JPH075311A - Optical mirror device - Google Patents

Optical mirror device

Info

Publication number
JPH075311A
JPH075311A JP5143912A JP14391293A JPH075311A JP H075311 A JPH075311 A JP H075311A JP 5143912 A JP5143912 A JP 5143912A JP 14391293 A JP14391293 A JP 14391293A JP H075311 A JPH075311 A JP H075311A
Authority
JP
Japan
Prior art keywords
dielectric multilayer
light
wavelength range
multilayer films
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5143912A
Other languages
Japanese (ja)
Inventor
Toshiyuki Samejima
俊之 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5143912A priority Critical patent/JPH075311A/en
Publication of JPH075311A publication Critical patent/JPH075311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high reflectance in a wide wavelength range by forming several groups of dielectric multilayer films at specified optical distances in such a manner that these films sastisfy complete reflection conditions for different ranges in the objective wavelength range. CONSTITUTION:Several groups of dielectric multilayer films D1, D2 are formed on a transparent substrate 1 such as quartz, and for example, a ring-like spacer is inserted in the edge part of the transparent substate 1 to maintain the specified distance d to constitute the laminated body. The space for the optical distance d between dielectric multilayer films D1, D2 is made transparent for the wavelength in the objective wavelength range, and the distance is controlled to be larger than the min. wavelength in the objective wavelength range. At least a part of the dielectric multilayer films of dielectric multilayer films D1, D2 has a structure to satisfy the complete reflection conditions for different wavelength ranges in the objective wavelength range for light to be reflected by this device. Thereby, by selecting the complete reflection wavelength range for each multilayer film D, the whole device has complete reflection in a wide range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、完全反射条件を有する
光学ミラー装置に係わる。
FIELD OF THE INVENTION The present invention relates to an optical mirror device having a perfect reflection condition.

【0002】[0002]

【従来の技術】Al,Au等の金属は、広い波長範囲で
高い反射率を持つため、光学ミラーとして広く用いられ
る。
2. Description of the Related Art Metals such as Al and Au have a high reflectance in a wide wavelength range and are therefore widely used as optical mirrors.

【0003】しかしながら、これら金属は、可視領域か
ら紫外線領域で幾分の光吸収が生じてその反射率は90
〜95%にとどまるものであって、100%を示すもの
ではない。
However, these metals cause some light absorption in the visible region to the ultraviolet region and have a reflectance of 90.
˜95%, not 100%.

【0004】このため、例えば物質の反射率測定におい
て、Al, Au等の金属ミラーを標準100%光学ミラ
ーとして用いると、5〜10%の誤差が生じることにな
って高精度の測定を行うことが困難となる。
For this reason, for example, in measuring the reflectance of a substance, if a metal mirror of Al, Au, etc. is used as a standard 100% optical mirror, an error of 5 to 10% will occur, and highly accurate measurement will be performed. Will be difficult.

【0005】一方、反射率100%を実現できるミラー
として、誘電体多層膜によるミラーが知られている。
On the other hand, a mirror having a dielectric multilayer film is known as a mirror capable of realizing a reflectance of 100%.

【0006】ところが、この誘電体多層膜のミラーは多
重光干渉効果を用いるものであるため、広い波長範囲で
完全反射条件を実現することは不可能である。
However, since the mirror of the dielectric multilayer film uses the multiple light interference effect, it is impossible to realize the perfect reflection condition in a wide wavelength range.

【0007】[0007]

【発明が解決しようとする課題】本発明は、広い波長範
囲で完全反射条件を有する光学ミラー装置を提供する。
The present invention provides an optical mirror device having a perfect reflection condition in a wide wavelength range.

【課題を解決するための手段】本発明による光学ミラー
装置は、例えば図1にその一例の構成図を示すように複
数組の誘電体多層膜Dすなわちそれぞれ誘電体層の積層
構造を有し、すなわちそれぞれ多重光干渉効果で完全反
射可能とした複数のミラーDが、互いに所要の光学的間
隔dを保持して重ねた構造とする。
An optical mirror device according to the present invention has, for example, a plurality of sets of dielectric multilayer films D, that is, a laminated structure of dielectric layers, as shown in FIG. That is, a plurality of mirrors D, each of which is capable of complete reflection due to the multiple light interference effect, are stacked with a required optical interval d therebetween.

【0008】そして、誘電体多層膜Dのうちの少くとも
一部の誘電体多層膜Dが、対象光波長範囲において、す
なわち本発明による光学ミラー装置によって反射させよ
うとする目的の光の波長範囲において異なる波長範囲で
それぞれ完全反射条件を満たす構成とする。尚、本発明
での完全反射条件とは、98〜100%の反射率をいう
ものとする。
Then, at least a part of the dielectric multilayer film D is in the target light wavelength range, that is, the wavelength range of the light to be reflected by the optical mirror device according to the present invention. In the different wavelength ranges, the conditions for perfect reflection are satisfied. The perfect reflection condition in the present invention means a reflectance of 98 to 100%.

