。
(Comparative Example 3) As a result of centrifugal spraying under the same conditions as in Example 5, except that the molten metal was flown down to the center of the rotating disk,
Only 8% by weight of fine spherical particles having a particle size of 90 μm or less was obtained.

【0019】(比較例4)回転円盤の中心に溶湯を流下
した以外は実施例6と同様の条件で遠心噴霧した結果、
粒径90μm以下の微小球状粒子は5重量%であった。
(Comparative Example 4) As a result of centrifugal spraying under the same conditions as in Example 6 except that the molten metal was flown down to the center of the rotating disk,
The amount of fine spherical particles having a particle size of 90 μm or less was 5% by weight.

【0020】[0020]

【発明の効果】本発明により金属、合金、または金属酸
化物の粒径90μm以下の真球度の高い球状粒子を歩留良
く遠心噴霧法により作製可能となり、工業上その利用価
値は極めて高い。
Industrial Applicability According to the present invention, it becomes possible to produce spherical particles of metal, alloy, or metal oxide having a particle size of 90 μm or less and having a high sphericity by a centrifugal atomization method with a high yield, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施態様の一例を示す説明側
面図である。(b)は同上面図である。
FIG. 1A is an explanatory side view showing an example of an embodiment of the present invention. (B) is the same top view.

【図2】従来の遠心噴霧方法を示す説明側面図である。FIG. 2 is an explanatory side view showing a conventional centrifugal spraying method.

【符号の説明】[Explanation of symbols]

1 回転円盤 2 溶湯ノズ
ル 3 溶湯 4 回転円盤
中心 5 溶湯流下点(溶湯ノズルの中心)L オフセッ
ト長
1 rotating disc 2 molten metal nozzle 3 molten metal 4 rotating disc center 5 molten metal downflow point (center of molten metal nozzle) L offset length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属または合金の溶湯を溶湯ノズルから、
高速回転する回転円盤の中心から外れた円盤上の一点に
供給して遠心噴霧し、冷却することを特徴とする金属、
合金または金属酸化物の球状粒子の製造方法。
1. A molten metal or alloy is supplied from a molten metal nozzle.
A metal characterized by being supplied to one point on a disc that is off the center of a rotating disc that rotates at high speed, centrifugally sprayed, and cooled.
A method for producing spherical particles of an alloy or a metal oxide.
JP20063193A 1993-08-12 1993-08-12 Production of spherical particle of metal Pending JPH0754018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20063193A JPH0754018A (en) 1993-08-12 1993-08-12 Production of spherical particle of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20063193A JPH0754018A (en) 1993-08-12 1993-08-12 Production of spherical particle of metal

Publications (1)

Publication Number Publication Date
JPH0754018A true JPH0754018A (en) 1995-02-28

Family

ID=16427598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20063193A Pending JPH0754018A (en) 1993-08-12 1993-08-12 Production of spherical particle of metal

Country Status (1)

Country Link
JP (1) JPH0754018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900142B1 (en) * 2007-06-27 2009-06-01 공주대학교 산학협력단 Method for producing Functional Alloy Strips by the Rapidly Solidification Process
CN107377987A (en) * 2017-08-29 2017-11-24 深圳市圆梦精密技术研究院 Portable plasma gun device and plasma rotating electrode powder manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900142B1 (en) * 2007-06-27 2009-06-01 공주대학교 산학협력단 Method for producing Functional Alloy Strips by the Rapidly Solidification Process
CN107377987A (en) * 2017-08-29 2017-11-24 深圳市圆梦精密技术研究院 Portable plasma gun device and plasma rotating electrode powder manufacturing apparatus

Similar Documents

Publication Publication Date Title
JPS6242705B2 (en)
US4435342A (en) Methods for producing very fine particle size metal powders
US4523621A (en) Method for making metallic glass powder
US4482375A (en) Laser melt spin atomized metal powder and process
EP0017723B1 (en) Method and apparatus for making metallic glass powder
CN111422874B (en) Method for producing spherical titanium carbide powder by one-step method
JPH0754018A (en) Production of spherical particle of metal
US4701289A (en) Method and apparatus for the rapid solidification of molten material in particulate form
JPH0754019A (en) Production of powder by multistage fissure and quenching
US3532775A (en) Method for producing aluminum particles
JPH05171229A (en) Production of spherical particle of metal, alloy or metal oxide
JPS6247415A (en) Method and apparatus for producing metallic powder
JPH0321602B2 (en)
JPH05171228A (en) Production of spherical particle of metal and centrifugal spraying device
US3872193A (en) Process for producing powdered superalloys
JPS5822309A (en) Manufacture of amorphous alloy powder and apparatus therefor
JPH01205A (en) powder manufacturing equipment
Singer et al. Centrifugal spray forming of large-diameter tubes
WO1993013898A1 (en) Production of atomized powder of quenched high-purity metal
JPH07173510A (en) Production of globular metal fine particle
JPH0674444B2 (en) Metal powder manufacturing equipment
JP2001172704A (en) Method of manufacturing metallic flake
JPS6283407A (en) Production of fine metallic powder
JPS62112709A (en) Production of metallic powder
JPS63190106A (en) Device for producing powder