JPH07509104A - Method for encapsulating semiconductor chips, device obtained by this method, and application to three-dimensional chip interconnection - Google Patents

Method for encapsulating semiconductor chips, device obtained by this method, and application to three-dimensional chip interconnection

Info

Publication number
JPH07509104A
JPH07509104A JP6523941A JP52394194A JPH07509104A JP H07509104 A JPH07509104 A JP H07509104A JP 6523941 A JP6523941 A JP 6523941A JP 52394194 A JP52394194 A JP 52394194A JP H07509104 A JPH07509104 A JP H07509104A
Authority
JP
Japan
Prior art keywords
chip
chips
leads
stack
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6523941A
Other languages
Japanese (ja)
Inventor
バル クリスチャン
Original Assignee
トムソン−セーエスエフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トムソン−セーエスエフ filed Critical トムソン−セーエスエフ
Publication of JPH07509104A publication Critical patent/JPH07509104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4824Pads with extended contours, e.g. grid structure, branch structure, finger structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02333Structure of the redistribution layers being a bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02371Disposition of the redistribution layers connecting the bonding area on a surface of the semiconductor or solid-state body with another surface of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06589Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 半導体チップを封止する方法、この方法によって得られる装置、及び3次元のチ ップの相互接続への適用本発明は、各々が例えば電子部品、集積回路又はセンサ を含んでいる半導体チップを封止する方法及びこの方法によって得られる装置に 関する。さらに本発明は、このような封入をこれらチップの3次元相互接続へ適 用することに関する。[Detailed description of the invention] A method for encapsulating a semiconductor chip, a device obtained by this method, and a three-dimensional chip Application to the interconnection of chips, each for example an electronic component, an integrated circuit or a sensor. A method for encapsulating a semiconductor chip containing a semiconductor chip and a device obtained by this method related. Furthermore, the present invention applies such encapsulation to three-dimensional interconnections of these chips. related to use.

民間用及び軍事用共に最近の電子システムでは、より多(の回路が用いられてい ることから、コンパクト化のより強い要求を考慮に入れて構成する必要がある。Modern electronic systems, both civil and military, use more and more circuitry. Therefore, it is necessary to take into account the stronger demand for compactness.

この点を考オして、例えば、THOMSON−C3Fを出願人とする仏閣特許出 願第2,670,323号に記載されているように、集積回路の「3次元」スタ ック(積み重ね)と称されるものを作成することが既に提案されている。この構 成によれば、スタックの側面に向かう接続ワイヤを設けた後に複数のチップがス タックされ、次いでこれらチップが例えば樹脂によって一体化される。チップの 相互接続は、その後、スタックの側面上で行われる。Taking this point into consideration, for example, a Buddhist patent with THOMSON-C3F as the applicant may be issued. As described in Application No. 2,670,323, "three-dimensional" stacks of integrated circuits It has already been proposed to create what are called stacks. This structure According to the authors, multiple chips are stacked together after providing connecting wires going to the sides of the stack. The chips are then tacked together, for example by resin. of chips Interconnects are then made on the sides of the stack.

本発明の目的は、特に半導体工場においてより容易に実施できるようにかつコス トが低減されるようにこの方法を修正することにある。The purpose of the present invention is to make it easier and more cost-effective to implement, especially in semiconductor factories. The objective is to modify this method so that the costs are reduced.

即ち、本発明の方法によれば、例えばワイヤであるリードは多数のチップを設け た半導体ウェハに直接的に配線され、このウェハは可撓性フィルムに接着されて おり、このウェハは各チップに分割させるべくスクライビングされ、チップを分 離すべく可撓性フィルムが引き伸ばされる。リード及びチップのアセンブリは次 いで例えば重合可能な樹脂である絶縁材料内に一体化され、研磨の後、ワイヤを チップの側面に結合すべくこれらワイヤ上に金属デポジションがなされる。アセ ンブリは次いでチップを分離すべく切断され、これにより、パッケージを構成す る封止材料内に封止され接続導体を有するチップが得られる。「3次元」への適 用として、上述したパッケージは各チップとその次のものとの間に配置された挿 入物によって単純に接着されてスタックされ、次いでこのようにして得られたス タックの側面に例えば前述の仏閣特許出願に記載されているように相互接続がな される。That is, according to the method of the present invention, a lead, which is a wire, for example, is provided with a large number of chips. wired directly onto a semiconductor wafer, which is then glued to a flexible film. This wafer is then scribed to separate each chip. The flexible film is stretched to separate. The lead and tip assembly is as follows. The wire is then integrated into an insulating material, for example a polymerizable resin, and after polishing the wire is Metal depositions are made on these wires to bond to the sides of the chip. Ace The assembly is then cut to separate the chips, thereby making up the package. A chip is obtained which is encapsulated in a encapsulating material and has connecting conductors. Suitability for “3D” For applications, the package described above has an insert placed between each chip and the next one. are simply glued and stacked by the container, and then the strips thus obtained are If the sides of the tack do not have interconnections as described in the above-mentioned Buddhist Patent Application, for example, be done.

本発明のその他の目的、特徴となる構成及び作用効果は、次の添付の図面によっ て説明される実施例の以下の記載から明らかとなるであろう。Other objects, characteristic configurations, and effects of the present invention are illustrated in the accompanying drawings below. It will become clear from the following description of the embodiments described.

