JPH0752721B2 - Jig for semiconductor wafer heat treatment - Google Patents

Jig for semiconductor wafer heat treatment

Info

Publication number
JPH0752721B2
JPH0752721B2 JP5853989A JP5853989A JPH0752721B2 JP H0752721 B2 JPH0752721 B2 JP H0752721B2 JP 5853989 A JP5853989 A JP 5853989A JP 5853989 A JP5853989 A JP 5853989A JP H0752721 B2 JPH0752721 B2 JP H0752721B2
Authority
JP
Japan
Prior art keywords
jig
heat treatment
semiconductor wafer
nitride film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5853989A
Other languages
Japanese (ja)
Other versions
JPH02237111A (en
Inventor
克彦 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP5853989A priority Critical patent/JPH0752721B2/en
Publication of JPH02237111A publication Critical patent/JPH02237111A/en
Publication of JPH0752721B2 publication Critical patent/JPH0752721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体ウェーハの製造工程における酸化炉、
拡散炉及びCVD炉等の炉内で使用されるボート、サセプ
ターやカンチパドル等の半導体ウェーハ熱処理用治具に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxidation furnace in a semiconductor wafer manufacturing process,
The present invention relates to a jig for heat treatment of a semiconductor wafer such as a boat, a susceptor and a cantilever used in a furnace such as a diffusion furnace and a CVD furnace.

(従来の技術) 従来、この種の半導体ウェーハ熱処理用治具としては有
害ガスの放出がなく、化学的、熱的に安定なことが必須
の条件であり、例えば炭素基材に炭化珪素をコーティン
グしたものが用いられていた。しかし、この炭化珪素の
コーティング中、及び加熱処理に伴い加熱冷却サイクル
中に炭化珪素膜にクラックが発生し、露出した炭素基材
部分に含まれる吸着ガスが処理雰囲気中に放出して半導
体ウェーハが金属汚染されるという問題があった。ま
た、従来の半導体ウェーハ熱処理用治具によりH2雰囲気
に曝すエピタキシャル成長を行うと、炭化珪素は極く微
量の鉄等の存在によってH2雰囲気下で分解が促進され、
炭化珪素膜にピンホールが発生して同様に炭素基材中の
吸着ガスが放出して半導体ウェーハが金属汚染されると
いう問題があった。
(Prior Art) Conventionally, as a jig for heat treatment of a semiconductor wafer of this type, it is essential that no harmful gas is released and that it is chemically and thermally stable. For example, a carbon substrate is coated with silicon carbide. What was done was used. However, during the coating of silicon carbide and during the heat treatment, a crack is generated in the silicon carbide film during the heating and cooling cycle, and the adsorbed gas contained in the exposed carbon base material is released into the processing atmosphere to form a semiconductor wafer. There was a problem of metal contamination. Further, when epitaxial growth is performed by exposing a conventional semiconductor wafer heat treatment jig to an H 2 atmosphere, the decomposition of silicon carbide is promoted in the H 2 atmosphere due to the presence of an extremely small amount of iron,
There is a problem that pinholes are generated in the silicon carbide film and the adsorbed gas in the carbon base material is similarly released to metal-contaminate the semiconductor wafer.

これらの問題を解決するために、高純度黒鉛面上に、
おのおの高純度の炭化珪素中間層および窒化珪素表面層
を形成被覆してなる加熱支持体(特公昭44−7652号公
報)、カーボン製サセプタ本体の表面にシリコンカー
バイド層、該層上にシリコンナイトライド層、多結晶シ
リコン層及びシリコンオキサイド層のうち少なくともシ
リコンナイトライド層を含む2層を蒸着形成した半導体
ウェーハ処理用サセプタ(特開昭53−66164号公報)、
炭素基材の表面層に、厚さ10μ以上の高密度窒化珪素
膜を形成せしめたサセプター(特開昭54−157778号公
報)が提案されている。
In order to solve these problems, on the high purity graphite surface,
A high-purity silicon carbide intermediate layer and a silicon nitride surface layer are respectively formed on and coated on the heating support (Japanese Patent Publication No. 447652), a carbon susceptor body has a silicon carbide layer on the surface thereof, and a silicon nitride layer on the layer. Layer, a polycrystalline silicon layer, and a silicon oxide layer, at least two layers including at least a silicon nitride layer are formed by vapor deposition to process a semiconductor wafer (Japanese Patent Laid-Open No. 53-66164).
A susceptor (Japanese Patent Laid-Open No. 54-157778) has been proposed in which a high-density silicon nitride film having a thickness of 10 μm or more is formed on the surface layer of a carbon substrate.