【0009】また、本発明は、上述の重ねられた誘電体
多層膜D間、図1の例では2組の誘電体多層膜D1 及び
2 間の光学的間隔dの領域が対象波長範囲において透
明である構成とする。
Further, according to the present invention, the region of the optical distance d between the above-mentioned laminated dielectric multilayer films D, in the example of FIG. 1, between the two sets of dielectric multilayer films D 1 and D 2 is the target wavelength range. In the above, the structure is transparent.

【0010】また、本発明は、重ねられた誘電体多層膜
D間の光学的間隔dを、対象波長範囲の最小波長以上に
選定する。
Further, in the present invention, the optical distance d between the superposed dielectric multilayer films D is selected to be equal to or larger than the minimum wavelength in the target wavelength range.

【0011】[0011]

【作用】本発明による光学ミラー装置は、多重光干渉効
果による所要の波長範囲で完全反射が可能な複数組の誘
電体多層膜Dの重ね合せにより構成するため、各誘電体
多層膜Dの完全反射波長範囲の選定によって全体として
広い波長範囲に渡って完全反射を示す光学ミラー装置を
構成することができる。
Since the optical mirror device according to the present invention is constituted by superposing a plurality of sets of dielectric multilayer films D capable of complete reflection within a required wavelength range due to the multiple light interference effect, each of the dielectric multilayer films D is completely formed. By selecting the reflection wavelength range, it is possible to construct an optical mirror device that exhibits complete reflection over a wide wavelength range as a whole.

【0012】[0012]

【実施例】本発明装置の実施例を説明する。本発明は、
その基本的構成を図1で示すように、複数組、図1では
2組の互いに異なる波長領域で完全反射を示し、かつこ
れら各完全反射を示す波長領域が対象光波長範囲を埋め
る関係にある複数の誘電体多層膜D(第1及び第2の誘
電体多角薄膜D1 及びD2 )を所要の光学的間隔dを保
持して重ねる。
EXAMPLE An example of the device of the present invention will be described. The present invention is
As shown in FIG. 1, the basic configuration thereof shows perfect reflection in a plurality of sets, in FIG. 1, two sets of different wavelength regions, and the wavelength regions showing the respective perfect reflections have a relationship of filling the target light wavelength range. A plurality of dielectric multilayer films D (first and second dielectric polygonal thin films D 1 and D 2 ) are stacked with a required optical interval d.

【0013】これら誘電体多層膜Dは、例えば石英基板
等の透明基板1上に形成することができる。
The dielectric multilayer film D can be formed on the transparent substrate 1 such as a quartz substrate.

【0014】そして、これら誘電体多層膜Dの光学的間
隔d内は、対象波長範囲の波長に対して透明とし、かつ
この間隔dは対象波長範囲の最小波長以上に選定する。
The optical distance d between the dielectric multilayer films D is transparent to the wavelength in the target wavelength range, and the distance d is selected to be equal to or larger than the minimum wavelength in the target wavelength range.

【0015】これら複数組の誘電体多層膜D、すなわち
第1、第2、第3‥‥‥の誘電体多層膜D1 ,D2 ,D
3 ‥‥‥は、例えば図2にその一例の断面図と示すよう
に、それぞれ基板1上に被着形成されて、これら誘電体
多層膜Dを有する基板1間に、所要の間隔dを保持させ
るように、所要の厚さを有する例えばリング状のスペー
サ2が周縁部に介在されて積層合体する。
These plural sets of dielectric multilayer films D, that is, the first, second, third ... Dielectric multilayer films D 1 , D 2 , D.
3 are formed on the substrate 1 by deposition, respectively, as shown in FIG. 2 as a cross-sectional view of an example thereof, and maintain a required distance d between the substrates 1 having the dielectric multilayer film D. As described above, for example, ring-shaped spacers 2 having a required thickness are interposed in the peripheral portion to be laminated and integrated.

【0016】また、図3に示す例では、基板11上に順
次SiO2 等の透明膜による中間層3を介して第1〜第
3の誘電体多層膜D1 〜D3 を積層して完全一体型構成
とした場合である。
Further, in the example shown in FIG. 3, the first to third dielectric multilayer films D 1 to D 3 are sequentially laminated on the substrate 11 with the intermediate layer 3 made of a transparent film such as SiO 2 interposed therebetween. This is the case of an integrated configuration.

【0017】図4に示す例では、透明基板21上に赤外
領域で完全反射条件が得られるAu等の金属ミラーMが
形成され、これと紫外から可視域で完全反射が得られる
誘電体多層膜D1 〜D3 をスペーサ2を介して重ね合せ
積層した例である。この場合、金属ミラーMを最後尾に
配置する事によって紫外から可視域と共に、誘電体多層
膜D1 〜D3 に透明な赤外領域で完全な反射条件を得る
事ができる。
In the example shown in FIG. 4, a metal mirror M of Au or the like, which can obtain a perfect reflection condition in the infrared region, is formed on the transparent substrate 21, and this and a dielectric multi-layer capable of obtaining a perfect reflection in the ultraviolet to visible region. This is an example in which the films D 1 to D 3 are stacked and laminated via a spacer 2. In this case, by arranging the metal mirror M at the rearmost position, it is possible to obtain a perfect reflection condition in the infrared region which is transparent to the dielectric multilayer films D 1 to D 3 together with the visible region from ultraviolet.