図1は、本発明による方法の実施例を表しており、図2〜図4a及び図5は、本 発明による方法の種々のステップを説明する種々の断面図であり、図4bは°、 図4aの平面図であり、 図6及び図7は、本発明の変更態様の概略的な断面図である。FIG. 1 represents an embodiment of the method according to the invention, and FIGS. 4b illustrates various cross-sectional views illustrating various steps of the method according to the invention, FIG. FIG. 4a is a plan view of FIG. 4a; 6 and 7 are schematic cross-sectional views of a modification of the invention.

これら種々の図において、同一の参照符号は同一の要素に関連している。さらに 、より分かりやすくするため、図面は実尺では示されていない。In these various figures, the same reference numbers relate to the same elements. moreover , for better clarity, the drawings are not drawn to scale.

図1は、上述したように、本発明による方法の一実施例を表している。FIG. 1, as mentioned above, represents an embodiment of the method according to the invention.

10で示す第1のステップは、各々が集積回路又はディスクリート部品を含む多 数(通常は数百のオーダ)のチップが形成されている半導体材料のウェハを可撓 性フィルムに固II(例えば接着)することからなる、このフィルムは、例えば ポリマー型の自己接着式のものである。The first step, indicated at 10, is to conduct multiple circuits, each containing integrated circuits or discrete components. A flexible wafer of semiconductor material on which a number (usually on the order of hundreds) of chips are formed. This film consists of hardening (e.g. adhesion) to a plastic film, for example It is a polymer type self-adhesive type.

11で示す第2のステップは、ワイヤ又はストリップである電気的リードをウェ ハ内に設けられた各チップの接続パッドの各々に配線することからなる。The second step, indicated at 11, is to wafer the electrical leads, which may be wires or strips. This consists of wiring each of the connection pads of each chip provided in the chip.

これらの処理動作の結果が図2に示されている。The results of these processing operations are shown in FIG.

この図2は、チップ21が強調されている半導体ウェハlを表わしている。ウェ ハlは、2で示されている可撓性フィルム上に設けられている。ウェハ1の22 で示されているパッドの各々は、例えばワイヤであるリード23に接続されてい る。ワイヤ23は、小さなボール24を得るべくそのワイヤの一端を溶かすこと からなるいわゆる「ポールボンディング」技術によって垂直に接続可能である。This FIG. 2 represents a semiconductor wafer l in which chips 21 are highlighted. We The shell 1 is provided on a flexible film indicated at 2. 22 of wafer 1 Each of the pads shown is connected to a lead 23, for example a wire. Ru. The wire 23 is melted at one end to obtain a small ball 24. They can be connected vertically using the so-called "pole bonding" technique.

例えば図7に示すような他の技術も使用可能である。固着後、ワイヤ23の各々 は、所定の高さに切断される0例えば、ワイヤ径が約25〜30μm、ウェハの 厚さが500μmのオーダ、フィルム2の厚さが200μmのオーダの場合にそ の高さは、例えば150〜200μmであるかもしれない。Other techniques can also be used, for example as shown in FIG. After fixing, each of the wires 23 For example, the wire diameter is about 25-30 μm and the wafer is cut to a predetermined height. When the thickness of film 2 is on the order of 500 μm and the thickness of film 2 is on the order of 200 μm, The height may be, for example, 150-200 μm.

次のステップ(図1の12)は、21で示すごときチップに分割するために、ウ ェハ2を好ましくはその厚み全体にわたってスクライビングすることからなる。The next step (12 in Figure 1) is to divide the wafer into chips as shown at 21. It consists of scribing the wafer 2, preferably over its entire thickness.

13で示す次のステップは5可撓性フイルム2を均一に引き伸ばすことからなる 。これによってチップ21が規則正しく互いに分離する。The next step, indicated at 13, consists in uniformly stretching the flexible film 2. . As a result, the chips 21 are regularly separated from each other.

ウェハ1にワイヤを配線するステップ11が、ある変更態様においては、可撓性 フィルム2を引き伸ばすこのステップ13の後のみ実行可能であることに注目す べきである。In some variations, the step 11 of routing wires to the wafer 1 includes Note that stretching film 2 is only possible after this step 13. Should.

14で示す次のステップは、チップ及びそれらの接続ワイヤを統合して全体を、 例えば有機、エポキシ又はポリイミド樹脂等の電気的絶縁材料を用い例えばキャ スティング又はモールディング法によって封止することからなる。ポリイミド樹 脂は、重合されていることが好ましい。The next step, indicated at 14, is to integrate the chips and their connecting wires to make the whole Using electrically insulating materials such as organic, epoxy or polyimide resins, e.g. It consists of sealing by a sting or molding method. polyimide tree Preferably, the fat is polymerized.

このステップによって得られた結果が図3に示されている。The results obtained by this step are shown in FIG.

この図は、この段階では各々に分割されて互いに分離されているチップ21を担 持するフィルム2を示している。チップ21及びそれらのり−ド23は、チップ 間の間隙26内にも侵入している絶縁材料25内に埋設されている。This figure shows chips 21 which are each divided and separated from each other at this stage. The film 2 shown in FIG. The chips 21 and their glues 23 are chips. It is embedded in an insulating material 25 which also penetrates into the interstices 26 between them.

15で示す次のステップは、ワイヤ23の断面と同高の平面が得られるように封 止材料25の上面(図3の27)を研磨することからなる。The next step, indicated at 15, is to seal the wire 23 so that it has a plane that is flush with the cross section of the wire 23. This consists of polishing the upper surface of the stopper material 25 (27 in FIG. 3).