(発明が解決しようとする課題) 上記した又はの公報に記載される高純度又は高密度
の窒化珪素膜を形成するには、高温(では1200℃、
では1300〜1400℃)で、SiCl4やSiHCl3を用いて行い、
その結果α−Si3N4やβ−Si3N4という結晶化された窒化
珪素膜のコーティングが行われるものであり、用いられ
る窒素珪素の膜厚は、10〜50μ程度、10μ以上を必
要とするものであった。さらに具体的に言えば、上記
特開昭54−157778号公報の実施例1に記載されるごと
く、所定の炭素基材を、石英ガラス管を炉心管とした高
周波加熱炉に挿入し、誘導加熱により炭素基材表面を13
50℃に加熱した後、炉心管内にSiCl4を毎分5cc、H2を毎
分500cc及びNH3を毎分40cc供給させて炭素基材表面層に
厚さ100μの結晶化された窒化珪素膜を形成しサセプタ
ーを得ているものである。
(Problems to be Solved by the Invention) In order to form the high-purity or high-density silicon nitride film described in the above or the publication, a high temperature (at 1200 ° C.,
At 1300 to 1400 ° C), using SiCl 4 or SiHCl 3 ,
As a result, a crystallized silicon nitride film such as α-Si 3 N 4 or β-Si 3 N 4 is coated, and the film thickness of nitrogen silicon used is about 10 to 50 μm, which requires 10 μm or more. Was to be. More specifically, as described in Example 1 of JP-A-54-157778, a predetermined carbon base material is inserted into a high-frequency heating furnace having a quartz glass tube as a core tube, and induction heating is performed. The carbon substrate surface by 13
After heating to 50 ° C, SiCl 4 of 5 cc / min, H 2 of 500 cc / min and NH 3 of 40 cc / min were fed into the core tube to deposit a 100 μm thick crystallized silicon nitride film on the carbon substrate surface layer. To obtain a susceptor.

しかし、このような結晶化した窒化珪素膜のコーティン
グを行うと、1200〜1400℃の高温処理が必要となり、治
具材料(カーボン、炭化珪素等)から不純物が外部へ噴
出し(この噴出量は高温になればなるほど多くなりコー
ティング膜への取り込みも多くなる)かかる汚染された
窒化珪素膜に接触した半導体ウェーハの金属汚染の一因
となり、かつコーティング処理時間が長くなるという問
題があるとともに、結晶化した窒化珪素膜のシール効果
があまり良好でなく膜厚として10μ以上を必要とするも
のであった。また、上記した特開昭53−66164号公報
は、「シリコンナイトライド層は厚い膜厚に形成するこ
とが困難なためピンホールが発生しやすく、このピンホ
ールからの汚染を防ぐためにシリコンオキサイドあるい
は多結晶シリコン層を形成している」(同公報、第2
頁、左上欄、第6〜10行)と記載し、窒化珪素(結晶化
したもの)膜単独ではそのピンホールのために汚染防止
が困難であることを教示している。
However, when such a crystallized silicon nitride film is coated, high temperature treatment at 1200 to 1400 ° C. is required, and impurities are ejected from the jig material (carbon, silicon carbide, etc.) to the outside (the ejection amount is The higher the temperature, the greater the increase in the amount taken up by the coating film.) This is a cause of metal contamination of the semiconductor wafer that has come into contact with such a contaminated silicon nitride film, and it has the problem that the coating processing time becomes longer and the crystal The effect of sealing the converted silicon nitride film was not so good, and the film thickness required was 10 μm or more. Further, the above-mentioned Japanese Patent Laid-Open No. 53-66164 discloses, "Since it is difficult to form a silicon nitride layer with a large film thickness, pinholes are easily generated, and in order to prevent contamination from this pinhole, silicon oxide or Forming a polycrystalline silicon layer "(the same publication, second
Page, upper left column, lines 6-10), which teaches that it is difficult to prevent contamination with a silicon nitride (crystallized) film alone due to its pinholes.