【0018】本発明装置の光学的特性についてみる。図
5、図6及び図7に異なる波長領域で完全反射条件を有
する3種類の誘電体多層膜D1 ,D2 及びD3 を透明な
ガラス基板1上に形成したときのそれぞれの透過率スペ
クトルである。完全反射条件を満たすとき光透過率は各
図に示すように0となるが、その領域は測定波長領域の
極く一部である。
The optical characteristics of the device of the present invention will be examined. Transmittance spectra of three types of dielectric multilayer films D 1 , D 2 and D 3 having perfect reflection conditions in different wavelength regions on transparent glass substrate 1 shown in FIGS. 5, 6 and 7. Is. When the perfect reflection condition is satisfied, the light transmittance becomes 0 as shown in each figure, but that region is a very small part of the measurement wavelength region.

【0019】図8は図5及び図6に示した2組の誘電体
多層膜D1 及びD2 を、d=1mmのギャップを設けて
重ね合わせたときの透過率スペクトルである。図9は図
5〜図7で示した3組の誘電体多層膜をD1 〜D3 をd
=1mmのギャップを設けて重ね合わせたときの透過率
スペクトルである。このように複数組の誘電体多層膜を
重ね合わせることによって透過率0の波長範囲が広が
り、より広範囲で完全反射条件が達成された。
FIG. 8 is a transmittance spectrum when the two sets of dielectric multilayer films D 1 and D 2 shown in FIGS. 5 and 6 are overlapped with a gap of d = 1 mm. Figure 9 is a three sets of dielectric multilayer film shown in FIGS. 5 to 7 D 1 to D 3 and d
It is a transmittance spectrum when a gap of = 1 mm is provided and they are overlapped. By superposing a plurality of sets of dielectric multilayer films in this manner, the wavelength range with zero transmittance was widened, and perfect reflection conditions were achieved in a wider range.

【0020】再に本発明装置について説明する。今、図
1のミラーすなわち各誘電体多層膜D1 及びD2 がそれ
ぞれ波長λ1 及びλ2 で反射率=1α完全反射条件を満
たすものの、互いに他の波長λ2 及びλ1 の光に対して
はそれぞれR1 (<1)及びR2 (<1)の反射率を持
つものとする。この場合、各誘電体多層膜D1 及びD 2
はそれぞれ透明な基体1上に形成されている。この2種
類の誘電体多層膜D1及びD2 によるミラー(以下、ミ
ラーD1 及びD2 という)対象光波長以上の間隔dを介
在させて重ね合わせる。
The device of the present invention will be described again. Figure now
1 mirror, that is, each dielectric multilayer film D1And D2Is that
Wavelength λ1And λ2And reflectivity = 1α Satisfy the perfect reflection condition
However, other wavelengths λ2And λ1Against the light of
Are each R1(<1) and R2Has a reflectance of (<1)
Let's do it. In this case, each dielectric multilayer film D1And D 2
Are formed on a transparent substrate 1, respectively. These two
Type dielectric multilayer film D1And D2Mirror (hereinafter, Mi
Ra D1And D2Via a distance d that is greater than the target light wavelength
Let it stay and overlap.

【0021】この構成で、波長λ1 及びλ2 の光を入射
させると、波長λ1 の光はミラーD 1 で完全に反射され
るが波長λ2 の光は強度比(1−R1 )でこのミラーD
1 を透過する。ミラーD1 で透過した波長λ2 の光は他
方のミラーD2 で完全に反射されて再びミラーD1 に入
射し、強度比1−R1 の光がミラーD1 を透過し、残り
の強度比R1 の光はミラーD1 で反射しミラーD2 に入
射する。
With this configuration, the wavelength λ1And λ2Incident light
The wavelength λ1Light is mirror D 1Completely reflected by
Wavelength λ2Light intensity ratio (1-R1) With this mirror D
1Through. Mirror D1Wavelength λ transmitted by2Other light
Mirror D2Is completely reflected by the mirror D again1Enter
Intensity ratio 1-R1Light is mirror D1Through the rest
Intensity ratio R1Light is mirror D1Reflected by mirror D2Enter
Shoot.

【0022】このように波長λ2 の光はミラーD1 及び
2 間で多重反射されるので波長λ 2 の光のミラーD1
及びD2 での反射強度は以下のように計算できる。
Thus, the wavelength λ2Light is mirror D1as well as
D2The wavelength is λ 2Light mirror D1
And D2The reflection intensity at can be calculated as follows.