封止材料25の厚さは、特に熱機械的理由から、ウェハ1及びこれに関連する材 料の厚さに、依存している。−例をあげれば、400・〜5001Lmのウェハ 厚で材料25の厚さは約150μmであるかもしれない。The thickness of the encapsulant material 25 is determined, in particular for thermomechanical reasons, by the thickness of the wafer 1 and its associated materials. It depends on the thickness of the material. - For example, a 400-5001Lm wafer The thickness of material 25 may be approximately 150 μm.

次のステップ(図1の16)は、可撓性フィルム2を除去することからなる。The next step (16 in FIG. 1) consists in removing the flexible film 2.

この除去は、例えばフィルムを引きはがすことによって実施される。ある変更態 様においては、アセンブリの背面、即ち面27の反対側の面(図3の28で示す )が、フィルム2を除去するために及び/又はチップ21の厚さ及び大きさを減 少させるべくこのチップ21を薄くするために研磨される。これは、封止された チップを3次元にスタックする(積み重ねる)以下に述べる用途において、特に 有効であろう。This removal is carried out, for example, by tearing off the film. a certain change 3, the rear side of the assembly, i.e., the side opposite side 27 (designated 28 in Figure 3). ) to remove the film 2 and/or reduce the thickness and size of the chip 21. This chip 21 is polished to make it thinner. This is sealed In the following applications where chips are stacked in three dimensions, especially It would be effective.

ある変更態様においては、可撓性フィルム2は除去されず、これによってチップ の背面28の絶縁及び/又は保護が可能となる。In some variations, the flexible film 2 is not removed, thereby allowing the chip to It is possible to insulate and/or protect the back surface 28 of.

17で示す次のステップは、各リード23を分離後にチップの側面となるものに 結合させる接続導体を形成することからなる。これら接続導体は、チップ間の間 隙上方の上面27へのメタライゼーションによって形成される。The next step, indicated at 17, is to attach each lead 23 to what will become the sides of the chip after separation. It consists of forming a connecting conductor to be coupled. These connecting conductors are connected between the chips. It is formed by metallization on the upper surface 27 above the gap.

図4a及び図4bは、このステップを断面から及び上面から見たものをそれぞれ 示している。Figures 4a and 4b show this step in cross-section and top view, respectively. It shows.

図4aは、材料25内に埋設されたワイヤ23を備えたチップ21を表わしてい る。アセンブリの上面27は、ワイヤ23上のメタライゼーション導体30を備 えている。これらメタライゼーション導体30は、各ワイヤ23をチップ間の間 隙26に結合する。FIG. 4a represents a chip 21 with a wire 23 embedded in a material 25. Ru. The top surface 27 of the assembly includes metallization conductors 30 on the wires 23. It is growing. These metallization conductors 30 connect each wire 23 between chips. It connects to the gap 26.

これらメタライゼーション導体30としては、図4の平面図に示されているよう に種々の形態が想定できる。These metallized conductors 30 are as shown in the plan view of FIG. Various forms can be assumed.

ワイヤ23をチップ間領域26へ結合するかも知れないし、異なるチップからの 2つのワイヤ23を1つに結合するかもしれないし、又は例えばチップを試験す るために後で使用する領域31ヘワイヤ23を付加的に結合するかもしれない。Wires 23 may be coupled to the interchip region 26, and wires 23 from different chips may be connected to One might combine two wires 23 into one, or test a chip, for example. Wires 23 may be additionally bonded to region 31 for later use.

接続導体30は、例えば金属層のデポジション及びこれに続(この層のエツチン グ等、公知のいかなる方法によっても形成することが可能である。デポジション は、例えば真空下でのスパッタリングによってなされる、金、ニッケル及び金、 ニッケルー銅及び金、銅及び金の金属デポジションであり得、恐ら(は電気化学 的めっきである。これに続くエツチングは、例えばホトエツチングであり得る。The connecting conductor 30 can be formed, for example, by the deposition of a metal layer and subsequent etching of this layer. It can be formed by any known method such as Deposition gold, nickel and gold, made for example by sputtering under vacuum Nickel-copper and gold, copper and gold metal deposition, possibly (electrochemical) It's a target. The subsequent etching can be, for example, photoetching.

ある変更態様においては、リードの周辺を除く部分全てに金属を残すいわゆる反 転ホトエツチングが使用可能である。これは、電磁シールドを付加的に形成可能 とするものである。One modification involves a so-called anti-reflection method that leaves metal on all but the periphery of the lead. Transfer photo-etching can be used. This can additionally form an electromagnetic shield That is.

封止されたチップを形成する最後のステップ(図1の18)は、チップ(複数) を分離することからなる。この分離は、例えばダイヤモンド付刃スクライバによ って材料25をチップ間で切断することによってなされる。The final step (18 in Figure 1) to form the encapsulated chip is to It consists of separating the This separation can be achieved, for example, with a diamond-tipped scriber. This is done by cutting the material 25 between the chips.

これにより、パッケージを構成する絶縁材料内にそれらの5つの面が封止された 半導体チップが得られる。このパッケージは試験及び取付けに使用できる接続導 体(メタライゼーション導体30)を備えている。This sealed those five sides within the insulating material that made up the package. A semiconductor chip is obtained. This package contains connection leads that can be used for testing and installation. (metallization conductor 30).