本発明は、非晶質(アモルファス)の窒化珪素膜のシー
ル効果が高いことを見出すことにより、コーティングに
際して高温処理が必要でなく治具材料(カーボン、炭化
珪素等)から不純物の外部への噴出が減少し、従って高
純度の窒化珪素膜の形成が可能でありかつコーティング
処理時間も大幅に短縮でき、さらに窒化珪素単独でしか
もその膜厚が1000Åと薄くても十分なシール効果が達成
できるようにした半導体ウェーハ熱処理用治具を提供す
ることを目的としている。
The present invention has found that the amorphous silicon nitride film has a high sealing effect, so that high temperature treatment is not required for coating and impurities are ejected from the jig material (carbon, silicon carbide, etc.) to the outside. Therefore, a high-purity silicon nitride film can be formed, the coating processing time can be greatly shortened, and a sufficient sealing effect can be achieved even if silicon nitride alone is used and the film thickness is as thin as 1000Å. It is an object of the present invention to provide a jig for heat treatment of a semiconductor wafer.

(課題を解決するための手段) 上記目的を達成するために、本発明の半導体ウェーハ熱
処理用治具は、カーボン製熱処理用治具の表面に、直接
又は間接に厚さが1000Å以上の非晶質窒化珪素膜を形成
せしめたものである。
(Means for Solving the Problems) In order to achieve the above object, the semiconductor wafer heat treatment jig of the present invention is formed on the surface of the carbon heat treatment jig directly or indirectly with an amorphous thickness of 1000 Å or more. A silicon nitride film is formed.

カーボン製熱処理用治具としては、炭化珪素膜のコーテ
ィングを行ったものでもよいし、またコーティングがな
いものでもよい。
The carbon heat treatment jig may or may not be coated with a silicon carbide film.

非晶質の窒化珪素膜のコーティング(デポジション)条
件は、600〜1000℃のCVD(化学気相成長)法によって行
われる。
The amorphous silicon nitride film is coated (deposited) by a CVD (chemical vapor deposition) method at 600 to 1000 ° C.

非晶質窒化珪素膜の膜厚は、1000〜10000Å(0.1〜1
μ)が好ましいが、これ以上の厚さを適用できることは
いうまでもない。1000Å未満では、シール効果が十分で
なくなり好ましくない。即ち、本発明によれば、前記し
た従来技術の高密度窒化珪素膜が10μ以上を必要とした
のに対し、十分の一以下の膜厚で良好なシール効果が達
成できるものである。
The thickness of the amorphous silicon nitride film is 1000 to 10000Å (0.1 to 1
μ) is preferable, but it goes without saying that a thickness larger than this is applicable. If it is less than 1000Å, the sealing effect is not sufficient, which is not preferable. That is, according to the present invention, a good sealing effect can be achieved with a film thickness of 1/10 or less, whereas the above-mentioned conventional high-density silicon nitride film requires 10 μm or more.

以下に本発明に到達するまでに行った実験例を挙げて説
明する。
Hereinafter, description will be given with reference to experimental examples performed until reaching the present invention.

実験例1 治具材料からの金属汚染量と温度の関係についての実
験。
Experimental Example 1 An experiment on the relationship between the metal contamination amount from the jig material and the temperature.

カーボン製治具とシリコンウェーハを700〜1100℃の温
度で、30分、N2中で熱処理を行う。その後、シリコンウ
ェーハのみ30分、1000℃、ドライO2酸化を行った後、光
導電減衰法(ASTMF28)により、ウェーハ・ライフ・タ
イムを測定した。そのウェーハ・ライフ・タイムより、
汚染量を汚染物質を鉄(Fe)として次の式から算出し
た。
Heat the carbon jig and the silicon wafer at 700-1100 ° C for 30 minutes in N 2 . After that, only the silicon wafer was subjected to dry O 2 oxidation at 1000 ° C. for 30 minutes, and then the wafer life time was measured by the photoconductive decay method (ASTMF28). From the wafer life time,
The pollutant amount was calculated from the following formula with iron (Fe) as the pollutant.