【0023】[0023]

【数1】 反射強度=R1 +(1−R1)2 +(1−R1)2 ×R1 +(1−R1)21 2+‥‥‥ =R1 +(1−R1)2 /(1−R1) =1 ‥‥‥(1)[Number 1] reflection intensity = R 1 + (1-R 1) 2 + (1-R 1) 2 × R 1 + (1-R 1) 2 R 1 2 + ‥‥‥ = R 1 + (1- R 1 ) 2 / (1−R 1 ) = 1 ... (1)

【0024】このようにミラーD1 ,D2 及びその中心
領域で光の吸収がなければ波長λ1及びλ2の光は完全
に反射される。
As described above, if the light is not absorbed by the mirrors D 1 and D 2 and the central region thereof, the light having the wavelengths λ 1 and λ 2 is completely reflected.

【0025】上述の説明は、互いに異なる波長のλ1
びλ2 に対してそれぞれ完全条件の反射を示す2組の誘
電体多層膜ミラーD1 及びD2 によって光学ミラー装置
を構成する場合について説明したが、図3及び図4で示
したように、3組以上の誘電体多層膜ミラーD1
2 ,D3 ‥‥‥を用いる場合において、それぞれ異な
る波長λ1 ,λ2 ,λ3 ‥‥‥に対し完全条件反射を示
す多層膜構成とするときは全体として、λ1 ,λ2 ,λ
3 ‥‥‥の全ての光について完全に反射する光学ミラー
装置を構成することができることになる。ここで各誘電
体多層膜Dは、或る波長で理想的完全反射条件を示す
が、本発明でいう各誘電体多層膜での完全反射条件とは
98〜100%の反射率を示す波長範囲で用いられるも
のとする。
The above description is for the case where the optical mirror device is constituted by two sets of dielectric multilayer mirrors D 1 and D 2 which show reflection under perfect conditions for λ 1 and λ 2 of different wavelengths. However, as shown in FIGS. 3 and 4, three or more dielectric multilayer mirrors D 1 ,
In the case of using D 2 , D 3, ..., When a multilayer film structure showing perfect conditional reflection for different wavelengths λ 1 , λ 2 , λ 3, ..., λ 1 , λ 2 , λ
3 It is possible to construct an optical mirror device that completely reflects all the light. Here, each dielectric multilayer film D shows an ideal perfect reflection condition at a certain wavelength, but the perfect reflection condition of each dielectric multilayer film in the present invention is a wavelength range showing a reflectance of 98 to 100%. Shall be used in.

【0026】尚、本発明の誘電体多層膜の重ね合わせに
よるミラーは、特定の波長における反射率を向上させる
上でも効果がある。すなわち、通常の誘電体多層膜ミラ
ーは完全反射条件での反射率が99.9%であるので、
本発明に構成をとって同種のミラーを3個重ねた場合を
想定すると、その反射率は、(1−0.0013)×10
0=99.9999999%に高める事ができる。
The mirror of the present invention formed by stacking dielectric multilayer films is also effective in improving the reflectance at a specific wavelength. That is, since the reflectance of an ordinary dielectric multilayer mirror is 99.9% under perfect reflection conditions,
Assuming a case where three mirrors of the same kind are stacked according to the present invention, the reflectance is (1-0.001 3 ) × 10
It can be increased to 0 = 99.999999999%.

【0027】次に本発明装置を用いた光吸収係数測定装
置のその略線的構成図を図10に示す。これは基体30
上に形成された被測定薄膜31の光吸収係数測定装置で
あって、少なくとも受光部32と、発光部33と、本発
明による広波長領域完全反射光学ミラー光量による反射
体34とが設けられ、被測定薄膜31を受光部32と反
射体34の間で且つ発光部33と反射体34との間に配
置して、発光部33から薄膜31に入射した入射光Li
が、薄膜31及び反射体34で反射され、この反射光L
0 を受光部32に入射した反射光L0 の光量を測定する
構成とする。
Next, FIG. 10 shows a schematic configuration diagram of an optical absorption coefficient measuring device using the device of the present invention. This is the base 30
A light absorption coefficient measuring device for the thin film to be measured 31 formed on the above, which is provided with at least a light receiving part 32, a light emitting part 33, and a reflector 34 with a wide wavelength region perfect reflection optical mirror light amount according to the present invention, The thin film to be measured 31 is arranged between the light receiving part 32 and the reflector 34 and between the light emitting part 33 and the reflector 34, and the incident light L i incident on the thin film 31 from the light emitting part 33.
Is reflected by the thin film 31 and the reflector 34, and the reflected light L
0 is configured to measure the light amount of the reflected light L 0 incident on the light receiving unit 32.