このように封止されたチップを3次元にスタックしたものを作成したい場合(図 1の19)、パッケージは、その2つの側面が一直線となるようにスライド状に 配列され、これによってパッケージの配置に関する問題が単純化される。パッケ ージ間には、例えば重合可能な樹脂等による接着性材料による層が設けられてい る。このアセンブリは、次いで、一体化されるべ(加圧され適当に重合される。If you want to create a three-dimensional stack of sealed chips like this (Fig. 1, 19), slide the package so that its two sides are in a straight line. This simplifies package placement issues. package A layer of adhesive material, such as a polymerizable resin, is provided between the pages. Ru. This assembly is then consolidated (pressurized and suitably polymerized).

この様子が、接着性#32によって互いに分離されたチップ21及びそれらの封 止材料25を示す図5に説明されている。1つの変更態様において、可撓性フィ ルム2について、接着性材料又は適当な処理によって接着性を有するものが層3 2の代わりに用いられ、従って層32の介在が不要となる。スタックの各最端面 上には、層32によって固着された非接着性のシーリング層42が付加的に設け られている。1つの変更態様においては(図示されていない)、シーリング層4 2は、その一方の面が接着性を有しており、これによって層32が不要となる。This situation shows the chips 21 separated from each other by adhesive #32 and their seals. This is illustrated in FIG. 5, which shows the stop material 25. In one variation, the flexible filament For layer 2, layer 3 is made of an adhesive material or has adhesive properties through appropriate treatment. 2, thus eliminating the need for the intervening layer 32. Each end of the stack A non-adhesive sealing layer 42 is additionally provided on top, secured by layer 32. It is being In one variant (not shown), the sealing layer 4 2 has adhesive properties on one side, which eliminates the need for layer 32.

メタライゼーション導体30は、各リード23をスタックのエツジ35に結合す る。A metallization conductor 30 connects each lead 23 to an edge 35 of the stack. Ru.

次のステップ(図1の20)は、スタックの種々のチップを相互接続し、かつそ れらを外部回路と接続可能とすべ(スタックパッドと称するパッドに適切に結合 することからなる。これら相互接続は、例えば前述の仏閣特許出願に記載されて いるように、スタックの面上でなされる。The next step (20 in Figure 1) is to interconnect the various chips of the stack and These can be connected to external circuits (properly coupled to pads called stack pads). consists of doing. These interconnections are described, for example, in the aforementioned Buddhist patent application. is done on the face of the stack, as shown.

図5に示されている例では、種々の接続導体30が全てスタックの側面上に設け られておりかつ例えばスタックの一方の又は両方の最端面上に伸びている(34 )メタライゼーション33によって共に結合されている。メタライゼーション3 3がスタックの両方の最端面上に伸びている場合、その一方は試験に用いられ、 他方は例えばそのスタックをプリント回路上に実装するのに用いられる。In the example shown in Figure 5, the various connecting conductors 30 are all provided on the sides of the stack. and extending, for example, on one or both extreme faces of the stack (34 ) are bonded together by metallization 33. Metallization 3 3 extends on both extreme faces of the stack, one of which is used for testing; The other is used, for example, to implement the stack on a printed circuit.

他の変更態様においては(図示されていない)、非接着性挿入体によって分離さ れていてもよい数個のスタックを同時に形成可能である。次いで、スタックの側 面を介するチップの相互接続が全てのスタックについてまとめて同時に行われる かもしれない。In other variations (not shown), they are separated by a non-adhesive insert. It is possible to form several stacks at the same time, which may be different. Then the side of the stack Chip interconnection through surfaces is done simultaneously for all stacks Maybe.

さらに他の変更態様においては、パッケージ間に放熱器に任意に結合されたヒー トシンクを挿入することによって動作中のチップの冷却を改善可能である。In still other variations, a heat sink is optionally coupled to a heat sink between the packages. Cooling of the chip during operation can be improved by inserting a sink.

図6に表された例は、チップ21、それらのリード23、及び封止材料25を示 している。ワイヤ23をチップの側面のうちの1つに接続する接続導体3oは、 これら側面のうちの1つ、例えばこの図の左側面、に接触しないようになされて いる。例えば銅、窒化アルミニウム、又はダイヤモンド等による金属層のヒート シンク38が、各チップ21の間に接着性層36によって設けられている。スタ ックの左側面は、好ましくは熱伝導性の接着層39によって放熱器37に接着さ れている。この放熱器37はこれによりシンク38に熱接触している6図を簡略 化するために、接着層36は断面であるにもかかわらずハツチングで示されてい ない。The example represented in FIG. 6 shows the chips 21, their leads 23, and the encapsulating material 25. are doing. The connecting conductor 3o connecting the wire 23 to one of the sides of the chip is It is made not to touch one of these sides, for example the left side in this figure. There is. Heating of metal layers, e.g. with copper, aluminum nitride, or diamond A sink 38 is provided between each chip 21 by an adhesive layer 36 . star The left side of the rack is preferably glued to the heat sink 37 by a thermally conductive adhesive layer 39. It is. This radiator 37 is thereby in thermal contact with the sink 38. Figure 6 is simplified. In order to make the adhesive layer 36 easier to understand, the adhesive layer 36 is shown with hatching even though it is a cross section. do not have.

図7は、図1のステップ11.即ちリードのウェハへの配線についての変更態様 を断面で示している。FIG. 7 shows step 11 of FIG. In other words, how to change the wiring of the leads to the wafer. is shown in cross section.