汚染量=1/vσFe(1/ウェーハ・ライフ・タイム)(式
中、v=2.3x107cm/sec:キャリアーの熱運動速度、σFe
=1.5x10-16cm2:捕獲断面積) その結果を第1表に示した。
Amount of contamination = 1 / vσ Fe (1 / wafer life time) (in the formula, v = 2.3x10 7 cm / sec: thermal motion velocity of carrier, σ Fe
= 1.5x10 -16 cm 2 : Capture cross section) The results are shown in Table 1.

第1表に示した結果から、明らかなごとく、シリコンウ
ェーハの汚染量は温度の上昇とともに増大し、1000℃を
越えると顕著に増加することが判明した。
From the results shown in Table 1, it is clear that the amount of contamination of the silicon wafer increases as the temperature rises, and significantly increases above 1000 ° C.

実験例2 窒化珪素膜の生成温度と結晶性の関係についての実験。Experimental Example 2 An experiment on the relationship between the crystallinity and the formation temperature of the silicon nitride film.

SiH4,SiH2Cl2,SiSl4の3種類のシリコン・ソースを用い
て、生成温度700〜1400℃の範囲でNH3との反応により、
窒化珪素膜を基板上に成長させた。
By using three kinds of silicon sources, SiH 4 , SiH 2 Cl 2 and SiSl 4 , by reaction with NH 3 in the production temperature range of 700 to 1400 ° C.,
A silicon nitride film was grown on the substrate.

電子線による反射回折法を用いて各膜よりの回折パター
ンを写真に撮影し、その回折パターンを写真に撮影し、
その回折パターンの線幅より、次の式により粒径を求め
た。
A diffraction pattern from each film is photographed using a reflection diffraction method using an electron beam, and the diffraction pattern is photographed,
From the line width of the diffraction pattern, the particle size was calculated by the following formula.

粒径=Lλ/△S(L:カメラと試料の距離、λ:波長、
△S:線幅) その結果を第2表に示した。(第2表において、微結晶
相の粒径は0.5〜10μmであり、Aはα−Si3N4,Bはβ−
Si3N4である。) 第2表から明らかなごとく、600〜1000℃で生成するSi3
N4膜は非晶質(アモルファス)であり、生成温度が上昇
すると結晶化度が増大することが判明した。
Particle size = Lλ / ΔS (L: distance between camera and sample, λ: wavelength,
ΔS: line width) The results are shown in Table 2. (In Table 2, the grain size of the microcrystalline phase is 0.5 to 10 μm, A is α-Si 3 N 4 , B is β-
It is Si 3 N 4 . ) As is clear from Table 2, Si 3 produced at 600 to 1000 ℃
It was found that the N 4 film was amorphous, and the crystallinity increased as the generation temperature increased.

第2表において、微結晶相の粒径は0.5μm〜10μm、
Aはα−Si3N4、Bはβ−Si3N4である。) 第2表から明らかなごとく、600〜1000℃で生成するSi3
N4膜は非晶質(アモルファス)であり、生成温度が上昇
すると結晶化度が増大することが判明した。
In Table 2, the grain size of the microcrystalline phase is 0.5 μm to 10 μm,
A is α-Si 3 N 4 and B is β-Si 3 N 4 . ) As is clear from Table 2, Si 3 produced at 600 to 1000 ℃
It was found that the N 4 film was amorphous, and the crystallinity increased as the generation temperature increased.

実験例3 シール効果と結晶粒径の関係についての実験。Experimental Example 3 An experiment on the relationship between the sealing effect and the crystal grain size.

回折パターン法により粒径を測定した非晶質、25Å及び
80〜100Åの結晶粒の膜厚4000Åの窒化膜(Si3N4)の表
面にNaイオンを塗布したのち、600℃、22hrの熱処理をN
285%、H215%の雰囲気で実施した。測定はHFを用いて
膜を除去し、その後Na22(T1/2=2.60years)をカウン
トすることで行った。その結果を第1図に示した。
Amorphous, whose particle size was measured by the diffraction pattern method, 25Å and
After applying Na ions to the surface of a nitride film (Si 3 N 4 ) with a grain size of 80 to 100 Å and a film thickness of 4000 Å, heat treatment at 600 ℃ for 22 hours is performed.
It was carried out in an atmosphere of 2 85% and H 2 15%. The measurement was carried out by removing the film using HF and then counting Na 22 (T1 / 2 = 2.60 years). The results are shown in FIG.