【0028】上述したように測定用の入射光L1 は薄膜
31の前方側の表面31S側から入射されるものである
が、このときこの入射側表面において矢印L1 で示すよ
うに一部の光が反射され、一部の光はそのまま薄膜31
及び基体30を介して、矢印L2 で示すように反射体3
4の表面において反射される。この反射光L2 は再び基
体30を介して薄膜31を通過して矢印L2 で示すよう
に外部に放射される。このとき基体30と薄膜31との
界面においても矢印L3 で示すように反射光L 2 の一部
が反射される。
As described above, the incident light L for measurement is used.1Is a thin film
The light is incident from the front surface 31S side of 31.
However, at this time, the arrow L on this incident side surface1I'll show you
Part of the light is reflected, and part of the light remains as it is in the thin film 31.
And the arrow L through the base body 30.2Reflector 3 as shown in
It is reflected at the surface of No. 4. This reflected light L2Is based again
Arrow L passing through the thin film 31 through the body 302As shown in
Is radiated to the outside. At this time, the substrate 30 and the thin film 31
Arrow L at the interface3As shown by 2Part of
Is reflected.

【0029】ここで、入射光L1 が外部から薄膜31に
入射したときの反射率をr1 とする。r1 は一般に波長
の関数(r1 (λ))として表され、光の波長に依存し
て変化する。同様に光が基体30側から薄膜31に入射
したときの反射率をr2 (r 2 (λ))とする。反射体
34で反射率をr3 とする。
Here, the incident light L1From the outside to the thin film 31
The reflectance when incident is r1And r1Is generally the wavelength
Function of (r1(Λ)), depending on the wavelength of the light
Change. Similarly, light is incident on the thin film 31 from the substrate 30 side.
The reflectance when2(R 2(Λ)). Reflector
The reflectance at 343And

【0030】このとき、光のコヒーレント長に対し基体
30の厚さが十分長いとすると、最初に薄膜に入射した
光L1 と、反射体34によって反射された反射光2 とが
ほとんど干渉しないと近似することができて、結果的に
推定される反射率Rは、(2)式で示す簡単な等比級数
で表わすことができる。
At this time, assuming that the thickness of the substrate 30 is sufficiently long with respect to the coherent length of light, the light L 1 that first enters the thin film and the reflected light 2 reflected by the reflector 34 hardly interfere with each other. The reflectance R, which can be approximated and is estimated as a result, can be expressed by a simple geometric series shown in the equation (2).

【0031】[0031]

【数2】 R=r1 +t1 3 2 /(1−r2 3 )‥‥‥(2)## EQU2 ## R = r 1 + t 1 r 3 t 2 / (1-r 2 r 3 ) ... (2)

【0032】ここでt1 及びt2 は、外部から薄膜31
に光を入射したときの光の吸収量をa1 とし、基体30
側から薄膜31に光を入射したときの光の吸収量をa2
とすると、それぞれ下記の(3)式及び(4)式により
表される。
Here, t 1 and t 2 are the thin film 31 from the outside.
Let a 1 be the absorption amount of light when light is incident on the substrate 30.
The absorption amount of light when light is incident on the thin film 31 from the side a 2
Then, they are represented by the following equations (3) and (4), respectively.

【0033】[0033]

【数3】 t1 =1−r1 −a1 ‥‥‥(3)## EQU3 ## t 1 = 1-r 1 -a 1 (3)

【0034】[0034]

【数4】 t2 =1−r2 −a2 ‥‥‥(4)[Formula 4] t 2 = 1-r 2 −a 2 (4)

【0035】従って、上述の(2)式にこれらを代入す
ると、
Therefore, when these are substituted into the above equation (2),

【0036】[0036]

【数5】 R=r1 +r3(1−r1 −a1)・(1−r2 −a2)/(1−r2 3)‥‥‥(5) となる。[Equation 5] R = r 1 + r 3 (1-r 1 −a 1 ) · (1−r 2 −a 2 ) / (1−r 2 r 3 ) ... (5)

【0037】ここで、a2 は、a2 =a1(1−r2)/
(1−r1)と書け、上述の(5)式の第2項をa1 の1
次式で近似できるので、反射率Rは、
Here, a 2 is a 2 = a 1 (1-r 2 ) /
It can be written as (1-r 1 ), and the second term of the above formula (5) is 1 of a 1.
Since it can be approximated by the following equation, the reflectance R is

【0038】[0038]

【数6】 R={r1 +r3 −r3(r1 +r2)}/(1−r2 3) −2r3(1−r2)a1 /(1−r2 3) ‥‥‥(6) となり、## EQU6 ## R = {r 1 + r 3 −r 3 (r 1 + r 2 )} / (1-r 2 r 3 ) −2r 3 (1-r 2 ) a 1 / (1-r 2 r 3 ). It becomes (6),

【0039】[0039]

【数7】 a1 =(1−r2 3)[{r1 +r3 −r3(r1 +r2)} /(1−r2 3)−R]/2r3(1−r2) ‥‥‥(7) となる。A 1 = (1-r 2 r 3 ) [{r 1 + r 3 -r 3 (r 1 + r 2 )} / (1-r 2 r 3 ) -R] / 2r 3 (1-r 2 ) It becomes (7).