この図は、可撓性フィルム2上に設けられておりリード23をワイヤリングする ことが望ましいバッド22を有するウェハ1を示している。この変更態様によれ ば、ウェハ1の上面には、プリント回路型基板39の一部、好ましくは各チップ について少なくとも1つが設けられている。このプリント回路39は1例えば接 着層4oによってウェハに固着されている。プリント回路39は、少なくとも1 つのメタライゼーション導体41を備えている。この変更態様によれば、リード 23は、切断されておらず、プリント回路39が有するメタライゼーション導体 41に接続可能とするべくカーブされている。さらに、リード23は、前述の図 に表されているようにバッド22に垂直に接続可能であるか、又は図7に表され ているようにメタライゼーション導体41に水平に同様に接続可能である。This figure is provided on the flexible film 2 and wires the leads 23. A wafer 1 is shown having a pad 22 which is desirable. Depending on this change For example, the top surface of the wafer 1 includes a portion of the printed circuit board 39, preferably each chip. At least one is provided for. This printed circuit 39 has one connection, for example. It is fixed to the wafer by an adhesion layer 4o. The printed circuit 39 includes at least one metallization conductor 41. According to this modification, the lead 23 is an uncut metallization conductor that the printed circuit 39 has; It is curved so that it can be connected to 41. Furthermore, the lead 23 is can be connected vertically to the pad 22 as shown in FIG. A similar connection can be made horizontally to the metallization conductor 41 as shown in FIG.

本発明の方法の以後の全ての動作は、前述の場合と同様に行われ、封止材料の研 磨中(ステップ15)、チップの上面と同高となるようにリード23が切断され る。All further operations of the method of the invention are carried out as in the previous case, with the polishing of the sealing material During polishing (step 15), the leads 23 are cut at the same height as the top surface of the chip. Ru.

上述した方法は、これによって得られる装置と同様に、(単一のウェハに全て属 している)多数のチップを同時に処理でき、かつ半導体産業においては公知であ り半導体回路の製造ラインに容易に統合可能な技術を用いてこれを行うことがで きるという多(の効果を有している。これにより、封止されたチップの製造コス トを大幅に低減すると共に、使用する技術の結果、より小さな(特に封止材料の )寸法で製造することができる。典型的には、1%未満のチップ面積の増加をも たらすことができる。さらに、封止のモードは、コスト上の利点をも有しつつま とめてかつ簡単に行うことができるので、「3次元」のスタックに非常に適して いる。The method described above, as well as the resulting device (all belonging to a single wafer) It is possible to process a large number of chips simultaneously, and is well known in the semiconductor industry. This can be done using technology that can be easily integrated into semiconductor circuit manufacturing lines. This has the effect of reducing the manufacturing cost of the encapsulated chip. As a result of the technology used, smaller ) dimensions can be manufactured. Typically increases chip area by less than 1%. can be used. Furthermore, the mode of encapsulation also has cost advantages while It is very suitable for "three-dimensional" stacking because it can be fixed and easily done. There is.

FIG、1 FIG3 FIG、4a FIG 4b フロントページの続き (51) Int、 C1,6識別記号 庁内整理番号HOIL 25/11 IFIG.1 FIG3 FIG. 4a FIG 4b Continuation of front page (51) Int, C1, 6 identification symbol Internal reference number HOIL 25/11 I

Claims (8)

【特許請求の範囲】[Claims] 1.リード(23)を半導体材料の単一ウエハ(1)内に含まれるチップ(21 )の接続パッド(22)へ配線するステップと、 前記チップを各々に分割させるべく、可撓性フィルム(2)上に固定されている 前記ウエハをスクライビングするステップと、 前記チップを分離すべく、前記可撓性フィルムを引き伸ばすステップと、 電気的絶縁材料(25)によって前記リード及びチップを一体化及び封止するス テップと、 前記リードの高さを同じにすべく、前記封止材料を研磨するステップと、 前記封止材料上に、前記リードを前記チップの側面に結合する接続導体(30) を形成するステップと、前記チップを分離するステップと を備えたことを特徴とする半導体チップを封止する方法。1. Leads (23) are connected to chips (21) contained within a single wafer (1) of semiconductor material. ) wiring to the connection pad (22) of the fixed on a flexible film (2) to separate the chips into individual parts; scribing the wafer; stretching the flexible film to separate the chips; A step for integrating and sealing the leads and chip with an electrically insulating material (25) Tep and polishing the encapsulation material so that the heights of the leads are the same; A connecting conductor (30) on the encapsulant material that couples the lead to the side surface of the chip. and separating the chips. A method for sealing a semiconductor chip, comprising: 2.前記封止材料(25)が重合可能な樹脂であることを特徴とする請求項1に 記載の方法。2. Claim 1, characterized in that the sealing material (25) is a polymerizable resin. Method described. 3.前記研磨するステップの後に前記可撓性フィルム(2)を除去するステップ をさらに備えたことを特徴とする請求項1又は2に記載の方法。3. removing the flexible film (2) after the polishing step; The method according to claim 1 or 2, further comprising: 4.接続パッド(22)を含む半導体チップ(21)であって、そのパッドに接 続されたリード(23)を含んでおり、前記チップ及びそのリードは、該リード が絶縁材料(25)の表面(27)と同高となるように該絶縁材料内に封止され ており、該表面上に該リードを前記チップの側面に結合する電気的接続導体(3 0)をさらに備えたことを特徴とするチップ。4. A semiconductor chip (21) including a connection pad (22), the semiconductor chip (21) being connected to the pad. The chip and its leads include connected leads (23). is sealed within the insulating material (25) so that it is at the same height as the surface (27) of the insulating material (25). and electrical connection conductors (3) on the surface that couple the leads to the sides of the chip. A chip further comprising: 0). 5.前記リード(23)の各々がワイヤ又はストリップによって構成されたこと を特徴とする請求項4に記載のチップ。5. Each of the leads (23) is composed of a wire or a strip. The chip according to claim 4, characterized in that: 6.請求項1に記載の方法によって得られたチップを相互接続する方法であって 、 前記分離されたチップをスタックし、該スタックを一体化するステップと、 該スタックの面上でチップを相互接続するステップとをさらに備えたことを特徴 とする方法。6. A method for interconnecting chips obtained by the method according to claim 1, comprising: , stacking the separated chips and integrating the stack; interconnecting chips on a surface of the stack. How to do it. 7.分離されたチップの前記スタックは、該チップ間にこれらを互いに接着可能 な材料の層を配置してなることを特徴とする請求項6に記載の方法。7. The stack of separated chips can be bonded together between the chips. 7. A method according to claim 6, characterized in that the method comprises arranging layers of material. 8.請求項4に記載のチップを備えた装置であって、該チップ(21)は、スタ ックされかっこれらの相互接着を保証する材料の層(2、32)によって分離さ れており、該スタックの面に設けられており前記チップの接続導体(30)を相 互に接続する相互接続導体(33)をさらに備えたことを特徴とする装置。8. A device comprising a chip according to claim 4, wherein the chip (21) separated by a layer of material (2, 32) that ensures their mutual adhesion. is provided on the surface of the stack and connects the connecting conductor (30) of the chip. A device characterized in that it further comprises interconnecting conductors (33) that connect to each other.
JP6523941A 1993-04-27 1994-04-15 Method for encapsulating semiconductor chips, device obtained by this method, and application to three-dimensional chip interconnection Pending JPH07509104A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9304962A FR2704690B1 (en) 1993-04-27 1993-04-27 Method for encapsulating semiconductor wafers, device obtained by this process and application to the interconnection of wafers in three dimensions.
FR93/04962 1993-04-27
PCT/FR1994/000427 WO1994025987A1 (en) 1993-04-27 1994-04-15 Semiconductor chip encapsulation method, device produced by this method and its application to three dimensional chip interconnection