〔回折パターン法〕[Diffraction pattern method]

粒径=Lλ/ΔS (L:カメラと試料の距離、λ:波長、ΔS:線幅) 第1図の結果から、窒化膜の結晶粒径が小さい程シール
効果がよく、特に非晶質(アモルファス)の窒化膜が極
めて良好なシール効果を示すことがわかった。
Grain size = Lλ / ΔS (L: distance between camera and sample, λ: wavelength, ΔS: line width) From the results of FIG. 1, the smaller the crystal grain size of the nitride film is, the better the sealing effect is. It was found that the (amorphous) nitride film exhibits a very good sealing effect.

上記した実験例1〜3の知見に基づいて、本発明者は本
発明を完成したものである。
The present inventor has completed the present invention based on the findings of Experimental Examples 1 to 3 described above.

(実施例) 以下に本発明の実施例を挙げてさらに具体的に説明す
る。
(Examples) Hereinafter, examples of the present invention will be described in more detail.

実施例1 窒化膜コーティング条件 0.1torr、770℃ SiH2Cl2:70sccm NH3:700sccm 成長速度:35Å/min 膜厚:3236Å 以上の条件でカーボン治具に窒化膜コーティングを行っ
た。
Example 1 Nitride film coating conditions 0.1 torr, 770 ° C. SiH 2 Cl 2 : 70 sccm NH 3 : 700 sccm Growth rate: 35 Å / min Film thickness: 3236 Å A carbon jig was coated with a nitride film under the above conditions.

実験結果の評価については、実験例1と同様に光導電減
衰法(ASTMF28)により、ウェーハ・ライフ・タイムを
測定した。そのウェーハ・ライフ・タイムより、汚染量
を汚染物質を鉄(Fe)として算出した。その結果を第3
表に示した。但し、熱処理は1100℃で30分間N2中で行っ
た。
Regarding the evaluation of the experimental results, the wafer lifetime was measured by the photoconductive decay method (ASTMF28) as in Experimental Example 1. From the wafer life time, the pollutant amount was calculated using iron (Fe) as the pollutant. The result is the third
Shown in the table. However, the heat treatment was performed at 1100 ° C. for 30 minutes in N 2 .

比較例1 実験例1と同様のカーボン治具に窒化膜コーティングを
行うことなく、実施例1と同様に汚染量を算出して、そ
の結果を第3表に示した。
Comparative Example 1 The same amount of contamination was calculated as in Example 1 without coating a carbon jig similar to that in Experimental Example 1 with a nitride film, and the results are shown in Table 3.

第3表の結果から、本発明の窒化膜コーティングを行っ
た治具のシール効果は従来品に比べて膜厚が極めて薄い
にもかかわらず良好であり、即ち汚染量は極めて少ない
ことが確認できた。また、膜厚は極めて薄いから、従来
の膜厚のコーティングに要した時間よりも遥かに処理時
間は短縮できた。
From the results shown in Table 3, it can be confirmed that the sealing effect of the jig coated with the nitride film of the present invention is good even though the film thickness is extremely thin as compared with the conventional product, that is, the contamination amount is extremely small. It was Further, since the film thickness is extremely thin, the processing time can be shortened far more than the time required for coating with the conventional film thickness.

本発明の技術思想は、半導体の単結晶製造、熱処理、同
ウエーハの半導体電子回路装置の製造など、高温度で使
用されるカーボン製部品治具及びその他構造体のカーボ
ン製品の表面、又は内部の不純物を封じこめるためにも
応用可能である。
The technical idea of the present invention is that the surface of a carbon product of a carbon component jig and other structures used at high temperatures such as semiconductor single crystal production, heat treatment, and production of semiconductor electronic circuit devices of the same wafer, or the inside of It can also be applied to contain impurities.