【0040】反射体34の反射率は本発明により広波長
範囲で1あるから上述の(7)式は下記の(8)式のご
とく極めて簡単に表される。
Since the reflectance of the reflector 34 is 1 in the wide wavelength range according to the present invention, the above equation (7) can be expressed very simply as the following equation (8).

【0041】[0041]

【数8】 a1 =(1−R)/2 ‥‥‥(8)[Equation 8] a 1 = (1-R) / 2 (8)

【0042】即ち、薄膜31の前方における反射光の反
射率Rのみを測定することによって、直接薄膜31の吸
収係数を調べることができることとなる。吸収量が殆ど
ない場合は、反射率Rは波長に依存せず一定量となる。
薄膜31の吸収係数α、薄膜をdとすると、吸収量a1
は、下記の式(10)に示すように表される。
That is, by measuring only the reflectance R of the reflected light in front of the thin film 31, the absorption coefficient of the thin film 31 can be directly investigated. When there is almost no absorption amount, the reflectance R is a constant amount regardless of the wavelength.
If the absorption coefficient α of the thin film 31 is d and the thin film is d, the absorption amount a 1
Is expressed as shown in the following formula (10).

【0043】[0043]

【数9】 [Equation 9]

【0044】従って、吸収係数αは、Therefore, the absorption coefficient α is

【0045】[0045]

【数10】 α=−{1n(1−a1 /(1−r1))}/d‥‥‥‥(10) とある。[Formula 10] α = − {1n (1-a 1 / (1-r 1 ))} / d (10)

【0046】従って、この測定方法及び測定装置によれ
ば、上述の反射光L0 (L1 及びL 2 ′)の光量を測定
して、入射光L1 の光量との比から反射率Rを測定する
ことによって、低吸収係数の薄膜においても、精度良く
その測定を行うことができる。
Therefore, according to this measuring method and measuring apparatus,
For example, the above-mentioned reflected light L0(L1And L 2′) Light intensity is measured
Then, the incident light L1The reflectance R is measured from the ratio with the light amount of
As a result, even in a thin film with a low absorption coefficient,
The measurement can be performed.

【0047】上述の図10において説明した構成の測定
装置を用いて、厚さ12nmの水素化アモルファスSi
(a−Si:H)膜と、これにレーザを照射して結晶化
して作製した多結晶Si(poly−Si)膜、更にこ
れに対し再度レーザを照射してアモルファス化して作製
したアモルファスSi(a−Si)膜の吸収係数をそれ
ぞれ測定した。これら薄膜の基体としては厚さ0.5m
mの石英基板を用い、反射体は、複数の誘電体多層膜ミ
ラーを重ねた本発明による光学ミラー装置を用いた。こ
の場合測定精度は0.01%であった。従って、この本
発明装置を用いて測定できる吸収係数αの下限は、前述
の(6)〜(10)式から求められると、約2×102
cm-1となる。
A hydrogenated amorphous Si having a thickness of 12 nm was formed by using the measuring device having the structure described in FIG.
An (a-Si: H) film, a polycrystalline Si (poly-Si) film produced by irradiating the film with a laser to crystallize it, and an amorphous Si (a-Si: H) film produced by irradiating the film with a laser again to amorphize the film. The absorption coefficient of the a-Si) film was measured. The thickness of these thin film substrates is 0.5 m
m quartz substrate was used, and the reflector used was the optical mirror device according to the present invention in which a plurality of dielectric multilayer mirrors were stacked. In this case, the measurement accuracy was 0.01%. Therefore, the lower limit of the absorption coefficient α that can be measured using the device of the present invention is about 2 × 10 2 when calculated from the above equations (6) to (10).
It becomes cm -1 .

【0048】a−Si:H膜と、poly−Si膜及び
a−Si膜の反射率の測定結果から吸収係数を計算し
た。この結果を図11に示す。図11において実線40
〜42はそれぞれa−Si:H膜、poly−Si膜、
a−Si膜の結果を示す。入射光エネルギーが2.5e
V〜1.4eVの範囲にわたって105 〜102 cm-1
の範囲で吸収係数が求められた。図11において矢印N
はノイズレベルを示す。
The absorption coefficient was calculated from the measurement results of the reflectances of the a-Si: H film, the poly-Si film and the a-Si film. The result is shown in FIG. A solid line 40 in FIG.
To 42 are a-Si: H film, poly-Si film,
The result of an a-Si film is shown. Incident light energy is 2.5e
10 5 to 10 2 cm −1 over the range of V to 1.4 eV
The absorption coefficient was determined within the range. In FIG. 11, arrow N
Indicates the noise level.