Publications (1)

Publication Number Publication Date
JPH07509104A true JPH07509104A (en) 1995-10-05

Family

ID=9446488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6523941A Pending JPH07509104A (en) 1993-04-27 1994-04-15 Method for encapsulating semiconductor chips, device obtained by this method, and application to three-dimensional chip interconnection

Country Status (4)

Country Link
EP (1) EP0647357A1 (en)
JP (1) JPH07509104A (en)
FR (1) FR2704690B1 (en)
WO (1) WO1994025987A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124354A (en) * 1998-10-21 2000-04-28 Matsushita Electric Ind Co Ltd Chip-size package and its manufacture
JP2000252235A (en) * 1999-02-25 2000-09-14 Nec Corp Semiconductor and manufacture thereof
JP2000260733A (en) * 1999-03-11 2000-09-22 Oki Electric Ind Co Ltd Manufacture of semiconductor device
WO2001026146A1 (en) * 1999-10-01 2001-04-12 Hitachi, Ltd. Semiconductor device and method of manufacture thereof
JP2004538641A (en) * 2001-07-31 2004-12-24 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Electronic component having synthetic resin housing and method of manufacturing the same
WO2005027223A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co., Ltd Semiconductor module including circuit device and insulating film, method for manufacturing same, and application of same
JP2007521636A (en) * 2003-09-30 2007-08-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Flexible stacked chip assembly and method of forming the same
US8884403B2 (en) 2008-06-19 2014-11-11 Iinvensas Corporation Semiconductor die array structure
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US8912661B2 (en) 2009-11-04 2014-12-16 Invensas Corporation Stacked die assembly having reduced stress electrical interconnects
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips
US9147583B2 (en) 2009-10-27 2015-09-29 Invensas Corporation Selective die electrical insulation by additive process
US9153517B2 (en) 2008-05-20 2015-10-06 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
US9252116B2 (en) 2007-09-10 2016-02-02 Invensas Corporation Semiconductor die mount by conformal die coating
US9305862B2 (en) 2008-03-12 2016-04-05 Invensas Corporation Support mounted electrically interconnected die assembly
US9490195B1 (en) 2015-07-17 2016-11-08 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9508691B1 (en) 2015-12-16 2016-11-29 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US9595511B1 (en) 2016-05-12 2017-03-14 Invensas Corporation Microelectronic packages and assemblies with improved flyby signaling operation
US9728524B1 (en) 2016-06-30 2017-08-08 Invensas Corporation Enhanced density assembly having microelectronic packages mounted at substantial angle to board
US9825002B2 (en) 2015-07-17 2017-11-21 Invensas Corporation Flipped die stack
US9871019B2 (en) 2015-07-17 2018-01-16 Invensas Corporation Flipped die stack assemblies with leadframe interconnects
CN110382216A (en) * 2016-12-01 2019-10-25 洛桑联邦理工学院 The reversible elasticity of designed toughness or brittle diaphragm and by the design products obtained therefrom
US10566310B2 (en) 2016-04-11 2020-02-18 Invensas Corporation Microelectronic packages having stacked die and wire bond interconnects