(発明の効果) 以上述べた如く、本発明の半導体ウェーハ熱処理用治具
は、(1)コーティングに際して高温処理が必要でなく
治具材料(カーボン、炭化珪素等)から不純物の外部へ
の噴出が減少し、(2)かつコーティング処理時間も大
幅に短縮でき、(3)さらに窒化珪素単独で膜厚が1000
Åと薄くても十分なシール効果を有するという大きな効
果を奏するものである。
(Effects of the Invention) As described above, in the semiconductor wafer heat treatment jig of the present invention, (1) high temperature treatment is not required at the time of coating, and impurities are not ejected from the jig material (carbon, silicon carbide, etc.) to the outside. (2) and the coating processing time can be greatly shortened.
Even if it is thin, it has a great effect of having a sufficient sealing effect.

【図面の簡単な説明】 第1図は実験例3の実験結果を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the experimental results of Experimental Example 3.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】カーボン製熱処理用冶具の表面に、直接又
は間接に厚さが1000Å以上の非晶質窒化珪素膜を形成せ
しめたことを特徴とする半導体ウェーハ熱処理用治具。
1. A jig for heat treatment of a semiconductor wafer, characterized in that an amorphous silicon nitride film having a thickness of 1000 Å or more is directly or indirectly formed on the surface of a carbon heat treatment jig.
JP5853989A 1989-03-10 1989-03-10 Jig for semiconductor wafer heat treatment Expired - Lifetime JPH0752721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5853989A JPH0752721B2 (en) 1989-03-10 1989-03-10 Jig for semiconductor wafer heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5853989A JPH0752721B2 (en) 1989-03-10 1989-03-10 Jig for semiconductor wafer heat treatment

Publications (2)

Publication Number Publication Date
JPH02237111A JPH02237111A (en) 1990-09-19
JPH0752721B2 true JPH0752721B2 (en) 1995-06-05

Family

ID=13087245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5853989A Expired - Lifetime JPH0752721B2 (en) 1989-03-10 1989-03-10 Jig for semiconductor wafer heat treatment

Country Status (1)

Country Link
JP (1) JPH0752721B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214422B2 (en) 1997-12-02 2001-10-02 日本電気株式会社 Semiconductor device manufacturing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPH02237111A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
JP5005170B2 (en) Method for forming ultra-high quality silicon-containing compound layer
JP2928030B2 (en) Improved reduced pressure chemical vapor deposition method for depositing titanium nitride thin films with stable and low electrical resistivity
JP4704618B2 (en) Method for producing zirconium oxide film
JP4713041B2 (en) Transition metal nitride thin film deposition method
US20210039949A1 (en) Method and apparatus for producing a nanometer thick film of black phosphorus
JP3110857B2 (en) Method for producing product including TiN x layer
US6235645B1 (en) Process for cleaning silicon semiconductor substrates
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
WO2002000968A1 (en) A method for manufacturing a susceptor, a susceptor thus obtained and its application
US3916041A (en) Method of depositing titanium dioxide films by chemical vapor deposition
JPS5884111A (en) Improved plasma deposition for silicon
JPH02217473A (en) Forming method of aluminum nitride film
JPH0752721B2 (en) Jig for semiconductor wafer heat treatment
JPH0339474A (en) Thin film formation
JP3013418B2 (en) Dielectric thin film, thin film device, and method for producing them
WO2022030348A1 (en) Method for forming ruthenium thin film
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
Komatsu et al. Synthesis of strontium oxide whiskers with preferential< 111> orientation by atmospheric chemical vapor deposition
JP2021046336A (en) Method for processing surface of graphite support substrate, method for depositing silicon carbide polycrystalline film and method for manufacturing silicon carbide polycrystalline substrate
JPS6140770Y2 (en)
JPH10510326A (en) Method for producing magnesium oxide film using organomagnesium compound
US6949480B2 (en) Method for depositing silicon nitride layer of semiconductor device
JP2006352109A (en) Ald method and reactor for manufacturing high quality layer
JPS62123094A (en) Susceptor for vapor growth of semiconductor
JP2575495B2 (en) Boron diffusing agent and method for producing the same