【0049】上述のa−Si:H膜、poly−Si及
びa−Si膜に対して透過光と反射光とをそれぞれ従来
の分光光度計を用いて測定し、これらから吸収係数を求
めた測定結果を図12に示す。図12において実線43
−45はそれぞれa−Si:H膜、poly−Si膜、
a−Si膜の光吸収係数スペクトルを示す。分光光度計
を用いた従来法では、透過率と反射率とを測定しなけれ
ばならないため、それぞれの測定誤差が生じ、矢印Nで
ノイズレベルを示すように、5×103 cm-1以下は測
定できない。
Measurement of transmitted light and reflected light of the above-mentioned a-Si: H film, poly-Si and a-Si film, respectively, using a conventional spectrophotometer, and obtaining an absorption coefficient therefrom. Results are shown in FIG. A solid line 43 in FIG.
-45 is an a-Si: H film, a poly-Si film,
The optical absorption coefficient spectrum of an a-Si film is shown. In the conventional method using the spectrophotometer, since the transmittance and the reflectance must be measured, respective measurement errors occur, and as indicated by the arrow N, the noise level is 5 × 10 3 cm −1 or less. I can't measure.

【0050】これに対し本発明装置を用いれば1回の測
定で吸収係数を測定することができるため102 cm-1
の吸収係数まで測定可能となる。
On the other hand, if the device of the present invention is used, the absorption coefficient can be measured in one measurement, so that 10 2 cm -1 is obtained.
It is possible to measure up to the absorption coefficient of.

【0051】尚、本発明は上述の実施例に限定されるこ
となく、その他種々の変形変更をなし得ることはいうま
でもない。
It is needless to say that the present invention is not limited to the above-mentioned embodiment, and various modifications and changes can be made.

【0052】[0052]

【発明の効果】上述したように、本発明によれば広波長
範囲で従来の金属ミラーに比べて高い反射率を有するミ
ラーを容易に作製できる。
As described above, according to the present invention, a mirror having a higher reflectance than a conventional metal mirror in a wide wavelength range can be easily manufactured.

【0053】また誘電体多層膜と金属膜の組み合わせに
より赤外から紫外域まで完全反射のミラーが得られる。
Further, by combining the dielectric multi-layer film and the metal film, a mirror having a perfect reflection from the infrared region to the ultraviolet region can be obtained.

【0054】更に、本発明装置を用いれば広波長範囲で
1回の反射光の測定により、薄膜の吸収係数を測定する
ことができ、誤差を低減化して、測定精度の向上をはか
ることができるため、薄膜の電子物性や膜厚をより正確
に制御することが可能となる。
Further, by using the device of the present invention, the absorption coefficient of the thin film can be measured by measuring the reflected light once in a wide wavelength range, and the error can be reduced and the measurement accuracy can be improved. Therefore, it is possible to more accurately control the electronic physical properties and the film thickness of the thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の基本的構成を示す図である。FIG. 1 is a diagram showing a basic configuration of a device of the present invention.

【図2】本発明装置の一例の略線的断面図である。FIG. 2 is a schematic cross-sectional view of an example of the device of the present invention.

【図3】本発明装置の一例の略線的断面図である。FIG. 3 is a schematic cross-sectional view of an example of the device of the present invention.

【図4】本発明装置の一例の略線的断面図である。FIG. 4 is a schematic cross-sectional view of an example of the device of the present invention.

【図5】本発明装置の説明に供する透過率スペクトル図
である。
FIG. 5 is a transmittance spectrum diagram used for explaining the device of the present invention.

【図6】本発明装置の説明に供する透過率スペクトル図
である。
FIG. 6 is a transmittance spectrum diagram for explaining the device of the present invention.

【図7】本発明装置の説明に供する透過率スペクトル図
である。
FIG. 7 is a transmittance spectrum diagram used for explaining the device of the present invention.

【図8】本発明装置の説明に供する透過率スペクトル図
である。
FIG. 8 is a transmittance spectrum diagram used for explaining the device of the present invention.

【図9】本発明装置の説明に供する透過率スペクトル図
である。
FIG. 9 is a transmittance spectrum diagram for explaining the device of the present invention.

【図10】本発明を用いた光吸収係数測定装置の略線的
構成図である。
FIG. 10 is a schematic configuration diagram of an optical absorption coefficient measuring device using the present invention.

【図11】本発明を用いた光吸収係数測定装置により光
吸収係数スペクトルを示す図である。
FIG. 11 is a diagram showing a light absorption coefficient spectrum by a light absorption coefficient measuring apparatus using the present invention.

【図12】従来装置による光吸収係数測定方法により光
吸収係数スペクトルを示す図である。
FIG. 12 is a diagram showing a light absorption coefficient spectrum by a light absorption coefficient measuring method using a conventional apparatus.