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098793A2 (en) * 2000-06-20 2001-12-27 Nanonexus, Inc. Systems for testing integraged circuits during burn-in
DE10023539B4 (en) * 2000-05-13 2009-04-09 Micronas Gmbh Method for producing a component
US20020100600A1 (en) * 2001-01-26 2002-08-01 Albert Douglas M. Stackable microcircuit layer formed from a plastic encapsulated microcircuit and method of making the same
DE10149689A1 (en) 2001-10-09 2003-04-10 Philips Corp Intellectual Pty Electrical/electronic component has lateral, rear cover materials at least partly of electrically conductive material and/or of electrically conductive material in layers but in connected manner
US7915085B2 (en) 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
US20050104027A1 (en) * 2003-10-17 2005-05-19 Lazarev Pavel I. Three-dimensional integrated circuit with integrated heat sinks
US7215018B2 (en) 2004-04-13 2007-05-08 Vertical Circuits, Inc. Stacked die BGA or LGA component assembly
US7217583B2 (en) 2004-09-21 2007-05-15 Cree, Inc. Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension
CN103925521A (en) 2005-12-21 2014-07-16 科锐公司 Lighting device
US8969908B2 (en) 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
US7943952B2 (en) 2006-07-31 2011-05-17 Cree, Inc. Method of uniform phosphor chip coating and LED package fabricated using method
US7829438B2 (en) 2006-10-10 2010-11-09 Tessera, Inc. Edge connect wafer level stacking
US7759166B2 (en) 2006-10-17 2010-07-20 Tessera, Inc. Microelectronic packages fabricated at the wafer level and methods therefor
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US7952195B2 (en) 2006-12-28 2011-05-31 Tessera, Inc. Stacked packages with bridging traces
US9024349B2 (en) * 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US8232564B2 (en) 2007-01-22 2012-07-31 Cree, Inc. Wafer level phosphor coating technique for warm light emitting diodes
US8723332B2 (en) 2007-06-11 2014-05-13 Invensas Corporation Electrically interconnected stacked die assemblies
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
WO2009020572A2 (en) * 2007-08-03 2009-02-12 Tessera Technologies Hungary Kft. Stack packages using reconstituted wafers
US8043895B2 (en) 2007-08-09 2011-10-25 Tessera, Inc. Method of fabricating stacked assembly including plurality of stacked microelectronic elements
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8167674B2 (en) 2007-12-14 2012-05-01 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US8637883B2 (en) 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
US8680662B2 (en) 2008-06-16 2014-03-25 Tessera, Inc. Wafer level edge stacking
US8461542B2 (en) 2008-09-08 2013-06-11 Koninklijke Philips Electronics N.V. Radiation detector with a stack of converter plates and interconnect layers
FR2940521B1 (en) 2008-12-19 2011-11-11 3D Plus COLLECTIVE MANUFACTURING METHOD OF ELECTRONIC MODULES FOR SURFACE MOUNTING
US8466542B2 (en) 2009-03-13 2013-06-18 Tessera, Inc. Stacked microelectronic assemblies having vias extending through bond pads
TWI570879B (en) 2009-06-26 2017-02-11 英維瑟斯公司 Semiconductor assembly and die stack assembly
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US10615057B1 (en) 2018-12-11 2020-04-07 Northrop Grumman Systems Corporation Encapsulation process for semiconductor devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3677601D1 (en) * 1986-08-22 1991-03-28 Ibm Deutschland INTEGRATED WIRING SYSTEM FOR VERY HIGHLY INTEGRATED CIRCUITS.
US5098305A (en) * 1987-05-21 1992-03-24 Cray Research, Inc. Memory metal electrical connector
DE3719742A1 (en) * 1987-06-12 1988-12-29 Siemens Ag Arrangement and method for separation of the semiconductor chips contained in a wafer whilst maintaining their order
FR2645681B1 (en) * 1989-04-07 1994-04-08 Thomson Csf DEVICE FOR VERTICALLY INTERCONNECTING PADS OF INTEGRATED CIRCUITS AND ITS MANUFACTURING METHOD
WO1991000619A1 (en) * 1989-06-30 1991-01-10 Raychem Corporation Flying leads for integrated circuits
EP0577779A4 (en) * 1991-03-27 1994-05-25 Integrated System Assemblies Multichip integrated circuit module and method of fabrication

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124354A (en) * 1998-10-21 2000-04-28 Matsushita Electric Ind Co Ltd Chip-size package and its manufacture
JP2000252235A (en) * 1999-02-25 2000-09-14 Nec Corp Semiconductor and manufacture thereof
US6893943B2 (en) 1999-03-11 2005-05-17 Oki Electric Industry Co., Ltd. Method of dividing a semiconductor wafer
JP2000260733A (en) * 1999-03-11 2000-09-22 Oki Electric Ind Co Ltd Manufacture of semiconductor device
US6303470B1 (en) 1999-03-11 2001-10-16 Oki Electric Industry Co., Ltd. Semiconductor wafer and method for manufacturing semiconductor devices
US6590274B2 (en) 1999-03-11 2003-07-08 Oki Electric Industry Co., Ltd. Semiconductor wafer and method for manufacturing semiconductor devices
WO2001026146A1 (en) * 1999-10-01 2001-04-12 Hitachi, Ltd. Semiconductor device and method of manufacture thereof
JP2004538641A (en) * 2001-07-31 2004-12-24 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Electronic component having synthetic resin housing and method of manufacturing the same
WO2005027223A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co., Ltd Semiconductor module including circuit device and insulating film, method for manufacturing same, and application of same
JPWO2005027223A1 (en) * 2003-09-09 2007-11-08 三洋電機株式会社 Semiconductor module including circuit element and insulating film, manufacturing method thereof and application thereof
US7622805B2 (en) 2003-09-09 2009-11-24 Sanyo Electric Co., Ltd. Semiconductor module including circuit component and dielectric film, manufacturing method thereof, and application thereof
JP2010239150A (en) * 2003-09-09 2010-10-21 Sanyo Electric Co Ltd Semiconductor module and its manufacturing method
JP4688679B2 (en) * 2003-09-09 2011-05-25 三洋電機株式会社 Semiconductor module
US8304289B2 (en) 2003-09-09 2012-11-06 Sanyo Electric Co., Ltd. Semiconductor module including circuit component and dielectric film, manufacturing method thereof, and application thereof
JP2007521636A (en) * 2003-09-30 2007-08-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Flexible stacked chip assembly and method of forming the same
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips
US9378967B2 (en) 2006-10-10 2016-06-28 Tessera, Inc. Method of making a stacked microelectronic package
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US9252116B2 (en) 2007-09-10 2016-02-02 Invensas Corporation Semiconductor die mount by conformal die coating
US9824999B2 (en) 2007-09-10 2017-11-21 Invensas Corporation Semiconductor die mount by conformal die coating
US9305862B2 (en) 2008-03-12 2016-04-05 Invensas Corporation Support mounted electrically interconnected die assembly
US9508689B2 (en) 2008-05-20 2016-11-29 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
US9153517B2 (en) 2008-05-20 2015-10-06 Invensas Corporation Electrical connector between die pad and z-interconnect for stacked die assemblies
US8884403B2 (en) 2008-06-19 2014-11-11 Iinvensas Corporation Semiconductor die array structure
US9147583B2 (en) 2009-10-27 2015-09-29 Invensas Corporation Selective die electrical insulation by additive process
US9490230B2 (en) 2009-10-27 2016-11-08 Invensas Corporation Selective die electrical insulation by additive process
US8912661B2 (en) 2009-11-04 2014-12-16 Invensas Corporation Stacked die assembly having reduced stress electrical interconnects
US9490195B1 (en) 2015-07-17 2016-11-08 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9666513B2 (en) 2015-07-17 2017-05-30 Invensas Corporation Wafer-level flipped die stacks with leadframes or metal foil interconnects
US9825002B2 (en) 2015-07-17 2017-11-21 Invensas Corporation Flipped die stack
US9871019B2 (en) 2015-07-17 2018-01-16 Invensas Corporation Flipped die stack assemblies with leadframe interconnects
US9508691B1 (en) 2015-12-16 2016-11-29 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US9859257B2 (en) 2015-12-16 2018-01-02 Invensas Corporation Flipped die stacks with multiple rows of leadframe interconnects
US10566310B2 (en) 2016-04-11 2020-02-18 Invensas Corporation Microelectronic packages having stacked die and wire bond interconnects
US9595511B1 (en) 2016-05-12 2017-03-14 Invensas Corporation Microelectronic packages and assemblies with improved flyby signaling operation
US9728524B1 (en) 2016-06-30 2017-08-08 Invensas Corporation Enhanced density assembly having microelectronic packages mounted at substantial angle to board
CN110382216A (en) * 2016-12-01 2019-10-25 洛桑联邦理工学院 The reversible elasticity of designed toughness or brittle diaphragm and by the design products obtained therefrom
CN110382216B (en) * 2016-12-01 2021-10-26 洛桑联邦理工学院 Reversible elasticity of engineered ductile or brittle films and products resulting from such engineering

Also Published As

Publication number Publication date
FR2704690B1 (en) 1995-06-23
EP0647357A1 (en) 1995-04-12
FR2704690A1 (en) 1994-11-04
WO1994025987A1 (en) 1994-11-10

Similar Documents

Publication Publication Date Title
JPH07509104A (en) Method for encapsulating semiconductor chips, device obtained by this method, and application to three-dimensional chip interconnection
US7245021B2 (en) Micropede stacked die component assembly
US7215018B2 (en) Stacked die BGA or LGA component assembly
KR101587561B1 (en) Integrated circuit package system with leadframe array
KR960003768B1 (en) Stacked chip assembly and the manufacturing process therefor
US6555902B2 (en) Multiple stacked-chip packaging structure
US7807502B2 (en) Method for fabricating semiconductor packages with discrete components
US7883993B2 (en) Semiconductor device with semiconductor chip and rewiring layer and method for producing the same
US6552416B1 (en) Multiple die lead frame package with enhanced die-to-die interconnect routing using internal lead trace wiring
JPH0831560B2 (en) Circuit package assembly
CN109148431B (en) Distance sensor chip packaging structure and wafer level packaging method thereof
US5457071A (en) Stackable vertical thin package/plastic molded lead-on-chip memory cube
US7524699B2 (en) Electronic component and a panel
JP2002270720A (en) Semiconductor device and its manufacturing method
US20010002320A1 (en) Extended lead package
CN104008982B (en) Chip packaging process and chip package
CN206558504U (en) Imaging sensor module
CN113161335B (en) Heart rate module packaging structure, preparation method thereof and wearable electronic device
CN106571377A (en) Image sensor module and manufacturing method thereof
WO2004107441A1 (en) An integrated circuit package employing a flexible substrate
CN109786261A (en) A kind of packaging method and structure of integrated passive device
CN110634830B (en) Multi-chip integrated packaging method and structure
US20230011439A1 (en) Semiconductor Device Package Die Stacking System and Method
JPS6329533A (en) Semiconductor device
TW200423364A (en) Semiconductor package and manufacturing method thereof