【符号の説明】[Explanation of symbols]

0 ,D1 ,D2 ,D3 ‥‥‥ 誘電体多層膜 11 基板D 0 , D 1 , D 2 , D 3・ ・ ・ Dielectric multilayer film 11 Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数組の誘電体多層膜が、互いに所要の
光学的間隔を保持して重ねられており各誘電体多層膜の
うちの少くとも一部の誘電体多層膜が対象光波長範囲に
おいて互いに異なる波長範囲でそれぞれ完全反射条件を
満たすことを特徴とする光学ミラー装置。
1. A plurality of sets of dielectric multilayer films are stacked with a required optical interval therebetween, and at least some of the dielectric multilayer films are in the target light wavelength range. 2. An optical mirror device, characterized in that the conditions for perfect reflection are satisfied in different wavelength ranges from each other.
【請求項2】 重ねられた上記各誘電体多層膜間の上記
光学的間隔の領域が対象波長範囲において透明であるこ
とを特徴とする請求項1に記載の光学ミラー装置。
2. The optical mirror device according to claim 1, wherein a region of the optical interval between the stacked dielectric multilayer films is transparent in a target wavelength range.
【請求項3】 重ねられた上記各誘電体多層膜間の上記
光学的間隔が対象波長範囲の最小波長以上に選定された
ことを特徴とする請求項1に記載の光学ミラー装置。
3. The optical mirror device according to claim 1, wherein the optical interval between the stacked dielectric multilayer films is selected to be equal to or greater than the minimum wavelength of the target wavelength range.
JP5143912A 1993-06-15 1993-06-15 Optical mirror device Pending JPH075311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5143912A JPH075311A (en) 1993-06-15 1993-06-15 Optical mirror device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5143912A JPH075311A (en) 1993-06-15 1993-06-15 Optical mirror device

Publications (1)

Publication Number Publication Date
JPH075311A true JPH075311A (en) 1995-01-10

Family

ID=15349985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5143912A Pending JPH075311A (en) 1993-06-15 1993-06-15 Optical mirror device

Country Status (1)

Country Link
JP (1) JPH075311A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526768A (en) * 2003-06-03 2006-11-24 ユナキス・バルツェルス・アクチェンゲゼルシャフト Optical substrate for improving fluorescence detection ability
US7336878B2 (en) 2000-12-08 2008-02-26 Fujifilm Corporation Optical device
WO2010013389A1 (en) * 2008-07-28 2010-02-04 日本電気硝子株式会社 Broadband reflecting mirror
CN110605475A (en) * 2018-06-14 2019-12-24 发那科株式会社 Galvanometer mirror and laser processing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336878B2 (en) 2000-12-08 2008-02-26 Fujifilm Corporation Optical device
JP2006526768A (en) * 2003-06-03 2006-11-24 ユナキス・バルツェルス・アクチェンゲゼルシャフト Optical substrate for improving fluorescence detection ability
JP4745220B2 (en) * 2003-06-03 2011-08-10 エリコン・トレーディング・アクチェンゲゼルシャフト,トリュープバッハ Optical substrate for improving fluorescence detection ability
WO2010013389A1 (en) * 2008-07-28 2010-02-04 日本電気硝子株式会社 Broadband reflecting mirror
JP2010055058A (en) * 2008-07-28 2010-03-11 Nippon Electric Glass Co Ltd Broadband reflecting mirror
EP2320253A1 (en) * 2008-07-28 2011-05-11 Nippon Electric Glass Co., Ltd. Broadband reflecting mirror
EP2320253A4 (en) * 2008-07-28 2013-06-05 Nippon Electric Glass Co Broadband reflecting mirror
AU2009277894B2 (en) * 2008-07-28 2014-06-05 Nippon Electric Glass Co., Ltd. Broadband reflecting mirror
CN110605475A (en) * 2018-06-14 2019-12-24 发那科株式会社 Galvanometer mirror and laser processing device
US11402553B2 (en) * 2018-06-14 2022-08-02 Fanuc Corporation Galvanometer mirror and laser machine

Similar Documents

Publication Publication Date Title
US7679820B2 (en) IR absorbing reflector
CN100449690C (en) Multilayer mirror, method for manufacturing the same, and exposure equipment
CN109642822A (en) Spectrometer and the spectral measurement method for utilizing it
US6248448B1 (en) Anti-reflection film
EP0510919A1 (en) Dichroic optical filter
JPS6218881B2 (en)
US20220373723A1 (en) Optical element having a protective coating, method for the production thereof and optical arrangement
TW200532164A (en) Film thickness measuring method and apparatus
JPH10268130A (en) Light absorbing filter
JP3799696B2 (en) Mirror for excimer laser
US9297936B2 (en) Mirror with dielectric coating
US7576860B2 (en) Light filter having a wedge-shaped profile
JPH075311A (en) Optical mirror device
JPH075296A (en) Mutlilayered film for soft x-ray
JP5470842B2 (en) Optical filter and light receiving device
US7508567B1 (en) Metal etalon with enhancing stack
JP2008032804A (en) Optical element
JP3166115B2 (en) Filter device
JP2002055207A (en) Optical component and optical device
JPH077124B2 (en) Anti-reflection film
CN112764135B (en) Narrow-band antireflection film with extremely low residual reflection
JPS58223101A (en) Production of polygonal mirror
JP4185195B2 (en) Optical article and light bulb with infrared reflective coating
JP2003043245A (en) Optical filter
JPH0915407A (en) Reflection optical element